8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY
|
|
- Mikko Reijo Lehtinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora { F } vasaava ysysraasu { } p uemsa. Jossa ysäsapausssa, ue harmoselle paovomaveorlle, vodaa ysysraasu arvaa. Yleses ämä e osu, joe arvaa ehoaampa meeelmä. Paovomaveor luoe vauaa ysysraasu löyämsee, mua o selvää, eä leyhälöde yeä haaloaa laea. Eräs mahdollsuus leyhälöde (7.) raasemses o ormaalmuoomeeelmä, joa peraaee eseää seuraavassa. Perusajaus ul eslle aava (7.5) yheydessä, joa muaa syseem la vodaa esää omasmuooje leaarsea yhdselmää. Normaalmuoomeeelmässä syseem la uvaamsee valaa uude oordaa,,,..., se, eä oordaa lmasee, mllä osuudella omasmuoo { } o muaa syseem lassa. Osoauuu velä, eä oordaa,,,..., ova pääoordaa el de avulla lausuu leyhälö evä ssällä saasa evää dyaamsa yeää. Normaalmuoomeeelmässä lähöohaa ova syseem leyhälö ja aluehdo L avulla el lausuua melvalase oordaae { } { } [ M ]{& } [ K]{ } { F} { () } { } { () & } { & } + (8.) Alus raasaa omasulmaaajuude,,,..., araerssesa yhälösä de ([ K] [ M] ) (8.) joa jälee laseaa ormeerau omasmuodo { },,,..., ([ K] [ M] ){ } { },,,..., yhälösä (8.) Jos syseemllä o moerasa omasulmaaajuusa, valaa ä vasaamaa omasmuodo, joa oeuava orogoaalsuusehdo u { } [ M]{ } { } [ K]{ } (8.4) () s () s j j j. Muodoseaa modaalmars [ Φ ], joa pysyrv ova omasveor Usea vapausasee syseem vameemao paovärähely Ma Läheemä
2 Värähelymeaa 8. [ ] [ ] { } { } L { } Φ (8.5) Määrellää pääoordaa { } { L } yhälöllä { } { } + { } + + { } [ Φ ]{ } L (8.6) Muueaa leyhälö (8.) pääoordaasoo sjoamalla { } aavasa (8.6) ja eromalla saaua yhälöä vasemmala marslla [ Φ [ Φ ] [ M][ Φ ]{ & } + [ Φ ] [ K] [ Φ ] { } [ Φ ] { F } Krjoeaa yhälö (8.7) muooo [ M ~ ]{ & } + [ K ~ ]{ } { F ~ } ], jollo seuraa & (8.7) & (8.8) jossa o äyey meröjä [ M ~ ] [ Φ ] [ ][ ] [ ] [ ] [ ][ ] { } M Φ K ~ Φ K Φ F ~ [ Φ ] { F} (8.9) modaalvomave- [ M ~ ] o modaalmassamars, [ K ~ ] modaaljäyyysmars ja { F ~ } or. Omasmuooje orogoaalsuudesa (8.4) seuraa, eä [ M ~ ] ja [ ] K ~ ova lävsäjämarseja, jode lävsäjäaloa ova modaalmassa { } [ M]{ } K { } [ K]{ } M ja modaaljäyyyde M (8.) K Leyhälö (8.8) ova au rjoeua muooa M && + K L M && + K L M && + K F ~ F ~ F ~ (8.) Jaamalla yhälö (8.) puola modaalmassolla ja oamalla lsäs huomoo yhälö (7.4) saadaa Usea vapausasee syseem vameemao paovärähely Ma Läheemä
3 Värähelymeaa 8. && + L && + L && + F ~ /M F ~ /M F ~ /M (8.) Ku uemao oordaa vodaa raasa omasa yhälösää, sllä yhälöde (8.) välllä e ole yeää. Ryhmä (8.) yhälö ova ose eraluvu avallsa dffereaalyhälöä. yypllse yhälö & & + F ~ / M (8.) raasu vodaa esää muodossa + (8.4) h p p äydellse yhälö ys- jossa h o homogeese yhälö ylee raasu ja ysraasu. ueus o vomassa D s + E cos (8.5) h Ysysraasu p esmsee vodaa sovelaa aa avallse dffereaalyhälöde eora yheydessä eseyjä meeelmä, ue esmers Duhamel egraala. Vao D ja E saadaa aluehdosa (8.), joa o velä muueava pääoordaasoo. Kaava (8.6) peruseella saadaa { ()} { } [ Φ ]{ () } { () & } { & } [ Φ] { &()} (8.6) Keromalla ämä yhälö puola vasemmala marslla [ ] [ M] [ Φ ] [ ]{ } [ ]{ () } [ Φ ] [ ]{ } [ ]{ & ()} M M ~ M Φ saadaa ulose & M ~ (8.7) Kosa [ M ~ ] o lävsäjämars, saadaa pääoordaae aluehdos ( ) { } [ M]{ } & () { } [ M]{ & },,,..., (8.8) M M Ku pääoordaa oordaaeh. ueaa, aava (8.6) avulla vodaa palaa aluperäs Usea vapausasee syseem vameemao paovärähely Ma Läheemä
4 Värähelymeaa Harmoe paovomaveor arasellaa harmosa paovomaveora vasaavaa ysysraasua. Kuormusveora o ällö { F } { F } s (8.9) jossa { F } o vaoveor. Modaalvomaveors ulee ässä apausessa { } [ Φ ] { F } s F ~ (8.) Veor { F ~ } yyplle ompoe o F ~ { } { F } s P s (8.) jollo o mery { } { F } P. Koordaaa vasaava leyhälö o ss P & + s (8.) M joa ysysraasu o apausssa p P P Y s s s (8.) M K ( / ) 8.. Esmer Kahde vapausasee vameemaoma paovärähely leyhälö ova muooa m m m m && && + F () F () (8.4) F Leyhälöde raasemsessa arvaa syseem aluehdo el o ueava aluasema () ja () seä aluopeude & () ja & (). Kuva 8. Esmer. arasellaa leyhälöde (8.4) raasemsa uva 8. ahde va- Usea vapausasee syseem vameemao paovärähely Ma Läheemä
5 Värähelymeaa 8.5 pausasee jous-massa syseem apausessa, u uormusea o harmoe paovomaveor { F() } { F } s Syseem leyhälös ulee m && F s m + && Raasaa alus omasulmaaajuude ja -muodo. Yhälösä m m seuraa araerse yhälö m ( m )( m ) m m ( ) 7m( ) + 5 m 5 m Amplude yhälöpar osesa yhälösä seuraa + ( m ) m,5 5. Ne o es- Omasveor ova ä olle { } A{ } ja { } A {,5 } ey uvassa 8., u A. Muodoseaa syseem modaalmars [ ] A joa pysyrv ova ormeerau omasmuodo el { } { } jossa { } { } ja { } { } Kuva 8. Omasveor.,5 [ Φ ] Φ, jossa o valu A A. Määrellää pääoordaa ja yhälöllä { } [ Φ ] { }. Pääoordaa määrelevä yhälö o ss Usea vapausasee syseem vameemao paovärähely Ma Läheemä
6 Värähelymeaa 8.6,5 +,5 Modaalvomaveors saadaa F F { } s s F ~,5 F joe aava (8.) P F ja P F. Laseaa modaalmassa ja -jäyyyde m m { } [ M]{ } { } m M m m,5 { } [ M]{ } {,5 } m M { } [ K]{ } { } K,5 { } [ K]{ } {,5 } 5 / 4 K Leyhälö pääoordaasossa ova aava (8.) peruseella F F & + s & + s m m Raasu pääoordaasossa o aavoje (8.4), (8.5) ja (8.) muases h h + p + p D s + E cos + Y s D s + E cos + Y s jossa D ja E seä D ja E ova aluehdosa saaava vaoa ja Y F ( / ) ( / ) Y 4F /5 Oloo aluehdo { } { } ja { & } { }, el syseem o aluheellä levossa asapaoasemassaa. Pääoordaae aluehdos ulee ällö aavasa (8.8) ( ) () & () & () Usea vapausasee syseem vameemao paovärähely Ma Läheemä
7 Värähelymeaa 8.7 Esmmäsesä ja osesa aluehdosa seuraa E ja E, joe & D cos + Y cos & D cos + Y cos Kolmaesa ja eljäesä aluehdosa seuraa D Y ja D Y, joe Y s + Y s Y s + Y s Aluperäse oordaae raasu saadaa aava (8.6) muuosella el + Y s Y s +,5 Y s +,5 Y s ( Y + Y ) + s ( Y,5 Y ) s jossa vmese erm edusava paovärähelyjä ja de amplud ja ova F / ( / ) ( / ) ( / ) ( / ) + 4F /5 F / F /5 Kuvassa 8. o esey ormeerau amplud f / F ja f / F aajuussuhee r / fuoa. Käyrä lähesyvä ääreöä resoassohdssa 5 ja, 58, jossa ysysraasu evä ole vomassa. Nähdää, eä heräevoma ulmaaajuude ollessa lähellä joa syseem omasulmaaajuua o syyvällä paovärähelyllä hyv suur amplud. f r f r r r Kuva 8. Ysysraasu. Usea vapausasee syseem vameemao paovärähely Ma Läheemä
8 Värähelymeaa 8.8 Usea vapausasee syseem vameemao paovärähely Ma Läheemä 8.. Esmer arasellaa ohda 7.. esmer jous-massa syseemä paramere arvolla g m ja m N/, u syseem vauaa harmoe paovomaveor { } { } s F F, jossa s rad/ ja N F. Omasulmaaajuuss ja modaalmarss saadaa svu 7.5 ja 7.6 ulose peruseella s rad 8,478 s rad 4,4 s rad,654 7 [ ] Φ joe pääoordaa määrelevä yhälö o { } [ ]{ } ( ) Φ Modaalvomaveors saadaa { } [ ] { } ) s( 4,4 4,4 s( ) F F ~ Φ joe N 4,4 P, P ja N P 4,4. Laseaa modaalmassa ja -jäyyyde { } g 4 M { } g M { } g 4 M
9 Värähelymeaa 8.9 K { } 4N/ m { } 4N/ m K K { } 657N/ m Leyhälö pääoordaasossa ova aava (8.) muaa (ysö o jäey pos) && && && + 58,579 +, + 4,4,555 s( ),555 s( ) Raasu pääoordaasossa saadaa aavosa (8.4), (8.5) ja (8.) ja se o D s(7,654 ) + E cos(7,654 ),8555 s( ) D D s(4,4 ) + E s(8,478 ) + E cos(4,4 ) cos(8,478 ),4645 s( ) Oloo syseem aluehdo { } {,m } { & } { } ällö aavasa (8.8) seuraa pääoordaae aluehdos () { },,555m 4 & () () { }, & () () { },,555 m 4 & () Usea vapausasee syseem vameemao paovärähely Ma Läheemä
10 Värähelymeaa 8. Aseme aluehdosa seuraa ( ) E,555 m () E () E,555 m Nopeuse lausees ulee dervomalla & & & 7,654 D cos(7,654 ) 7,654 E s(7,654 ),8555 cos( ) 4,4 D 8,478 D cos(4,4 ) 4,4 E cos(8,478 ) 8,478 E s(4,4 ) s(8,478 ),4645 cos( ) Nopeuse aluehdosa seuraa & ( ) 7,654 D,8555 D,5 m & ( ) 4,4 D D & ( ) 8,478 D,4645 D,7956 m Sjoamalla laseu vao leyhälöde raasuu saadaa ulose,5 s(7,654 ) +,555 cos(7,654 ),8555 s( ),7956 s(8,478 ),555 cos(8,478 ),4645 s( ) Aluperäse oordaa { } saadaa aavasa { } [ Φ] { } () + + el,5 s(7,654 ) +,555 cos(7,654 ) +,7956 s(8,478 ),555 cos(8,478 ), s( ) () ( ),577 s(7,654 ) +,5 cos(7,654 ),9 s(8,478 ) +,5 cos(8,478 ), s( ) () +,5 s(7,654 ) +,555 cos(7,654 ) +,7956 s(8,478 ),555 cos(8,478 ), s( ) Kuvassa 8.4 o esey sryme uvaaja aavälllä [, ] s. Usea vapausasee syseem vameemao paovärähely Ma Läheemä
11 Värähelymeaa 8. () () () Kuva 8.4 Sryme vahelu. 8. Värähely absorbo m m m ( ) m ( ) & & & & F() F s arasellaa paovärähely sovellusea uva 8.5 vameamaoa ahde vapausasee syseemä, jossa alempaa massaa m vauaa harmoe paovoma F() F s. Syseem leyhälös saadaa uva 8.5 vapaaappaleuvsa Newo laa äyämällä Kuva 8.5 Absorbo. Usea vapausasee syseem vameemao paovärähely Ma Läheemä
12 Värähelymeaa 8. m & + ( + ) m && + F s (8.5) Esää leyhälöde paovomaa vasaavaa ysysraasua muodossa () s () s (8.6) jollo hyvyyde ova & () s & () s (8.7) Sjoeaa ysysraasu leyhälöryhmää, josa seura ulos m m s + ( s + ) s s + s s F s (8.8) Kaavasa (8.8) seuraa amplude ja raasemsee yhälöpar ( + m ) + ( m ) F (8.9) Oeaa äyöö merä s / m ja s / m. ällö yhälöpar (8.9) osesa yhälösä seuraa ulos [ ( / s ) ] (8.) Sjoamalla ulos (8.) yhälöpar (8.9) osee yhälöö saadaa ( + m ) [ ( / s ) ] {[ + / ( / s) ][ ( / s ) ] / } F / F (8.) josa raeaa massa m ampludlle lausee [ + / ( / s) ] ( / s ) F / [ ] / (8.) Massa m ampluds saadaa aavasa (8.) Usea vapausasee syseem vameemao paovärähely Ma Läheemä
13 Värähelymeaa 8. [ ( / s ) ] F / [ + / ( / s) ] ( / s ) [ ] / (8.) Kaavasa (8.) äyy, eä massa m paovärähely amplud saadaa ollas valsemalla s / m se, eä ( / s ) (8.4) ällö syseem osa, m om häröaajuua vasaavaa massa m värähely absorbojaa. Kaavasa (8.4) seuraa häröaajuua vasaavas absorboja vrysehdos / m (8.5) Absorbolaea vasaavas massa m ampluds ulee aavasa (8.) F (8.6) / Absorbojaa suuelaessa o oeava huomoo amplud sallu arvo. Massaa m vauava jousvoma amplud o F. Absorboja oma perusuu ä olle she, eä sä aheuuu massaa m härövoma assa yhä suur, mua vasaassuuae voma. Usea vapausasee syseem vameemao paovärähely Ma Läheemä
Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi:
77 Aemmn oleen, eä mars A on dagonalsouva. Tällanen on lanne äsmälleen sllon, un joasen omnasarvon geomernen eraluu on sama un algebrallnen. Täydenneään eoraa seuraavlla uloslla apaussa, jossa monnerasen
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia
8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.
Lisätiedot5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE
Värähelymeaiia 5. 5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE 5. Johao Luvussa 4 araselii yhe vapausasee syseemii harmoisesa heräeesä aiheuuvaa vasea ja havaiii se riippuva pääasiassa syseemi vaimeusesa
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali
7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin
LisätiedotFlow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi
Flow shop önvaheeju jousava lnja läpvrauspaja Flow shopssa önvaheden järjess on sama alla uoella Kosa vahea vo edelää jono vova ö olla vaheleva ja ö vova ohaa osensa äl ö evä oha osaan puhuaan permuaaoaaaulusa
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 24: Usean vapausasteen vaimenematon ominaisvärähtely osa 2
/ ÄRÄHELYMEKANIIKKA SESSIO : Usea vapausastee vaeeato oasvärähtely osa MONINKERAISE OMINAISAAJUUDE Sesso MS oreeratu oasuodo { lasetaeetelässä oletett, että o ysertae oasulataauus. arastellaa velä tapausta,
Lisätiedot( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt
SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5
LisätiedotMUODONMUUTOKSET. Lähtöotaksumat:
MUODONMUUTOKSET Lähöoaksuma:. Maeraal on sorooppsa ja homogeensa. Hooken lak on vomassa (fyskaalnen lneaarsuus) 3. Bernoulln hypoees on vomassa (eknnen avuuseora) 4. Muodonmuuokse ova nn penä rakeneen
LisätiedotKompleksimuodot, bi-ortogonaliteetti ja yleinen viskoosi vaimennus
Rakeede Mekakka Vol. 4, Nro 4, 8, s. 99 Kompleksmuodo, b-orogoalee a ylee vskoos vameus Ramo vo Herze vselmä. yössä ukaa e-verraollses vameeu dskree syseem värähelyä. E-verraollse vameukse apauksessa omasmuodo
Lisätiedotjärjestelmät Luento 4
DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä
LisätiedotDEE-53000 Sähkömagneettisten järjestelmien lämmönsiirto
DEE-53000 Sähkömageese järjeselme lämmösro Lueo 8 1 Sähkömageese järjeselme lämmösro Rso Mkkoe Dfferessmeeelmä Numeersa rakasua haeaa aluee dskreeesä psesä. Muodoseaa verkko ja eseää dervaaa erousosamäärä.
LisätiedotYhden vapausasteen värähtely - harjoitustehtäviä
Dynaiia 1 Liie luuun 8. g 8.1 Kuvan jousi-assa syseeissä on = 10 g ja = 2,5 N/. Siiryä iaaan saaisesa asapainoaseasa lähien. luheellä = 0 s assa on saaisessa asapainoaseassaan ja sillä on nopeus 0,5 /
Lisätiedot6 JÄYKÄN KAPPALEEN TASOKINETIIKKA
Dyamiia 6. 6 JÄYKÄN KAPPALEEN TASKINETIIKKA 6. Yleisä Jäyä appalee ieiiassa arasellaa appaleesee aiuaie uloise oimie ja seurausea olea liiee (raslaaio ja roaaio) älisiä yheysiä. Voimie äsielyssä ariaa
LisätiedotJohda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.
/ Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,
LisätiedotYRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN
ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1
/ VÄRÄHTELYEANIIA SESSIO : Usean vapausasteen vaeneaton onasvärähtely osa JOHDANTO Usean vapausasteen systeen leyhtälöt ovat ylesessä tapausessa uotoa [ ]{ & } [ C]{ & } [ ] { } { F} & ( un vaennusta e
Lisätiedotr i m i v i = L i = vakio, (2)
4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte
4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.
LisätiedotKojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,
LisätiedotMuutama uusi näkökulma hinta-aggregoinnista ja hedonisista indeksimenetelmistä:
Muuama uus näöulma hna-aggregonnsa ja hedonssa ndesmeneelmsä: Emprnen sovellus omso- ja lelojen vuorn An Suoperä Tlasoesus Hnna ja Pala 2006 1 1 JOHDANTO Laadunmuuosen onrollon ndeslasennassa vodaan jaaa
LisätiedotSekatuotantoverstas Job shop. Flow shop vs. Job shop Esko Niemi
Seauoanoversas Job shop Seauoanoversaassa öden reysä e ole rajoeu mllään avalla vaan ne vova ulea oman prosessnsa muases mnä ahansa oneden aua Tyypllsä omnasuusa: Tuoee ova vaheleva Työnvahee ja -vaheaja
LisätiedotTaustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka
IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado
LisätiedotMatematiikan ja tilastotieteen laitos Johdatus diskreettiin matematiikkaan (Syksy 2008) 4. harjoitus Ratkaisuja (Jussi Martin)
Matematan ja tlastoteteen latos Johdatus dsreettn matemataan (Sysy 28 4. harjotus Ratasuja (Juss Martn 1. Kertomus Hotell Kosmosesta jatuu: Hotellyhtymän johdolta tul määräys laata luettelo asta mahdollssta
Lisätiedotb) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)
Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei
Lisätiedot( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
Lisätiedot5. Vakiokertoiminen lineaarinen normaaliryhmä
1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa
LisätiedotSUOJAAMATTOMAN LIIMAPUUPALKIN PALOMITOITUS LUOKKAAN R 60
Esimeri 1 SUOJAAMATTOMAN LIIMAPUUPALKIN PALOMITOITUS LUOKKAAN R 6 1 Paloilaee uormius ψ =,5 (ässä esimerissä muuuva uorma o lumiuorma) 1,1 p = p + ψ p = 6, +,5 11, = 11,5 N/m i g, 1,1 q, Pali maeriaaliomiaisuue
LisätiedotLuento 6 Luotettavuus ja vikaantumisprosessit
Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,
LisätiedotLuento 6 Luotettavuus Koherentit järjestelmät
Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu
LisätiedotMENETELMÄSELOSTE 11.6.2013 MAATALOUDEN TUOTTAJAHINTAINDEKSI 2010=100
MENETELMÄSELOSTE 11.6.2013 MAATALOUDEN TUOTTAJAHINTAINDEKSI 2010=100 Ssällyslueelo 1 TAUSTAA... 3 2 INDEKSIN MÄÄRITELMÄ JA KÄYTTÖ... 5 3 MAATALOUDEN HINTAINDEKSIN RAKENNE JA HINTASEURANTA NIMIKKEITTÄIN...
LisätiedotPOIKKILEIKKAUKSEN GEOMETRISET SUUREET
KLEKKUKEN GEMETRET UUREET d Pleause gemetrset suureet määrtellää melvaltase pstee (, hdalla leva ptaelemet d avulla. Tässä ästeltävä ptasuureta lasettaessa vdaa ättää hteelasuperaatetta (mös väheslasuperaate
LisätiedotTelecommunication engineering I A Exercise 3
Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,
LisätiedotW dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
LisätiedotDynaaminen optimointi ja ehdollisten vaateiden menetelmä
Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä
Lisätiedot13. Lineaariset ensimmäisen kertaluvun differentiaalisysteemit
68 3. Leaarset esmmäse kertaluvu dfferetaalsysteemt Tarkastelemme systeemejä () x () t = A() t x() t + b () t, jossa matrs A kertomet ja b ovat välllä I jatkuva. Jatkuve vektorarvoste fuktode avaruutta
LisätiedotJLP:n käyttämättömät mahdollisuudet. Juha Lappi
JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p
LisätiedotHERNESAARI OSAYLEISKAAVAEHDOTUS VESIHUOLLON YLEISSUUNNITELMA
HERNESAAR OSAYLESKAAAEHDOTUS ESHUOLLON YLESSUUNNTELMA KS/TEK SSÄLLYSLUETTELO Yä S- v p äöd d ävvä Hvvä K äää ää Nyy S Yä d ävvä Hvvä v v L: L y HELSNGN KAUUNK KAUUNKSUUNNTTELURASTO Y Td Yä y vää H yv-
Lisätiedotb 4i j k ovat yhdensuuntaiset.
MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä
LisätiedotSysteemimallit: sisältö
Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän
LisätiedotTilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu
Tilausohjaun uoannon areasuunnielu Tilausohjaussa uoannossa sarjojen muodosaminen ei yleensä ole relevani ongelma, osa uoevaihelu on suura, mä juuri onin peruse MTO-uoannolle Tuoe- ja valmisusraenee ova
LisätiedotOH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11.
Kemian laieekniikka 1 Koilasku 1 4.4.28 Jarmo Vesola Tuoee ja reakio: hiilimonoksidi, meanoli, meyyliformiaai C HC (1) vesi, meyyliformiaai, meanoli, muurahaishappo HC CH (2) hiilimonoksi, vesi, muurahaishappo
LisätiedotJuuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.
Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.
HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva
LisätiedotValmistaminen tai ostaminen varastoon tasainen kysyntä
Valmsamnen varasoon Make-o-sock (MTS) -uoanoapaa käyävä yrykse, joka valmsava loppuuoea a osa erssä ja valmsuksen jälkeen varasova uoee varasoon odoamaan kysynää MTS-uoanomalln euna ova lyhye omusaja asakkaalle,
LisätiedotKäyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma
KSU-430/Ten 4..2008/Prof. Seppo Vranen /3 Käyövarmuuden ja kunnossapdon perusee, KSU-430: Ten ma 4..2008 Huom. Vasaus van veen kysymykseen. Funko- ja/a ohjelmoavan laskmen, musnpanojen, luenomonseden ja
Lisätiedot( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.
ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!
Lisätiedot4.7 Todennäköisyysjakaumia
MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen
9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen
LisätiedotYlioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi
6/ VÄRÄHTEYMEKANKKA SESS 6: Evvle sysee JHDANT Use äyä pplee uodos sysee vod orv yhde vpussee evvlell llll os se pplede se/ul-se vod lusu s oord vull. Tällö sysee geoers vod uodos yheyde se e pplede leloe
LisätiedotDEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset
D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 13: Yhden vapausasteen vaimenematon pakkovärähtely, herätteenä roottorin epätasapaino tai alustan liike
/ VÄRÄHELYMEKANIIKKA SESSIO : Yhde vapausasee vaieeao paoväähely, heäeeä oooi epäasapaio ai alusa liie ROOORIN EPÄASAPAINO Haoisesi vaiheleva paovoia voi esiiyä pyöivie oeeosie yheydessä. aasellaa esieiä
LisätiedotRiskienhallinnan peruskäsitteitä
Rskenhallnnan peruskäseä Juss Kangaspuna 7. Syyskuua 2011 Työn saa allenaa ja julksaa Aalo-ylopson avomlla verkkosvulla. Mula osn kakk okeude pdäeään. Esyksen ssälö Todennäkösyyspohjanen vekehys aloudellsen
LisätiedotTKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta
KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän
LisätiedotKUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET
KUNTIN LÄKVKUUTU 328 VRHILÄKMNORUTI MKU 29 LÄHTIN NOUDTTTVT LKURUTT Valtuusuta ahstaa arhaseläemeoperustese masu eaode yhtesmäärä uodelle euromääräsest Tämä ahstettu masu o samalla lopullste masue yhtesmäärä
Lisätiedot4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY
Väähelyekaiikka 4. 4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY 4. Johdao Mekaaise syseei ulkoisisa kuoiuksisa aiheuuvaa väähelyä saoaa akkoväähelyksi. Jos syseeissä o vaieusa, o kyseessä vaieeva akkoväähely,
Lisätiedot9 Lukumäärien laskemisesta
9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta
LisätiedotJakaumien tunnusluvut. Jakaumien tunnusluvut. Jakaumien tunnusluvut: Mitä opimme? 2/2. Jakaumien tunnusluvut: Mitä opimme? 1/2
TKK (c) Ila Mell (4) Jaaume tuusluvut Johdatus todeäösyyslasetaa Jaaume tuusluvut Marov ja Tshebyshev epäyhtälöt Momett Vous ja hupuuus Suurte luuje la TKK (c) Ila Mell (4) Jaaume tuusluvut: Mtä opmme?
LisätiedotDiskreetillä puolella impulssi oli yksinkertainen lukujono:
DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase
Lisätiedot1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)
. Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.
LisätiedotRahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille
Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial
Lisätiedot= E(Y 2 ) 1 n. = var(y 2 ) = E(Y 4 ) (E(Y 2 )) 2. Materiaalin esimerkin b) nojalla log-uskottavuusfunktio on l(θ; y) = n(y θ)2
HY / Matematka ja tlastotetee latos Tlastolle päättely II, kevät 28 Harjotus 3A Ratkasuehdotuksa Tehtäväsarja I Olkoot Y,, Y ja Nθ, ) Osota, että T T Y) Y 2 o parametr gθ) θ 2 harhato estmaattor Laske
Lisätiedot11. Jatkuva-aikainen optiohinnoittelu
. Jauva-aiainen opiohinnoielu Sijoiusoheien hinojen ehiymisä voiaan arasella myös jauva-aiaisina prosesseina Iô-prosessi erisuuruise perioiohaise hinnanmuuose mahollisia voiaan oisinaan raaisa analyyisesi.
LisätiedotBETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010
DIPLOMITYÖ: BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 29) Beonipäivä 21 DIPLOMITYÖ prosessina Aie: yön eeäjän aloieesa Selviykse beonin, eräksen ja puun osala oli jo ey/käynnissä
Lisätiedota. Varsinainen prosessi on tuttua tilaesitysmuotoa:
ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,
Lisätiedotẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.
Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak
LisätiedotHuomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).
DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4
LisätiedotTasaantumisilmiöt eli transientit
uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen
LisätiedotXII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA
II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =
Lisätiedott P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<
1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5
LisätiedotKertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.
Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.
LisätiedotLuento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 12: Yhden vapausasteen vaimenematon pakkovärähtely, harmoninen
/ VÄRÄHTELYMEKANIIKKA SESSIO : Yhden vapausaseen vaieneaon pakkoväähely, haoninen kuoiusheäe JOHDANTO Ulkoisisa kuoiuksisa aiheuuvaa väähelyä sanoaan pakkoväähelyksi. Jos syseeissä on vaiennusa, on kyseessä
Lisätiedot12. ARKISIA SOVELLUKSIA
MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina
LisätiedotEne-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015
Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen
LisätiedotOsakeoptioiden markkinahinnoittelu, volatiliteetti ja kohde-etuuden hintadynamiikka
Oaeopode marahoelu volalee a ohde-euude hadyama Kaaalouede Pro-radu Kaaaloueee lao Tamperee ylopo 8 Teemu Krau TIIVISTELMÄ Tamperee ylopo Teä: Tuelma m: Taloueede lao; aaalouede KRAUS TEEMU Oaeopode marahoelu
LisätiedotKonvoluution laskeminen vaihe vaiheelta Sivu 1/5
S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,
LisätiedotX(t) = X 0 + tx 1 + t 2 X 2 + t 3 X ,
Ma-1.1332 Mariisiksponnifunkio, KP3-II, syksy 2007 Pkka Alsalo Johdano. Tämä monis sisälää kurssilla arviava ido mariisiksponnifunkiosa. Mariisiksponnifunkio. Suraavassa A on raalinn n n-mariisi, jonka
LisätiedotTässä harjoituksessa käsitellään Laplace-muunnosta ja sen hyödyntämistä differentiaaliyhtälöiden ratkaisemisessa.
DEE-00 Lneaare järjeelmä Harjou 0, rakauehdouke Tää harjoukea käellään Laplace-muunnoa ja en hyödynämä dfferenaalyhälöden rakaemea Tehävä Laplace-muunno on käevä yökalu dfferenaalyhälöryhmen rakaemea,
LisätiedotMittaustekniikan perusteet, piirianalyysin kertausta
Miausekniikan perusee, piirianalyysin kerausa. Ohmin laki: =, ai = Z ( = ännie, = resisanssi, Z = impedanssi, = vira). Kompleksiluvu Kompleksilukua arviaan elekroniikassa analysoiaessa piireä, oka sisälävä
LisätiedotRaja-arvot. Osittaisderivaatat.
1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat
LisätiedotELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2.
/ ELEMENTTIMENETELMÄN PERUSTEET SESSIO : Tasoehän palielementti, osa. NELJÄN VAPAUSASTEEN PALKKIELEMENTTI Kun ahden vapausasteen palielementin solmuihin lisätään loaalin -aselin suuntaiset siirtmämittauset,
LisätiedotJarmo Kuusela PL 467 65101 VAASA 20.10.2009 MAAPERÄTUTKIMUS LAKEUDEN ANKKURI, SEINÄJOKI
YT Rkes Oy Jrmo Ksel P 6 MAAPERÄTUTKMUS 6 VAASA MAAPERÄTUTKMUS AKEUDEN ANKKUR, SENÄJOK Ylesä YT Rkes Oy: (Jrmo Ksel) omeksos o KS-Geokosl sor ohjkmkse es mlle kede Akkrll Seäjoell Aleell eh okrks seessä,
LisätiedotMonisilmukkainen vaihtovirtapiiri
Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin
LisätiedotTietoliikennesignaalit
ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime
LisätiedotVÄRÄHTELYMEKANIIKKA SESSIO 16: Yhden vapausasteen vaimeneva pakkovärähtely, yleinen jaksollinen kuormitus
6/ VÄRÄHTELYMEKANIIKKA SESSIO 6: Yhde vpussee vimeev poväähely, yleie jsollie uomius YLEINEN JAKSOLLINEN KUORMITUS Hmois heäeä vsv pysyvä poväähely lusee löyyy helposi oeilemll. Hmoise heäee eoi void hyödyää
LisätiedotTchebycheff-menetelmä ja STEM
Mat-2.142 Optmontopn semnaar K-2000 Montavoteopmont Semnaarestelmän tvstelmä Pentt Säynätjo 22.3.2000 Tchebycheff-menetelmä ja STEM 1. Johdanto Tchebycheff-menetelmä ja STEM ovat vuorovauttesa montavoteoptmontmenetelmä.
LisätiedotVarianssianalyysi. Varianssianalyysi. Varianssianalyysi. Varianssianalyysi: Mitä opimme? Varianssianalyysi: Johdanto
TKK (c Ila Mell (004 Varassaalyys Varassaalyys: Johdato Johdatus tlastoteteesee Varassaalyys TKK (c Ila Mell (004 Varassaalyys: Mtä opmme? Tarastelemme tässä luvussa seuraavaa ysymystä: Mte tavaomae ahde
Lisätiedotjoka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx =
HY / Maemaiikan ja ilasoieeen laios Differeniaalihälö I kevä 09 Harjois 4 Rakaisehdoksia. Rakaise differeniaalihälö = (x + + Rakais: Tehdään differeniaalihälöön lineaarinen mnnos z(x = x + (x + jolloin
Lisätiedot2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt:
84 RDIOTKNIIKN PRUSTT aois. Las a gadini f, n f,, b divgnssi, n c oooi, n on n b- ohdassa.. Ti oaao saava vapaassa ilassa olva nä Mawllin hälö:.. Oloon vapaassa ilassa sähönä oplsivoina sinä. Määiä a aallon
LisätiedotLuento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
LisätiedotKITTILÄ Levi MYYDÄÄN LOMARAKENNUS- KIINTEISTÖ 48. Kohde 202 261-409-33-94 283/2 YLEISKARTTA
8 7 0 :9 0 9 :97 6 9 609: 89 9:6 97 7 :60 rp :90 80 7 6 7 8 :9 0 rp0 6 68 69 6 7 :96 rp7rp8 6 8 9 YYDÄÄN LOAKENNUS- :6 KNTESTÖ 8 :98 :09 :9 6 :9 8 90 9: 9 :0 76 8 :9.7 Kohde 0 66 9 7 rp9 0.7 rp66 :9 9.8
LisätiedotPK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd
PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa
LisätiedotLiikenne- ja viestintävaliokunta Lainsäädäntöjohtaja Hanna Nordström
Halluksen esys HE 203/2017 vp laks solaseduselusa ja eräks shen lyvks laeks Lkenne- ja vesnävalokuna 20.2.2018 Lansäädänöjohaja Hanna Nordsröm Solaseduselun kohee Teduselumeneelmällä saadaan hankka eoa
LisätiedotMUUTTOLIIKKEEN ENNUSTAMISESTA
Pellervon aloudellsen ukmuslaoksen yöpaperea Pellervo Economc Research Insue Workng Papers N:o 19 (oukokuu 1999) MUUTTOLIIKKEEN ENNUSTAMISESTA An Moso* Helsnk, oukokuu 1999 ISBN 951-8950-97-0 ISSN-1455-4623
LisätiedotLEVYSUOJATUN PALKKIVÄLIPOHJAN PALOMITOITUS LUOKKAAN R 60
Esimeri 3 LEVYSUOJATUN PALKKIVÄLIPOHJAN PALOMITOITUS LUOKKAAN R 6 1 Paloilaee uormius ψ =,3 (ässä esimerissä muuuva uorma o yöyuorma) p = p + ψ p = 1, 5 +, 3 1, = 1, 86 N/m i g, q, Oelo oreus oelo pali
LisätiedotYMPJåoSTÖ 2?.5.14 J Ub,
YMPJåoSTÖ 2?.5.14 J Ub, ),II1 1 SATAMA ILMOITTAMIE YMPÄRISTÖ- SUOJELU TIETOJÄRJESTELMÄÄ JA SATAMA JÄTEHUOLTOSUUITELMA ranomaisen yheysiedo Merkiy ympärisönsuojelun ieojärjeselmään A. SATAMA TOIMITAA VALVOVA
Lisätiedot. C. C Kirjoitetaan sitten auki lineaarisuuden määritelmän oikea puoli: αt{i c1 } + βt{i c2 } = α
SMG-00 Pranals II Ehdotuset harjotusen s ratasus Jotta järjestelmän lneaarsuutta psttään tarastelemaan, on ensn muodostettava htes järjestelmän ssäänmenon ja ulostulon vällle Tällä ertaa tuo htes saadaan
Lisätiedot[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.
ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -
Lisätiedot