Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Koko: px
Aloita esitys sivulta:

Download "Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1"

Transkriptio

1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden määritelmän nojalla on olemassa oonaisluu, jolle c = a. Nyt b c, joten b a. Osoitamme, että b. Tähän voi äyttää joo suoraan seurausta 1.7, tai voimme jäljentää sen todistusen: Suurimman yhteisen teijän ominaisuusien nojalla on olemassa oonaisluvut x ja y joille xa + yb = 1. Kosa b a, niin myös b xa + yb. Kosa xa + yb = (xa + yb) =, olemme valmiit. Nyt osa b, on olemassa oonaisluu, jolle = b. Tällöin c = ab, joten ab c uten haluttiin. Tehtävä 2 Todista luennoilla annettu aava: jos luujen n ja m aluluuesityset ovat n = =1 p α ja m = =1 p β, niin suurin yhteinen teijä (n, m) voidaan lausua muodossa (n, m) = =1 p γ, missä γ = min(α, β ). Vastaus Riittää todistaa, että jos d = p min(α,β ), niin d toteuttaa suurimman yhteisen teijän määrittelevät ehdot: (i) d n ja d m: Tutitaan osamäärien aluteijöiden esponentteja: n/d = α p min(α,β ) Z, sillä α min(α, β ). Samoin nähdään, että m/d Z. (ii) jos d n ja d m, niin d d: Oloon d = p δ aluteijähajotelma. Kosa d n ja d m, aluteijähajotelma on ysiäsitteinen ja p p l, un l, niin 1 Aluperäiset rataisumallit on laatinut Eemeli Blåsten 1

2 luvun d aluteijöiden esponenteille saadaan arviot δ α ja δ β. Siispä δ min(α, β ), joten d = p δ min(α p,β ) = d. (iii) d 1: Selvä, sillä min(α, β ) 0 aiilla. Tehtävä 3 1. Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa ysiäsitteinen luu h ('luujen a ja b pienin yhteinen jaettava', meritään h = p. y. j.(a, b)), joa toteuttaa: (1) a h ja b h, (2) jos a h ja b h, niin h h, (3) h Esitä luvulle p. y. j.(a, b) tehtävää 2 vastaava aava, ja todista sen avulla, että p. y. j.(a, b) = ab (a, b). Vastaus Alusi ysiäsitteisyys: Jos h ja h toteuttavat ehdot (1)-(3), niin h = h ja h = lh ehtojen (1) ja (2) nojalla. Siispä h = lh, eli = l = ±1. Ehdon (3) nojalla = l = 1 ja h = h. Sitten olemassaolo ja ysiäsitteisyyden nojalla saadaan tehtävää 2 vastaava aava todistettua samalla. Näytetään, että h = p max(α,β ) toteuttaa ehdot (1)-(3). (1) a h ja b h: Tutitaan osamääriä: h/a = p max(α,β ) α Z, sillä max(α, β ) α. Samoin nähdään, että h/b Z. (2) jos a h ja b h, niin h h : Oloon h = p δ aluteijähajotelma. Kosa a h ja b h, aluteijähajotelma on ysiäsitteinen ja p p l, un l, niin luvun h aluteijöiden esponenteille saadaan arviot δ α ja δ β. Siispä δ max(α, β ), joten h = p max(α,β ) p δ = h. (3) h 1: Selvä, sillä max(α, β ) 0 aiilla. Loppuväite seuraa siitä, että max(x, y) + min(x, y) = x + y aiilla oonaisluvuilla x ja y: (a, b) p. y. j.(a, b) = p min(α,β ) max(α p,β ) = p min(α,β )+max(α,β ) = p α +β = p α p β = ab. Tehtävä 4 1. Etsi Euleideen algoritmin avulla luujen 1234 ja 2345 suurin yhteinen teijä. 2. Määrää yhtälön 276x y = 714 yleinen rataisu. 2

3 Vastaus Käytetään Euleideen algoritmia molemmissa tapausissa = = = = = = 3 1, joten (1234, 2345) = 1. Toista ysymystä varten lasetaan luujen 276 ja 1578 suurin yhteinen teijä = = = = = = 6 6, joten (276, 1578) = 6. Kosa 714 = on yhtälöllä olemassa rataisu. Puretaan yhtälöetjua alhaalta ylöspäin jotta saadaan eräs rataisu yhtälölle 276x y = 6 ja valitaan aluperäiselle yhtälölle erityinen rataisu x = 119x, y = 119y. 6 = = 42 ( ) = = 2( ) 78 = = ( ) = = 7( ) = Eräs rataisu on siis (x, y) = ( 119 ( 40), ) = ( 4760, 833). Yleinen rataisu on { x = = (276,1578) y = = , (276,1578) missä Z. 3

4 Tehtävä 5 1. Oloot a 1, a 2,..., a n oonaisluuja, jota eivät aii ole nollia. Osoita, että on olemassa luu d = (a 1,..., a n ) (yseisten luujen suurin yhteinen teijä), jolle pätee (1) d a j aiilla 1 j n, (2) jos d a j aiilla 1 j n, niin d d, (3) d Päättele, että yhtälöllä a 1 x a n x n = d on aina rataisu. Vastaus Oloon H = {a 1 x a n x n x 1,..., x n Z} {1, 2,...}. Tämä on epätyhjä, sillä join luvuista a j on nollasta poieava. Se on myös alhaalta rajoitettu, joten voidaan määritellä d = min H. Nyt ehto (3) toteutuu. Yhtälöllä a 1 x a n x n = d on myös triviaalisti rataisu. Taristetaan ehto (1): Oloon 1 j n. Jaoyhtälön nojalla voidaan irjoittaa a j = qd + r, missä 0 r < d. Jos r 1, niin r = a j qd H, sillä se on luujen a 1,..., a n lineaariombinaatio ja r 1. Toisaalta piti olla r < d ja d = min H, joten saatiin ristiriita. Siispä r = 0 ja näinollen d a j. Ehto (2): Oletetaan, että d a j, eli a j = j d, aiilla 1 j n. Nyt saadaan d = a 1 x a n x n = 1 d x n d x n = d ( 1 x n x n ), mistä nähdään, että d d. Tehtävä 6 1. Todista luentojen lause 2.4: Jos P on :n muuttujan oonaisluuertoiminen polynomi, niin P (x 1,..., x ) P (y 1,..., y ) (mod m), miäli x j y j (mod m) aiilla j = 1,...,. Vastaus Todetaan ensin, että iinteällä indesillä i ja oonaisluvuilla a 1,..., a 1 uvaus a P (a 1,..., a i 1, a, a i,..., a 1 ) on a:n oonaisluuertoiminen polynomi. Täten lauseen 2.3 nojalla P (a 1,..., a i 1, a, a i,..., a 1 ) P (a 1,..., a i 1, b, a i,..., a 1 ) (mod m), miäli a b (mod m). Sovelletaan tätä tulosta indutiivisesti joaiseen lu- 4

5 upariin (x i, y i ) seuraavasti: P (x 1, x 2, x 3,..., x ) P (y 1, x 2, x 3,..., x ) P (y 1, y 2, x 3,..., x ) P (y 1, y 2, y 3,..., y ) (mod m), mistä voidaan luea haluttu tulos. * Tehtävä 7 Tämän tehtävän taroitusena on selventää sitä tosiseiaa, että aluteijöihin jaon ysiäsitteisyys on epätriviaali tulos. Tarastellaan luonnollisten luujen N asemasta jouoa Ñ = { } = {1, 5, 9, 13,...}. Osoita ensin, että Ñ on suljettu ertolasun suhteen: jos n, m Ñ, niin mn Ñ. Määrittelemme luonnollisella tavalla, että luu p 2, p Ñ, on 'aluluu' jos sitä ei voi lausua tulona p = nm, missä n, m 2 ja n, m Ñ. Totea, että joainen Ñ:n luu voidaan lausua 'aluluujen' tulona. Näytä uitenin, että on olemassa luu n Ñ, jona esitys 'aluluujen' tulona ei ole ysiäsitteinen! Vastaus Oloot n = Ñ ja m = 4l + 1 Ñ,, l 0. Nyt nm = (4 + 1)(4l + 1) = 16l l + 1 = 4(4l + + l) + 1 Ñ, sillä 4l + + l 0. Siispä Ñ on suljettu ertolasun suhteen. Todistetaan, että joainen Ñ:n luu, joa ei ole 1 voidaan esittää 'aluluujen' tulona. Oletetaan, että näin ei olisi. Tällöin olisi olemassa pienin luu Ñ, 2, jota ei voida esittää 'aluluujen' tulona. Erityisesti se ei itse voi olla 'aluluu'. 'Aluluujen' määritelmästä seuraa, että se voidaan lausua muodossa = mn, missä m, n Ñ ja m, n 2. Nyt n, m <, joten nämä voidaan lausua aluluujen tulona: n = p n1... p na ja m = p m1... p mb. Tällöin = mn = p n1... p na p m1... p mb, miä on ristiriita, sillä määriteltiin pienimpänä yöstä suurempana luuna, jota ei voida esittää 'aluluujen' tulona. Siispä tällaisten luujen jouo on tyhjä, eli joainen yöstä suurempi luu voidaan esittää 'aluluujen' tulona. Aluteijähajotelma ei ole ysiäsitteinen: 441 = 21 2 = Todistetaan, että 9, 21 ja 49 ovat 'aluluuja'. Jos a n jouossa Ñ, niin a n luonnollisten luujen jouossa. Siispä p Ñ on 'aluluu' jos sen tavanomaiset teijät eivät uulu jouoon Ñ. 9 = 3 2, 21 = 3 7 ja 49 = 7 2 5

6 Kosa 3 ja 7 eivät uulu jouoon Ñ, niin 9, 21 ja 49 ovat 'aluluuja'. * Tehtävä 8 Todista luentojen lause 1.14: jos Euleideen algoritmia sovelletaan luuihin a ja b (a > b 1), niin tarvittavien aseleiden luumäärä on enintään 2 3 log a + 2. Vastaus Algoritmi alaa seuraavasti: asel 1 a = q 1 b + r 1, 0 r 1 < b sitten se jatuu asel 2 b = q 2 r 1 + r 2, 0 r 2 < r 1 asel 3 r 1 = q 3 r 2 + r 3, 0 r 3 < r asel r 2 = q r 1 + r, 0 r < r 1 Todistetaan ensin, että r < r 2 /2 aiilla. Aseleen yhtälöstä saadaan r < r 1 q r 1 = r 2 r. Siispä 2r < r 2, mistä saadaan haluttu tulos. Milloin algoritmi päätyy? Silloin un jäännöstermi on ensimmäistä ertaa nolla. Kosa se on aina oonaisluu, niin riittää arvioida, milloin se on alle ysi. Edellisen nojalla voimme arvioida joten r 2 < r 2 2( 1) /2 1 = r 2 /2 1 r 2+1 < r /2 = r 1 /2, r 2 < 1 = r 2 < 2 1 > ln r 2 ln > 2ln r 2 ln r 2+1 < 1 = r 1 < 2 > ln r 1 ln > 2ln r 1 ln Kosa a > r 1 > r 2 niin r n < 1 ainain, jos n > 2 ln a + 2. Kosa ln a > 0 ja ln 2 2 ln a 2, 885 < 3 niin < 3 ln a + 2, eli väite pätee, vaiain saimme ln 2 ln 2 hieman taremman arvion. 2 Tässä taroitetaan luonnollista logaritmia. 6

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus luuteoriaan Harjoitus 1 ss 008 Eemeli Blåsten Rataisuehdotelma Tehtävä 1 Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa siäsitteinen luu h ('luujen a ja b pienin hteinen jaettava',

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

Joulukuun vaativammat valmennustehtävät ratkaisut

Joulukuun vaativammat valmennustehtävät ratkaisut Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

Luku kahden alkuluvun summana

Luku kahden alkuluvun summana Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun

Lisätiedot

VALIKOITUJA KOHTIA LUKUTEORIASTA

VALIKOITUJA KOHTIA LUKUTEORIASTA VALIKOITUJA KOHTIA LUKUTEORIASTA ARI LEHTONEN 1. Laajennettu Euleideen algoritmi 1.1. Jaoyhtälö. Oloot r 0, r 1 Z, r 0 r 1 > 0. Tällöin on olemassa ysiäsitteiset luvut q 1 ja r 2 Z siten, että r 0 = q

Lisätiedot

Riemannin sarjateoreema

Riemannin sarjateoreema Riemannin sarjateoreema LuK-tutielma Sami Määttä 2368326 Matemaattisten tieteiden laitos Oulun yliopisto Sysy 206 Sisältö Johdanto 2 Luujonot 3 2 Sarjat 4 2. Vuorottelevat sarjat........................

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

Eulerin φ-funktion ominaisuuksia

Eulerin φ-funktion ominaisuuksia TAMPEREEN YLIOPISTO Pro gradu -tutielma Jua Peltola Eulerin φ-funtion ominaisuusia Informaatiotieteiden ysiö Matematiia Marrasuu 2013 Tampereen yliopisto Informaatiotieteiden ysiö PELTOLA, JUKKA: Eulerin

Lisätiedot

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x , III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 Sisältö 1 KERTOMAT, BINOMIKERTOIMET 2 1.0.1 Kertoma/Factorial......................

Lisätiedot

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24 Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

(c) Määrää/Determine välillä/in the interval [1000, 10000] olevien 7. jaollisten kokonaislukujen lukumäärä/ number of integers divisible by 7.

(c) Määrää/Determine välillä/in the interval [1000, 10000] olevien 7. jaollisten kokonaislukujen lukumäärä/ number of integers divisible by 7. Luuteorian perusteet Exercises/Harjoitusia 2016 1. Show by induction/osoita indutiolla, that/että Osoita, että a n 1 = (a 1)(a n 1 + a n 2 + + a + 1). a n + 1 = (a + 1)(a n 1 a n 2 + a + 1) jos 2 n. (c)

Lisätiedot

q =, r = a b a = bq + r, b/2 <r b/2.

q =, r = a b a = bq + r, b/2 <r b/2. Luuteoria I Harjoitusia 2009 1 Osoita, että (a x = x x R, (b x x< x +1 x R, (c x + = x + x R, Z, (d x + y x + y x, y R, (e x y xy x, y R 0 2 Oloot a, b, q, r Z ja a = qb + r, 0 r< b Näytä, että a a q =,

Lisätiedot

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = = JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia

Lisätiedot

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus syksy 008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä Todista ketjumurtoluvun peräkkäisille konvergenteille kaava ( ) n induktiolla käyttämällä jonojen ( ) ja ( ) rekursiokaavaa.

Lisätiedot

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim Modaalilogiian harjoitusteht vi Aatu Kosensilta 1 Harjoitusteht v t 16.4 1.1 Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesimerin avulla. Otamme ehysisi F 1 = hz? ;?i ja F 1 = hz

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

a ord 13 (a)

a ord 13 (a) JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod

Lisätiedot

Luku 11. Jatkuvuus ja kompaktisuus

Luku 11. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2008 Luu 11. Jatuvuus ja opatisuus 11.1 Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

Täydellisesti multiplikatiivisten funktioiden karakterisoinnit

Täydellisesti multiplikatiivisten funktioiden karakterisoinnit TAMPEREEN YLIOPISTO Pro gradu -tutielma Sau Sairanen Täydellisesti multipliatiivisten funtioiden araterisoinnit Matematiian, tilastotieteen ja filosofian laitos Matematiia Loauu 2007 2 Tampereen yliopisto

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................

Lisätiedot

Luku 2. Jatkuvuus ja kompaktisuus

Luku 2. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

STOKASTISET DIFFERENTIAALIYHTÄLÖT 7

STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 1. Todennäöisyyslasennasta ja merinnöistä Palautamme seuraavassa lyhyesti mieleen todennäöisyyslasennan äsitteitä ja esittelemme myös muutamia urssilla äytettäviä merintätapoja.

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Talousmatematiikan verkkokurssi. Koronkorkolaskut

Talousmatematiikan verkkokurssi. Koronkorkolaskut Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

3. Markovin prosessit ja vahva Markovin ominaisuus

3. Markovin prosessit ja vahva Markovin ominaisuus 30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s.

termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s. SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 7 3. Luusarjat Josus luujonon (b ) termit on luontevairjoittaa summamuodossa. Tällöin päädymme luusarjojen teoriaan: Määritelmä 3.. Oloon ( ), R luujono. Symboli (3.)

Lisätiedot

4.3 Erillisten joukkojen yhdisteet

4.3 Erillisten joukkojen yhdisteet 4.3 Erillisten jouojen yhdisteet Ongelmana on pitää yllä ooelmaa S 1,..., S perusjouon X osajouoja, jota voivat muuttua ajan myötä. Rajoitusena on, että miään alio x ei saa uulua useampaan uin yhteen jouoon.

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon Matematiikan johdantokurssi, syksy 08 Harjoitus 3, ratkaisuista. Kokonaisluvut määriteltiin luonnollisten lukujen avulla ekvivalenssiluokkina [a, b], jotka määrää (jo demoissa ekvivalenssirelaatioksi osoitettu)

Lisätiedot

OHJ-2300 Johdatus tietojenkäsittelyteoriaan Syksy 2008

OHJ-2300 Johdatus tietojenkäsittelyteoriaan Syksy 2008 OHJ-2300 Johdatus tietojenäsittelyteoriaan Sysy 2008 1 2 Organisaatio & aiataulu Luennot: prof. Tapio Elomaa P1: Ti 14-16 TC 103 ja to 14 16 TC 133 P2: Ti 14-16 TB 219 ja to 12 14 TB 224 26.8. 20.11. Jussi

Lisätiedot

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Yhtäpitävyys Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta ollaan osoitettu, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, evät 05 / ORMS00 Matemaattinen Analyysi 6. harjoitus. Approsimoi toisen asteen polynomilla P(x) = b 0 +b x+b x oheisen tauluon muaisia havaintoja. (Teorian löydät opetusmonisteen sivuilta

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2 Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)

Matematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin) Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta

Lisätiedot

Toispuoleiset raja-arvot

Toispuoleiset raja-arvot Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen

Lisätiedot

Luku 2. Jatkuvien funktioiden ominaisuuksia.

Luku 2. Jatkuvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Predikaattilogiikan malli-teoreettinen semantiikka

Predikaattilogiikan malli-teoreettinen semantiikka Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Luku 4. Derivoituvien funktioiden ominaisuuksia.

Luku 4. Derivoituvien funktioiden ominaisuuksia. 1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä

Lisätiedot

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset

MS-C1350 Osittaisdifferentiaaliyhtälöt Harjoitukset 5, syksy Mallivastaukset MS-C350 Osittaisdifferentiaaliyhtälöt Haroitukset 5, syksy 207. Oletetaan, että a > 0 a funktio u on yhtälön u a u = 0 ratkaisu. a Osoita, että funktio vx, t = u x, t toteuttaa yhtälön a v = 0. b Osoita,

Lisätiedot