Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali
|
|
- Marja Penttilä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien janojen avulla. Esimerisi ahta noppaa heitettäessä pisteluujen summa on stoastinen, joa saa arvot 2, 3,..., 2. Näiden jaauma ilmenee seuraavasta graafisesta esitsestä: p 6/36 5/36 4/36 3/36 2/36 / Usein esiintvä disreetti jaauma on binomijaauma. Tämä uvaa saman oeen toistamista, missä toistot ovat toisistaan riippumattomia ja ussain toistossa tulosena on joo A tai tämän omplementtitapahtuma Ā. Jos näiden todennäöisdet ovat P (A) =pja P (Ā) = p, niin toistettaessa oe n ertaa saadaan tulos A täsmälleen ertaa todennäöisdellä ( ) n p = p ( p) n, =0,,...,n. stoastinen Disreetit jaaumat Oloon X disreetti stoastinen, joa saa erilliset arvot, 2,..., n. (Näitä voi olla mös ääretön määrä:, missä saa arvoiseen aii luonnolliset luvut.) Disreetin stoastisen n jaauma, disreetti jaauma, so. n saamiin arvoihin liittvät todennäöisdet voidaan määritellä antamalla pistetodennäöisdet p joaiselle indesille : summamerintä riippumattomuus (lasennassa) omplementtitapahtuma Disreettejä jaaumia on paljon muitain. Kivelä, M niinuin matematiia, versio.
2 Todennäöissjaaumat 2/5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia Jatuvat jaaumat Jatuva stoastinen X saa reaaliarvoja joltain reaaliaselin väliltä [a, b] (tai mahdollisesti aii reaaliarvot). Tällöin sittäisen reaaliarvon on =0, vaia arvo ei oleaan mahdoton. Sen sijaan, että arvo osuu jollein osavälille [c, d], on leensä positiivinen. Jatuvan n X jaauma, ns. jatuva jaauma määritellään leensä tihesfuntion f() avulla. Tämä on aiialla 0 ja, että n X arvo on välillä [c, d], saadaan sta: P (c X d) = d c f()d. Jos integroidaan satunnaisn aiien mahdollisten arvojen muodostaman välin li (voidaan ajatella oo reaaliaselin li), on seessä varma tapahtuma ja siis tapahtuma f() d =. Ysinertainen esimeri jatuvasta jaaumasta on tasainen jaauma välillä [a, b]. Tämän tihesfuntio on f() = b a, un [a, b], 0 muulloin. stoastinen väli (reaaliaselin) määrätt (lasennassa) b a a b Jatuvia jaaumia on paljon muitain; eritisen täreä on normaalijaauma,jota äsitellään edempänä. Kivelä, M niinuin matematiia, versio.
3 Todennäöissjaaumat 3/5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia Kertmäfuntio Disreetin tai jatuvan stoastisen n X ertmäfuntiosi utsutaan funtiota F () = P(X ). Kosa seessä on, on 0 F () aiilla. Funtio on aiialla asvava (so. jos < 2, niin F ( ) F ( 2 ); funtio voi siis olla paloittain vaio). Disreetin satunnaisn ertmäfuntio on porrasfuntio; esimerinä oloon ahta noppaa heitettäessä saatavan pistesumman ertmäfuntio: Jatuvan jaauman ertmäfuntiolle F () ja tihesfuntiolle f() pätee F () =P(X )= Jos tihesfuntio on jatuva, pätee mös F () =f(). f() d. Esimerinä jatuvan satunnaisn ertmäfuntiosta oloon väliä [a, b] vastaavan tasaisen jaauman ertmäfuntio: 0, un a, a F () =, un a b, b a, un b. stoastinen stoastinen asvava asvava määrätt jatuvuus derivoituvuus funtio a b Kivelä, M niinuin matematiia, versio.
4 Todennäöissjaaumat 4/5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia Jaauman tunnusluvut Erilaisia jaaumia pritään luonnehtimaan sopivilla tunnusluvuilla. Tärein näistä on odotusarvo, jota voidaan luonnehtia stoastisen n saamien arvojen painotetusi esiarvosi, jossa painoina ovat todennäöisdet. Jos disreetti satunnais X saa arvot todennäöissillä p, odotusarvo on E(X) = p. Jos jatuvan satunnaisn tihesfuntio on f(), on odotusarvo E(X) = f() d. Tämäin on todennäöissillä painotettu esiarvo, uten nähdään tarastelemalla a vastaavaa Riemannin summaa. Esimerisi hden nopan heitossa odotusarvo on =3.5; seessä on silmäluujen suora esiarvo, osa aii pistetodennäöisdet ovat samoja. Binomijaauman ja väliä [a, b] vastaavan tasaisen jaauman odotusarvoisi saadaan n ( ) n p ( p) n = np =0 ja b a b a d = a + b 2. stoastinen stoastinen esiarvo (painotettu) summamerintä määrätt Riemannin summa Jaauman laajuutta hajontaa odotusarvon E(X) =µmpärillä voidaan mitata tarastelemalla etäisttä X µ (joa itse on stoastinen ). Tämän neliön odotusarvo on jaauman varianssi: σ 2 = E((X µ) 2 ). Varianssin neliöjuuri σ = E((X µ) 2 ) on jaauman esihajonta. Disreetin ja jatuvan jaauman tapausessa varianssille voidaan johtaa lauseeet σ 2 = ( µ) 2 p ja σ 2 = ( µ) 2 f() d. esihajonta Näiden avulla saadaan esimerisi binomijaauman varianssisi np( p) ja tasaisen jaauman varianssisi (b a) 2 /2. Kivelä, M niinuin matematiia, versio.
5 Todennäöissjaaumat 5/5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia Normaalijaauma Jatuvista jaaumista tärein on normaalijaauma. Sitä tarvitaan seä monissa sovellusissa että teoreettisissa tarasteluissa uvaamaan ilmiöitä, joissa esialueen arvot ovat tietllä tavalla todennäöisempiä uin ummanin ääripään arvot. Standardinormaalijaauman tihesfuntio on ϕ() = 2π e 2 /2, R. Tämän uvaajaa utsutaan Gaussin elloäräsi. Gauss 0.5 Standardinormaalijaauman ertmäfuntio on Φ() = 2π e t2 /2 dt, missä a ei voida lasea tavallisten aleisfuntioiden avulla. Useat tietooneohjelmat uitenin enevät lasemaan funtiolle Φ() numeerisia arvoja. Näitä on mös tauluoituina. funtio aleisfuntio Standardinormaalijaauman odotusarvo on 0 ja esihajonta. Normaalijaaumasta ätetään usein mös leistä muotoa, jossa odotusarvo on = µ ja esihajonta = σ. Tihesfuntio ja ertmäfuntio ovat tällöin f() = e ( µ)2 /(2σ 2) = ( ) µ 2πσ σ ϕ σ F () = ( ) e (t µ)2 /(2σ 2) µ dt =Φ. 2πσ σ Kivelä, M niinuin matematiia, versio.
Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat
Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio
funktiojono. Funktiosarja f k a k (x x 0 ) k
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu
M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon
Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali
V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M
V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus
[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.
ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -
2 Taylor-polynomit ja -sarjat
2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.
Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko.
Luento 0 odennäöisyyslasentaa Otosavaruus, tapahtuma ja todennäöisyys Ehdollinen todennäöisyys, tilastollinen riippumattomuus, Bayesin teoreema, oonaistodennäöisyys Odotusarvo, varianssi, momentti Stoastiset
Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko.
Luento odennäöisyyslasentaa Otosavaruus, tapahtuma ja todennäöisyys Ehdollinen todennäöisyys, tilastollinen riippumattomuus, Bayesin teoreema, oonaistodennäöisyys Odotusarvo, varianssi, momentti Stoastiset
3. Markovin prosessit ja vahva Markovin ominaisuus
30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin
termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s.
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 7 3. Luusarjat Josus luujonon (b ) termit on luontevairjoittaa summamuodossa. Tällöin päädymme luusarjojen teoriaan: Määritelmä 3.. Oloon ( ), R luujono. Symboli (3.)
Matematiikan tukikurssi
Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja
4.7 Todennäköisyysjakaumia
MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma
Sattuman matematiikkaa III
Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université
III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,
III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat
MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I
MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia
HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva
Heilurin differentiaaliyhtälö
LUKU 4 Heilurin differentiaaliyhtälö 4.. Konservatiiviset systeemit Fysiaalisissa sovellutusissa täreitä ovat ns. onservatiiviset systeemit. Ysiulotteinen onservatiivinen systeemi (tai onservatiivinen
5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89.
5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. Määritä seuraavien potenssisarjojen suppenemisympyrät: a) ( ) z + 3, b) 2 [ z 2 + ( 1) ], c) a) Koo omplesitaso; b) z =, R = 1; c) z = i, R = 4. 85.
Luku 11. Jatkuvuus ja kompaktisuus
1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2008 Luu 11. Jatuvuus ja opatisuus 11.1 Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia
(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA
Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi
Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.
Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.
STOKASTISET DIFFERENTIAALIYHTÄLÖT 7
STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 1. Todennäöisyyslasennasta ja merinnöistä Palautamme seuraavassa lyhyesti mieleen todennäöisyyslasennan äsitteitä ja esittelemme myös muutamia urssilla äytettäviä merintätapoja.
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.
1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2
Ylioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset
Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)
Riemannin sarjateoreema
Riemannin sarjateoreema LuK-tutielma Sami Määttä 2368326 Matemaattisten tieteiden laitos Oulun yliopisto Sysy 206 Sisältö Johdanto 2 Luujonot 3 2 Sarjat 4 2. Vuorottelevat sarjat........................
2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla
MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un
z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0
TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15
SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi
2.1. Bijektio. Funktion kasvaminen ja väheneminen ********************************************************
.. Funtion asvainen ja väheneinen.. Bijetio. Funtion asvainen ja väheneinen Palautetaan ieleen funtion äsite. ******************************************************** MÄÄRITELMÄ Oloot ja B asi ei-tyhjää
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2
1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT
imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,
4.3 Erillisten joukkojen yhdisteet
4.3 Erillisten jouojen yhdisteet Ongelmana on pitää yllä ooelmaa S 1,..., S perusjouon X osajouoja, jota voivat muuttua ajan myötä. Rajoitusena on, että miään alio x ei saa uulua useampaan uin yhteen jouoon.
Mat Sovellettu todennäköisyyslasku A
TKK / Systeemianalyysin laboratorio Nordlund Mat-.090 Sovellettu todennäköisyyslasku A Harjoitus 7 (vko 44/003) (Aihe: odotusarvon ja varianssin ominaisuuksia, satunnaismuuttujien lineaarikombinaatioita,
Olkoon R S otosavaruuksien R ja S karteesinen tulo: Satunnaismuuttujien X ja Y järjestetty pari (X, Y) määrittelee kaksiulotteisen satunnaismuuttujan:
Mat-.6 Sovellettu todennäköisslaskenta B Mat-.6 Sovellettu todennäköisslaskenta B / Ratkaisut Aiheet: Moniulotteiset satunnaismuuttujat ja todennäköissjakaumat Moniulotteisia jakaumia Avainsanat: Diskreetti
Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /
MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,
Luku 2. Jatkuvuus ja kompaktisuus
1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia
HARMONINEN VÄRÄHTELIJÄ
Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt 1 1 HARMONINEN VÄRÄHELIJÄ 1. yön tavoitteet 1.1 Mittausten taroitus ässä työssä tutustut jasolliseen, määrätyin aiavälein toistuvaan liieeseen,
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
M y. u w r zi. M x. F z. F x. M z. F y
36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien
Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä
DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen
DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen
D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa
EETU OJANEN SIGNAALIN ENNUSTAMINEN KALMAN-SUOTIMELLA. Kandidaatintyö
EETU OJANEN SIGNAALIN ENNUSTAMINEN KALMAN-SUOTIMELLA Kandidaatintyö Tarastaja: Lehtori Konsta Koppinen Jätetty tarastettavasi 11. tououuta 2009 2 TIIVISTELMÄ TAMPEREEN TEKNILLINEN YLIOPISTO Tietoliienne-
2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
Eksponentti- ja logaritmiyhtälö
Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,
Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1
Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden
Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa
S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että
6 Lineaarisen ennustuksen sovelluksia
6 Lineaarisen ennustusen sovellusia Lineaarisella ennustusella on hyvin täreä asema monessa puheenäsittelyn sovellusessa. Seuraavassa on esitetty esimerejä siitä miten lineaarista ennustusta voidaan hyödyntää.
Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus luuteoriaan Harjoitus 1 ss 008 Eemeli Blåsten Rataisuehdotelma Tehtävä 1 Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa siäsitteinen luu h ('luujen a ja b pienin hteinen jaettava',
S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk
S-.35, Fysiia III (ES) entti 8..3 entti / välioeuusinta I älioeen alue. Neljän tunnistettavissa olevan hiuasen miroanonisen jouon mahdolliset energiatasot ovat, ε, ε, 3ε, ε,, jota aii ovat degeneroitumattomia.
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista
TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista
Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24
Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu
Eksponenttifunktio. Johdanto. Määritelmä. Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopisto
Solmu 3/08 3 Esponenttifuntio Pea Alestalo Matematiian ja systeemianalyysin laitos Aalto-yliopisto Jodanto Esponenttifuntio e x on eräs täreimmistä matematiiassa ja varsinin sen sovellusissa esiintyvistä
ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2.
/ ELEMENTTIMENETELMÄN PERUSTEET SESSIO : Tasoehän palielementti, osa. NELJÄN VAPAUSASTEEN PALKKIELEMENTTI Kun ahden vapausasteen palielementin solmuihin lisätään loaalin -aselin suuntaiset siirtmämittauset,
DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa
Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa
KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017
KJR-C00 Kontinuumimeaniian perusteet viio 45/017 1. Oloon f t ) alojen onsentraatio [ f ] < g/m ) joessa joa riippuu siis seä paiasta että ajasta. Havaitsija on veneessä ja mittaa onsentraatiota suoraan
Tämä merkitsee geometrisesti, että funktioiden f
28 2. Futiosarjat Edellä sarjat olivat luusarjoja, joide termit ovat (tässä urssissa) reaaliluuja. Jos termit ovat samasta muuttujasta riippuvia futioita, päädytää futiotermisii sarjoihi. Näide äyttö matematiiassa
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
Joulukuun vaativammat valmennustehtävät ratkaisut
Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4
6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
2 b 1 + b 1 x. = b 1 (x 4) (x 2) b 1 (x 2)
3. Approsimointi 3.. Padén approsimaatio. Cauchyn approsimaatio: [7, I, 5.8]; Padén approsimaatio: [7, I, 5.9]; [, 9.5-8] Lagrangen interpolaatiopolynomi antaa ysinertaisen rataisun sileän funtion arvojen
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Normaaliapproksimaatio Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:
Mat-.9 Sovellettu todennäköisyyslasku A Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Moniulotteiset jakaumat Diskreetti jakauma, Ehdollinen jakauma, Ehdollinen odotusarvo, Jatkuva
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 3. Kaksiulotteiset satunnaismuuttujat
.9. Kaksiulotteiset satunnaismuuttujat MS-A Todennäköisslaskennan ja tilastotieteen peruskurssi Viikko Moniulotteiset satunnaismuuttujat sekä niiden jakaumat ja tunnusluvut; Moniulotteisia jakaumia Usein
J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6
MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato
C (4) 1 x + C (4) 2 x 2 + C (4)
http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
9 Lukumäärien laskemisesta
9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta
Estimointi Laajennettu Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät Laskuharjoitus 4
Estimointi Laajennettu Kalman-suodin AS-84.2161, Automaation signaalinäsittelymenetelmät Lasuharjoitus 4 Estimointi Systeemin tilaa estimoidaan, un prosessin tilamalli tunnetaan Tilamalli voi olla lineaarinen
BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011
BLY Paalulaattojen suunnittelu uitubetonista Petri Manninen BY 56 Paalulaatta - Yleistä Käytetään tyypillisesti peheillä, noraali- tai lievästi ylionsolidoituneilla savioilla ja uilla peheiöillä Mitoitustietojen
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen
(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.
Todennäköisyyslaskenta I, kesä 7 Harjoitus 4 Ratkaisuehdotuksia. Satunnaismuuttujalla X on ns. kaksipuolinen eksponenttijakauma eli Laplacen jakauma: sen tiheysfunktio on fx = e x. a Piirrä tiheysfunktio.
Todennäköisyyslaskun kertaus. Heliövaara 1
Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,
Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:
Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään
Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
x 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
V ar(m n ) = V ar(x i ).
Mat-.3 Stokastiset prosessit Syksy 007 Laskuharjoitustehtävät 6 Poropudas/Kokkala. Olkoon M n = X +... + X n martingaali ja M 0 = 0. Osoita, että V ar(m n ) = n V ar(x i ). i= Huomattavaa on, että muuttujia
Järjestelmän kuvaus aikatasossa
Digitaalinen Signaalinäsittel T25 Luento 2-24.3.26 Jaro.Vuori@evte.fi Man cannot inherit the past; he has to recreate it Arthur Koestler, The act of creation, 964 Järjestelmän uvaus aiatasossa Differenssihtälö
VALIKOITUJA KOHTIA LUKUTEORIASTA
VALIKOITUJA KOHTIA LUKUTEORIASTA ARI LEHTONEN 1. Laajennettu Euleideen algoritmi 1.1. Jaoyhtälö. Oloot r 0, r 1 Z, r 0 r 1 > 0. Tällöin on olemassa ysiäsitteiset luvut q 1 ja r 2 Z siten, että r 0 = q
https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä
Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin
Eulerin φ-funktion ominaisuuksia
TAMPEREEN YLIOPISTO Pro gradu -tutielma Jua Peltola Eulerin φ-funtion ominaisuusia Informaatiotieteiden ysiö Matematiia Marrasuu 2013 Tampereen yliopisto Informaatiotieteiden ysiö PELTOLA, JUKKA: Eulerin
Luku kahden alkuluvun summana
Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun
DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset
DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään
Talousmatematiikan verkkokurssi. Koronkorkolaskut
Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:
Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa
Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi
ESIM. ESIM.
1 Vierintäita f r lasetaan samannäöisellä aavalla uin liuuitain: Ihmisunnan erästä suurimmista esinnöistä eli pyörää äytetään sen taia, että vierintäitaerroin µ r on paljon pienempi uin liuuitaerroin:
Matemaattinen Analyysi
Vaasan yliopisto, evät 05 / ORMS00 Matemaattinen Analyysi 6. harjoitus. Approsimoi toisen asteen polynomilla P(x) = b 0 +b x+b x oheisen tauluon muaisia havaintoja. (Teorian löydät opetusmonisteen sivuilta
Tilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
/ Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,
1974 N:o 622. Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. Liite 1.
1974 N:o 622 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely Vauutuslajiryhmä Vauutusluoat Ensivauutus Laisääteinen tapaturma 1 (laisääteinen) Muu