JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos)
|
|
- Kristiina Laakso
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 J. Virtamo Jonoteoria / Jatkuvat jakaumat 1 JATKUVAT JAKAUMAT Laplace-muunnos (Laplace-Stieltjes-muunnos) Määritelmä Ei-negatiivisen satunnaismuuttujan X 0, jonka tiheysfunktio on f(x), Laplace-muunnos f (s) määritellään f (s) = 0 e st f(t)dt = E[e sx ] = 0 e st df(t) merkitään myös L X (s) Matemaattisesti kyseessä on siis tiheysfunktion Laplace-muunnos. Jatkuvien satunnaismuuttujien käsittelyssä L-muunnoksella on sama rooli kuin generoivalla funktiolla diskreettien muuttujien tapauksessa. jos X on diskreetti kokonaislukuarvoinen ( 0) sm, niin pätee f (s) = G(e s )
2 J. Virtamo Jonoteoria / Jatkuvat jakaumat 2 Summan Laplace-muunnos Olkoot X ja Y riippumattomia ja niiden L-muunnokset fx(s) ja fy (s). fx+y (s) = E[e s(x+y ) ] = E[e sx e sy ] = E[e sx ]E[e sy ] (riippumattomuus) = fx(s)f Y (s) f X+Y (s) = f X (s)f Y (s)
3 J. Virtamo Jonoteoria / Jatkuvat jakaumat 3 Momenttien laskeminen Laplace-muunnoksen avulla Derivoimalla nähdään f (s) = d ds E[e sx ] = E[ Xe sx ] Vastaavasti n:s derivaatta on f (n) (s) = dn ds ne[e sx ] = E[( X) n e sx ] Määräämällä näiden arvot pisteessä s = 0 saadaan E[X] = f (0) E[X 2 ] = +f (0). E[X n ] = ( 1) n f (n) (0)
4 J. Virtamo Jonoteoria / Jatkuvat jakaumat 4 Satunnaissumman Laplace-muunnos Tarkastellaan satunnaissummaa Y = X X N missä X i :t ovat i.i.d. yhteisen L-muunnoksen ollessa fx (s) ja N 0 on kokonaislukuarvoinen sm, jonka generoiva funktio on G N (z). f Y (s) = E[e sy ] = E[E [ e sy N ] ] (ulompi odotusarvo N:n vaihteluiden yli) = E[E [ e s(x 1+ +X N ) N ] ] (sisemmässä odotusarvossa N kiinteä) = E[E[e s(x 1) ] E[e s(x N) ]] (riippumattomuus) = E[(f X(s)) N ] = G N (f X (s)) (määritelmän mukaan E[zN ] = G N (z))
5 J. Virtamo Jonoteoria / Jatkuvat jakaumat 5 Laplace-muunnos ja kollektiivisten merkkien menetelmä Annetaan Laplace-muunnokselle f (s) = E[e sx ] X 0 Tulkinta: Ajatellaan, että X edustaa jonkin välin pituutta. Altistetaan tämä väli poissoniselle merkintäprosessille, jonka intensiteetti on s. Tällöin Laplace-muunnos f (s) on todennäköisyys sille, että väli on merkitön. P{X on merkitön} = E[P{X on merkitön X}] = E[P{välillä X on 0 tapahtumaa X}] = E[e sx ] = f (s) (kokonaistodennäköisyys) intensiteetti s X P{välillä X on n tapahtumaa X} = (sx)n n! e sx P{välillä X on 0 tapahtumaa X} = e sx
6 J. Virtamo Jonoteoria / Jatkuvat jakaumat 6 Kollektiivisten merkkien menetelmä (jatkoa) Esimerkki: Satunnaissumman Laplace-muunnos Y = X X N, f Y missä X 1 X 2 X N, yhteinen L-muunnos f (s) N on sm., jonka generoiva funktio on G N (z) (s) = P{välin Y mikään osaväli ei ole merkitty} = G N ( fx (s) ) }{{} tn. että yksittäinen osaväli ei ole merkitty }{{} tn. että mikään osaväli ei ole merkitty intensiteetti s X 1 X... 2 X N
7 J. Virtamo Jonoteoria / Jatkuvat jakaumat 7 Tasainen jakauma X U(a, b) (uniform distribution) X:n tiheysfunktiolla on vakioarvo välillä (a, b): f(x) = 1 b a a < x < b 0 muulloin eli arvo X on valittu väliltä (a, b) umpimähkään. f(x) F(x) 1 a b a b E[X] = + xf(x)dx = a + b 2 V[X] = + ( a + b x ) 2 (b a) 2 f(x)dx = 2 12
8 J. Virtamo Jonoteoria / Jatkuvat jakaumat 8 Tasainen jakauma (jatkoa) Olkoon U 1,..., U n joukko riippumatomia tasanjakautuneita sm:jia, U i U(0, 1) Niiden muuttujien lukumäärä, jotka ovat x (0 x 1)) on Bin(n, x) tapahtuma {U i x} määrittelee Bernoulli-kokeen, jossa onnistumistn. on x Olkoon U (1),..., U (n) suuruusjärjestykseen pantujen arvojen jono. Määritellään lisäksi U (0) = 0 ja U (n+1) = 1. Voidaan osoittaa, että kaikki välit ovat samoinjakautuneita ja P{U (i+1) U (i) > x} = (1 x) n i = 1,..., n ensimmäiselle välille U (1) U (0) = U (1) tulos on selvä, koska U (1) = min(u 1,..., U n )
9 J. Virtamo Jonoteoria / Jatkuvat jakaumat 9 Eksponenttijakauma X Exp(λ) (Huom. Joskus parameriksi kirjoitetaan 1/λ eli jakauman keskiarvo) X on ei-negatiivinen jatkuva sm, jonka kertymäfunktio on F(x) = 1 e λx x 0 0 x < 0 F(x) 1 ja tiheysfunktio f(x) = λe λx x 0 0 x < 0 Esim. puheluiden saapumisväli; puhelun kesto λ f(x) x x
10 J. Virtamo Jonoteoria / Jatkuvat jakaumat 10 Eksponenttijakauman Laplace-muunnos ja momentit Exp(λ)-jakautuneen satunnaismuuttujan Laplace-muunnos on f (s) = e st λe λt dt = λ 0 λ + s Tämän avulla lasketaan momentit: E[X] = f (0) = λ E[X 2 ] = +f (0) = (λ+s) 2 s=0 = 1 λ 2λ (λ+s) 3 s=0 = 2 λ 2 V[X] = E[X 2 ] E[X] 2 = 1 λ 2 E[X] = 1 λ V[X] = 1 λ 2
11 J. Virtamo Jonoteoria / Jatkuvat jakaumat 11 Eksponenttijakauman muistittomuusominaisuus Oletetaan, että X Exp(λ) edustaa esim. yhteyden kestoa. Kysytään, mikä on tn. että yhteys kestää vielä vähintään ajan x, jos se on jo kestänyt ajan t: P{X > t + x X > t} = = P{X > t + x, X > t} P{X > t} P{X > t + x} P{X > t} = e λ(t+x) e λt = e λx = P{X > x} P{X > t + x X > t} = P{X > x} Yhteyden jäljelläolevan keston jakauma ei riipu lainkaan siitä, kauanko yhteys on jo jatkunut exp(- λ t) exp(- λ (t-u)) On samalla tavalla Exp(λ)-jakautunut kuin yhteyden kokonaiskesto. u t
12 J. Virtamo Jonoteoria / Jatkuvat jakaumat 12 Esimerkki muistittomuusominaisuudesta Jonojärjestelmässä on kaksi palvelinta. Palveluajat ovat eksponentiaalisesti jakautuneita. Asiakkaan ( ) saapuessa molemmat palvelimet ovat varattuja ( ) mutta muita odottavia asiakkaita ei ole. Kysytään: mikä on todennäköisyys, että asiakas ( ) poistuu järjestelmästä viimeisenä? Seuraava tapahtuma järjestelmässä on se, että jompikumpi asiakkaista ( ) poistuu ja asiakas ( ) siirtyy vapautuneeseen palvelimeen. Muistittomuudesta johtuen tästä hetkestä eteenpäin kummankin asiakkaan ( ) ja ( ) palveluajat (jäljellä oleva palveluaika) ovat samalla tavalla exp-jakautuneet. Tilanne on täysin symmetrinen ja siten todennäköisyys, että asiakas ( ) poistuu viimeisenä, on 1/2.
13 J. Virtamo Jonoteoria / Jatkuvat jakaumat 13 Eksponenttijakautuneen suureen päättymistodennäköisyys Oletetaan, että kestoltaan Exp(λ)-jakautunut yhteys on jatkunut ajan t. Mikä on todennäköisyys, että se päättyy (infinitesimaalisen) lyhyen ajan h kuluessa? P{X t + h X > t} = P{X h} = 1 e λh (muistittomuus) = 1 (1 λh (λh)2 ) = λh + o(h) Päättymistodennäköisyys aikayksikköä kohden = λ (vakio!)
14 J. Virtamo Jonoteoria / Jatkuvat jakaumat 14 Eksponenttijakautuneiden suureiden minimi ja maksimi Oletetaan X 1 X n Exp(λ) (i.i.d.) Näiden minimin häntätodennäköisyys on P{min(X 1,..., X n ) > x} = P{X 1 > x} P{X n > x} = (e λx ) n = e nλx (riippumattomuus) Minimi noudattaa siis jakaumaa Exp(nλ). Minimin päättymistiheys = nλ n rinnakkaista prosessia, joista kukin päättyy muista riippumatta intensiteetillä λ Maksimin kertymäfunktio on P{max(X 1,..., X n ) x} = (1 e λx ) n Odotusarvo voidaan päätellä kuvan tarkastelun avulla E[max(X 1,..., X n )] = 1 nλ + 1 (n 1)λ λ X 1 X 2 X 3 X 5 ~Exp(n ) ~Exp( ) X 4 ~Exp((n-1) ) ~Exp((n-2) )
15 J. Virtamo Jonoteoria / Jatkuvat jakaumat 15 Erlangin jakauma X Erlang(n, λ) Merkitään myös Erlang-n(λ). X on n:n riippumattoman Exp(λ)-jakautuneen sataunnaismuuttujan summa X = X X n X i Exp(λ) (i.i.d.) Sen Laplace-muunnos on f λ (s) = ( λ + s )n Käänteismuuntamalla (tai rekursiivisesti tiheysfunktioita konvoluoimalla) saadaan summan tiheysfunktio f(x) = (λx)n 1 (n 1)! λe λx x 0
16 J. Virtamo Jonoteoria / Jatkuvat jakaumat 16 Erlangin jakauma (jatkoa): gammajakauma Erlangin jakauman tiheysfunktion kaava voidaan yleistää kokonaislukujen n asemesta mielivaltaisille positiivisille reaaliarvoille korvaamalla kertomafunktio (n 1)! reaaliarvoisella yleistyksellään eli gammafunktiolla Γ(n): f(x) = (λx)p 1 Γ(p) λe λx Gamma(p, λ)-jakauma Gammafunktio Γ(p) määritellään Γ(p) = n= n=2 n=3 n=4 n=5 e u u p 1 du Osittaisintegroinnilla on helppo nähdä, että kun p on kokonaisluku, niin todellakin Γ(p) = (p 1)! Odotusarvo ja varianssi ovat n-kertaiset Exp(λ)-jakauman vastaaviin: E[X] = n λ V[X] = n λ
17 J. Virtamo Jonoteoria / Jatkuvat jakaumat 17 Erlangin jakauma (jatkoa) Esimerkki. Järjestelmässä on kaksi palvelinta. Asiakkaita saapuu Exp(λ)-jakautunein väliajoin. Joka toinen asiakas ohjataan palvelimeen 1 ja joka toinen palevelimeen 2. Palvelimeen saapuvien asiakkaiden väliaikajakauma on Erlang(2, λ). Lause. Olkoon N t tapahtumien lukumäärä t:n pituisella välillä Poisson-jakautunut: N t Poisson(λt) Tällöin aika T n mielivaltaisesta tapahtumasta n:nteen tapahtumaan sen jälkeen noudattaa jakaumaa Erlang(n, λ) n... 0 t T n Todistus. ~Exp( ) F Tn (t) = P{T n t} = P{N t n} f Tn = i=n P{N t = i} = = d dt F T n (t) = i=n = i=n i=n (λt) i i! e λt ~Erlang(2, ) iλ (λt) i 1 e λt i! i=n (λt) i 1 (i 1)! λe λt = (λt)n 1 (n 1)! λe λt i=n (λt) i i! (λt) i i! λe λt λe λt N tapahtumaa t
18 J. Virtamo Jonoteoria / Jatkuvat jakaumat 18 Normaalijakauma X N(µ, σ 2 ) Parametreilla µ ja σ 2 normaalijakautuneen satunnaismuuttujan X tiheysfunktio on f(x) = 1 2πσ e 1 2 (x µ)2 /σ 2 Parametrit µ ja σ 2 ovat jakauman keskiarvo ja varianssi E[X] = µ V[X] = σ 2 Lause: Jos X N(µ, σ 2 ), niin Y = αx + β N(αµ + β, α 2 σ 2 ). Todistus: F Y (y) = P{Y y} = P{X y β α } = F X( y β α ) = (y β)/α = y 1 1 2πσ e 1 2 (x µ)2 /σ 2 dx 2π(ασ) e 1 2 (z (αµ+β))2 /(ασ) 2 dz z = αx + β Seuraus: Z = X µ σ N(0, 1) (α = 1/σ, β = µ/σ) Merkitään Φ(x):llä N(0,1)-muuttujan kertymäfunktiota. Tällöin F X (x) = P{X x} = P{Z x µ σ } = Φ(x µ σ )
19 J. Virtamo Jonoteoria / Jatkuvat jakaumat 19 Monen muuttujan gaussinen jakauma Olkoon X 1,..., X n joukko gaussisia (ts. normaalijakautuneita) satunnaismuuttujia, joiden odotusarvot ovat µ 1,..., µ n ja kovarianssimatriisi Γ = σ11 2 σ2 1n..... σn1 2 σnn 2 σ 2 ij = Cov[X i, X j ] (σ 2 ii = V[X i]) Merkitään X = (X 1,..., X n ) T. Satunnaisvektorin X tiheysfunktio on f(x) = 1 (2π)n Γ e 1 2 (x µ)t Γ 1 (x µ) missä Γ on kovarianssimatriisin determinantti. Muuttujanvaihdolla nähdään helposti, että satunnaisvektorinz = Γ 1/2 (X µ) tiheysfunktio on (2π) n/2 exp( 1 2 zt z) = 2πe z2 1 /2 2πe z2 n /2. Siten vektorin Z komponentit ovat riippumattomia N(0,1)-jakautuneita satunnaismuuttujia. Kääntäen X = µ + Γ 1/2 Z, jonka avulla voidaan generoida X:n arvoja simuloinneissa.
Satunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen
Poisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin
5. laskuharjoituskierros, vko 8, ratkaisut
Mat-.09 Sovellettu todennäköisyyslasku, kevät -05 5. laskuharjoituskierros, vko 8, ratkaisut D. Eräässä maata kiertävällä radalla olevassa satelliitissa on ilmaisin, jonka elinikä X yksikkönä vuosi noudattaa
DISKREETIT JAKAUMAT Generoiva funktio (z-muunnos)
J. Virtamo 38.3143 Jonoteoria / Diskreetit jakaumat 1 DISKREETIT JAKAUMAT Generoiva funktio (z-muunnos) Määritelmä Olkoon X diskreetti sm, jonka arvot ovat ei-negatiivisia kokonaislukuja, X {0, 1, 2,...}.
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 28. syyskuuta 2007 Antti Rasila () TodB 28. syyskuuta 2007 1 / 20 1 Jatkoa diskreeteille jakaumille Negatiivinen binomijakauma Poisson-jakauma Diskreettien
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 5 (vko 4/003) (Aihe: jatkuvia satunnaismuuttujia ja jakaumia, sekamalli, Laininen luvut 5.1 5.7, 6.1 6.3)
Generointi yksinkertaisista diskreeteistä jakaumista
S-38.148 Tietoverkkojen simulointi / Satunnaismuuttujien generointi 1(18) Generointi yksinkertaisista diskreeteistä jakaumista Seuraavassa U, U 1,..., U n tarkoittavat riippumattomia U(0,1)-jakautuneita
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu. f(x, y) = k x y, kun 0 < y < x < 1,
Todennäköisyyslaskenta, 2. kurssikoe 7.2.22 Sallitut apuvälineet: MAOL-taulukot, kirjoitusvälineet, laskin sekä itse laadittu, A4-kokoinen lunttilappu.. Satunnaismuuttujien X ja Y yhteistiheysfunktio on
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Todennäköisyyslaskun kertaus. Heliövaara 1
Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1
J. Virtamo 38.3143 Jonoteoria / Poisson-prosessi 1 Poisson-prosessi Yleistä Poisson-prosessi on eräs keskeisimmistä jonoteoriassa käytetyistä malleista. Hyvin usein asiakkaiden saapumisprosessia jonoon
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
PURSKETASON TARKASTELUT Ylivuototodennäköisyys puskurittomassa systeemissä
J. Virtamo 38.3141 Teleliikenneteoria / Pursketaso 1 PURSKETASON TARKASTELUT Ylivuototodennäköisyys puskurittomassa systeemissä Tarkastellaan ATM-kytkimen lähtöporttia Oletetaan: puskuri riittää vain solutason
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
3. laskuharjoituskierros, vko 6, ratkaisut
Mat-.9 Sovellettu todennäköisyyslasku, kevät - eliövaara, Palo, Mellin. laskuharjoituskierros, vko 6, ratkaisut D. Uurnassa A on 4 valkoista ja 6 mustaa kuulaa ja uurnassa B on 6 valkoista ja 4 mustaa
Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi on lineaarinen projektio.
Määritelmä 4.3. Estimaattoria X(Y ) nimitetään lineaariseksi projektioksi, jos X on lineaarinen kuvaus ja E[(X X(Y )) Y] 0 }{{} virhetermi Lause 4.2. Lineearinen pienimmän keskineliövirheen estimaattoi
Järjestelmässä olevien asiakkaiden lukumäärä N(t) ei muodosta enää Markov-prosessia.
J. Virtamo 38.143 Jonoteoria / M/G/1/-jono 1 M/G/1-jono M (memoryless): Poisson-saapumisprosessi, intensiteetti λ G (general): yleinen palveluaikajakautuma, keskiarvo S =1/µ 1 : yksi palvelin, kuorma ρ
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
Johdatus tn-laskentaan torstai 16.2.2012
Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki
5 Tärkeitä yksiulotteisia jakaumia
5 Tärkeitä yksiulotteisia jakaumia Jakaumista löytyy lisätietoja ja kuvaajia Wikipediasta. Kirjallisuudessa käytetään useille näistä jakaumista monia erilaisia parametrointeja. Kussakin lähteessä käytetty
TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä
J. Virtamo 38.3143 Jonoteoria / Todennäköisyyslaskenta 1 TODENNÄKÖISYYSLASKUN KERTAUS Peruskäsitteitä Otosavaruus S S on satunnaiskokeen E kaikkien mahdollisten alkeistapahtumien e joukko. Esim. 1. Noppaa
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
J. Virtamo Jonoteoria / M/G/1/-jono 1
J. Virtamo 38.3143 Jonoteoria / M/G/1/-jono 1 M/G/1-jono M (memoryless): Poisson-saapumisprosessi, intensiteetti λ G (general): yleinen palveluaikajakautuma, keskiarvo S = 1/µ 1 : yksi palvelin, kuorma
F(x) = 1. x x 0 + F(x) = F(x 0) kaikilla x 0 R.
Luku 5 Jatkuvat jakaumat Sellaiset suureet kuten esimerkiksi aika, lämpötila, pituus ja paino ajatellaan tavallisesti jatkuviksi muuttujiksi, ts. muuttujiksi, jotka voivat saada mitä tahansa reaaliarvoja
Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
Todennäköisyysjakaumia
8.9.26 Kimmo Vattulainen Todennäköisyysjakaumia Seuraavassa esitellään kurssilla MAT-25 Todennäköisyyslaskenta esille tulleita diskreettejä todennäköisyysjakaumia Diskreetti tasajakauma Bernoullijakauma
Estojärjestelmä (loss system, menetysjärjestelmä)
J. Virtamo 38.3143 Jonoteoria / Estojärjestelmä 1 Estojärjestelmä (loss system, menetysjärjestelmä) Tarkastellaan perinteistä puhdasta estojärjestelmää, jossa on annettu n = johtojen (varattavien elementtien)
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
Tilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Satunnaismuuttujat ja todennäköisyysjakaumat Mitä tänään? Jos satunnaisilmiötä halutaan mallintaa matemaattisesti, on ilmiön tulosvaihtoehdot kuvattava numeerisessa muodossa. Tämä tapahtuu liittämällä
1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X Y Bin(Y, θ) Y Poi(λ) λ y. f X (x) (λθ)x
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 017 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I 1. Jatketaan luentojen esimerkkiä 8.3. Oletetaan kuten esimerkissä X
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
031021P Tilastomatematiikka (5 op) viikko 3
031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan
2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet
Tilastotieteen jatkokurssi Sosiaalitieteiden laitos Harjoitus 5 (viikko 9) Ratkaisuehdotuksia (Laura Tuohilampi). Jatkoa HT 4.5:teen. Määrää E(X) ja D (X). E(X) = 5X p i x i =0.8 0+0.39 +0.4 +0.4 3+0.04
8.1 Ehdolliset jakaumat
8 Ehdollinen jakauma Tämän kappaleen tärkeitä käsitteitä: Ehdollinen jakauma; ehdollinen ptnf/tf. Kertolaskusääntö eli ketjusääntö yhteisjakauman esittämiseksi. Ehdollinen odotusarvo ja ehdollinen varianssi.
4. Todennäköisyyslaskennan kertausta
luento04.ppt S-38.1145 - Liikenneteorian perusteet - Kevät 2006 1 Sisältö eruskäsitteet Diskreetit satunnaismuuttujat Diskreetit jakaumat lkm-jakaumat Jatkuvat satunnaismuuttujat Jatkuvat jakaumat aikajakaumat
0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
4.0.2 Kuinka hyvä ennuste on?
Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
031021P Tilastomatematiikka (5 op) viikko 2
031021P Tilastomatematiikka (5 op) viikko 2 Jukka Kemppainen Mathematics Division Satunnaismuuttuja Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo.
Odotusjärjestelmät. Aluksi esitellään allaolevan kuvan mukaisen yhden palvelimen jonoon liittyvät perussuureet.
J. Virtamo 38.3143 Jonoteoria / M/M/ /-jonot 1 Odotusjärjestelmät Siirrytään tarkastelemaan odotusjärjestelmiä. Nämä ovat aitoja jonojärjestelmiä siinä mielessä, että niissä on odotuspaikkoja ja asiakkat
J. Virtamo Jonoteoria / Prioriteettijonot 1
J. Virtamo 38.143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot TarkastellaanM/G/1-jonojärjestelmää, jossaasiakkaaton jaettu K:hon prioriteettiluokkaan, k =1,...,K: - luokalla 1 on korkein prioriteetti
Kertausluento. Tilastollinen päättely II - 2. kurssikoe
Kertausluento Tilastollinen päättely II - 2. kurssikoe Yleistä tietoa TP II -2. kurssikokeesta 2. kurssikoe maanantaina 6.5.2019 klo 12.00-14.30 jossakin Exactumin auditoriossa Kurssikokeeseen ilmoittaudutaan
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto
Matemaattinen tilastotiede Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto Alkusanat Tämä moniste perustuu vuosina 2002-2004 pitämiini matemaattisen tilastotieteen luentoihin
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
J. Virtamo Jonoteoria / Prioriteettijonot 1
J. Virtamo 38.3143 Jonoteoria / Prioriteettijonot 1 Prioriteettijonot Tarkastellaan M/G/1-jonojärjestelmää, jossa asiakkaat on jaettu K:hon prioriteettiluokkaan, k = 1,..., K: - luokalla 1 on korkein prioriteetti
(b) Onko hyvä idea laske pinta-alan odotusarvo lähetmällä oletuksesta, että keppi katkeaa katkaisukohdan odotusarvon kohdalla?
6.10.2006 1. Keppi, jonka pituus on m, taitetaan kahtia täysin satunnaisesti valitusta kohdasta ja muodostetaan kolmio, jonka kateetteina ovat syntyneet palaset. Kolmion pinta-ala on satunnaismuuttuja.
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3
Todennäköisyyslaskennan ja tilastotieteen peruskurssi Esimerkkikokoelma 3 Aiheet: Satunnaisvektorit ja moniulotteiset jakaumat Tilastollinen riippuvuus ja lineaarinen korrelaatio Satunnaisvektorit ja moniulotteiset
Otosavaruus ja todennäköisyys Otosavaruus Ë on joukko, jonka alkiot ovat kokeen tulokset Tapahtuma on otosavaruuden osajoukko
ÌÓÒÒĐĐÓ ÝÝ ÔÖÙ ØØ Naiiveja määritelmiä Suhteellinen frekvenssi kun ilmiö toistuu Jos tehdas on valmistanut 1000000 kpl erästä tuotetta, joista 5013 ovat viallisia, niin todennäköisyys, että tuote on viallinen
k S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
V ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
Epäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
Teoria. Satunnaismuuttujan arvonta annetusta jakaumasta
Teoria Johdanto simulointiin Simuloinnin kulku -- prosessin realisaatioiden tuottaminen Satunnaismuuttujan arvonta annetusta jakaumasta Johdanto ja pseudosatunnaislukujen generointi Eri menetelmiä satunnaismuuttujien
031021P Tilastomatematiikka (5 op) viikko 7
0302P Tilastomatematiikka (5 op) viikko 7 Jukka Kemppainen Mathematics Division Yhteisjakauma Edellä on tarkasteltu yksiulotteista satunnaismuuttujaa. Sovelluksissa joudutaan usein tarkastelemaan samanaikaisesti
Moniulotteiset satunnaismuuttujat ja jakaumat
Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat KE (2014) 1 Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat >> Kaksiulotteiset
Yleistä tietoa kokeesta
Yleistä tietoa kokeesta Kurssikoe on ma 18.12. klo 12.00-14.30 (jossakin auditorioista). Huomaa tasatunti! Seuraava erilliskoe on ke 10.1.2018 klo 10-14, johon ilmoittaudutaan Oodissa (ilmoittautumisaika
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Generoivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
031021P Tilastomatematiikka (5 op) viikot 5 6
031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan
Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä:
4. Tyhjentyvyys Tässä luvussa mietimme, kuinka paljon aineistossa on tarpeellista tietoa Sivuamme kysymyksiä: Voidaanko päätelmät perustaa johonkin tunnuslukuun t = t(y) koko aineiston y sijasta? Mitä
P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.
Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
0 3 y4 dy = 3 y. 15x 2 ydx = 15. f Y (y) = 5y 4 1{0 y 1}.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 18 Harjoitus Ratkaisuehdotuksia Tehtäväsar I 1. Satunnaismuuttujilla X Y on tkuva yhteiskauma yhteistiheysfunktiolla f
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Kertausluento. Tilastollinen päättely II - 1. kurssikoe
Kertausluento Tilastollinen päättely II - 1. kurssikoe Yleistä tietoa TP II -1. kurssikokeesta 1. Kurssikoe on to 7.3 klo 12.00-14.30 (jossakin Exactumin auditorioista, salijako selvinnee tuolloin torstiana).
F(x) = 1. x x 0 + F(x) = F(x 0) kaikilla x 0 R.
Luku 5 Jatkuvat jakaumat Sellaiset suureet kuten esimerkiksi aika, lämpötila, pituus ja paino ajatellaan tavallisesti jatkuviksi muuttujiksi, ts. muuttujiksi, jotka voivat saada mitä tahansa reaaliarvoja
Tarkastellaan sitten tilastollisesti riippumattomien identtisesti kuten X edellä jakautuneiden muuttujien summaa Y = X i. 1 p p. Muuttujan X PDF.
Jakaumia Seuraavassa esitellään digitaalisessa tietoliikenteessäuseinkäytettyjä jakaumia Esitellään jakaumien CDF, PDF ja karakteristiset funktiot sekä joitain momentteja kuten keskiarvo, 2. momentti ja
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (005) 1 Moniulotteisia todennäköisyysjakaumia Multinomijakauma Kaksiulotteinen normaalijakauma TKK (c) Ilkka
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 20. syyskuuta 2007 Antti Rasila () TodB 20. syyskuuta 2007 1 / 17 1 Kolmogorovin aksioomat σ-algebra Tapahtuman todennäköisyys 2 Satunnaismuuttujat Todennäköisyysjakauma
Odotusarvo. Odotusarvon ominaisuuksia Satunnaismuuttujien ominaisuuksia 61
3.3. Satunnaismuuttujien ominaisuuksia 61 Odotusarvo Määritelmä 3.5 (Odotusarvo) Olkoon X diskreetti satunnaismuuttuja, jonka arvojoukko on S ja todennäköisyysfunktio f X (x). Silloin X:n odotusarvo on
4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
Tilastollinen päättely II, kevät 2017 Harjoitus 2A
Tilastollinen päättely II, kevät 07 Harjoitus A Heikki Korpela 3. tammikuuta 07 Tehtävä. (Monisteen tehtävä.3 Olkoot Y,..., Y n Exp(λ. Kirjoita vastaava tilastollisen mallin lauseke (ytf. Muodosta sitten
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat TKK (c) Ilkka Mellin (2006) 1 Moniulotteiset satunnaismuuttujat ja
Todennäköisyyslaskenta sivuaineopiskelijoille
Todennäköisyyslaskenta sivuaineopiskelijoille Tentit: 4.11.2013 ja 2.12.2013. Loput kaksi tenttiä (vuonna 2014) ilmoitetaan myöhemmin. Tentissä on 4 tehtävää á 8 pistettä, aikaa 4 tuntia. Arvostelu 0 5.
Satunnaismuuttujien summa ja keskiarvo
Luku 5 Satunnaismuuttujien summa ja keskiarvo Lasse Leskelä Aalto-yliopisto 21. syyskuuta 2017 5.1 Satunnaismuuttujien summa Satunnaismuuttujien summa S n = X 1 + +X n ja keskiarvo n 1 S n ovat satunnaismuuttujia,