Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1
|
|
- Pekka Salonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1
2 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin jostakin jakaumasta Havaintojen perusteella tätä jakaumaa voidaan kuvailla ja mallintaa, ja jakaumaan liittyviä oletuksia voidaan testata Tilastotiede kehittää ja soveltaa tällaisia kuvailun, mallinnuksen ja testauksen menetelmiä Vilkkumaa / Kuusinen 2
3 Kuvailun ja päättelyn menetelmiä Kuvailun menetelmiä: - Tilastografiikka - Tilastolliset tunnusluvut - Tilastolliset mallit Päättelyn menetelmiä: - Tilastolliset mallit - Tilastollinen testaus Vilkkumaa / Kuusinen 3
4 Aineiston kerääminen Kohdistuuko tutkimus koko perusjoukkoon vai vain johonkin sen osaan? - Tutkimusta kutsutaan kokonaistutkimukseksi, jos perusjoukon kaikki alkiot tutkitaan. - Tutkimusta kutsutaan otantatutkimukseksi, jos perusjoukon alkioista vain osa tutkitaan Muutetaanko tutkimuksessa aktiivisesti tutkimuksen kohteiden olosuhteita? - Jos olosuhteita ei muuteta aktiivisesti, tutkimus perustuu suoriin havaintoihin. - Jos tutkitaan olosuhteiden muuttamisen vaikutusta tutkimuksen kohteisiin, tutkimus on koe. Vilkkumaa / Kuusinen 4
5 Kontrolloidut kokeet Kokeesta ei voida tehdä luotettavia johtopäätöksiä, ellei koe ole kontrolloitu: - Kokeessa on vertailtava vähintään kahden erilaisen käsittelyn vaikutuksia. - Käsittelyjen kohdistamisessa on käytettävä satunnaistusta. - Kokeessa on tehtävä riittävästi koetoistoja. Vilkkumaa / Kuusinen 5
6 Aineistojen kuvaaminen Vilkkumaa / Kuusinen 6
7 Frekvenssit ja havaintoarvojen jakauma Jos muuttuja on diskreetti, havaittujen arvojen jakaumaa kuvataan frekvessijakaumalla ja sitä vastaavalla graafisella esityksellä, joka on pylväsdiagrammi. Jos muuttuja on jatkuva, havaittujen arvojen jakaumaa kuvataan luokitellulla frekvessijakaumalla ja sitä vastaavalla graafisella esityksellä, joka on histogrammi. Histogrammissa frekvenssiä vastaa pinta-ala ja pylväsdiagrammissa korkeus. Muuttujan x mahdolliset arvot y 1, y 2,..., y m yhdessä niiden havaittujen frekvenssien f 1, f 2,..., f m kanssa muodostavat muuttujan x havaittujen arvojen x 1, x 2,... x n frekvenssijakauman. Siinä missä todennäköisyyksien summa on aina yksi, niin f i = n. Vilkkumaa / Kuusinen 7
8 Esimerkki 1 Pylväsdiagrammi 30 heiton frekvenssijakaumasta harhattomalla nopalla 8 Frequency Vilkkumaa / Kuusinen 8
9 Esimerkki 2 Histogrammi 30 havainnon otoksesta jakaumasta N(0, 1) Vilkkumaa / Kuusinen 9
10 Havaintoaineiston tunnuslukuja Aritmeettinen keskiarvo: n ˉx = 1 n i=1 x i Otosvarianssi: s 2 = 1 n 1 n i=1 (x i ˉx) 2 = 1 n 1 ( n i=1 x 2 i nˉx 2 ) Otoskeskihajonta: s = s 2 Vilkkumaa / Kuusinen 10
11 Standardointi Standardoitujen havaintoarvojen z i = x i ˉx s x aritmeettinen keskiarvo ja otosvarianssi ovat, i = 1, 2,..., n ˉz = 1 n n i=1 z i = 0 s 2 z = 1 n 1 n (z i ˉz) 2 = 1 i=1 Vilkkumaa / Kuusinen 11
12 Vinous Olkoot m 2 = 1 n n (x i x) 2 m 3 = 1 n i=1 havaintoarvojen 2. ja 3. keskusmomentti. n (x i x) 3 i=1 Tunnuslukua c 1 = m 3 m 3/2 2 käytetään kuvaamaan havaintoarvojen jakauman vinoutta. - Jos c 1 0, on havaintoarvojen jakauma symmetrinen painopisteensä suhteen. - Jos c 1 > 0, on havaintoarvojen jakauma positiivisesti vino. - Jos c 1 < 0, on havaintoarvojen jakauma negatiivisesti vino. Vilkkumaa / Kuusinen 12
13 Huipukkuus Olkoot m 2 = 1 n n (x i x) 2 m 4 = 1 n i=1 havaintoarvojen 2. ja 4. keskusmomentti. n (x i x) 4 i=1 Tunnuslukua c 2 = m 4 m käytetään kuvaamaan havaintoarvojen jakauman huipukkuutta. - Normaalijakautuneella havaintoaineistolla c Jos c 2 > 0, on havaintoarvojen jakauma huipukas (Normaalijakautuneeseen havaintoaineistoon verrattuna). - Jos c 2 < 0, on havaintoarvojen jakauma laakea (Normaalijakautuneeseen havaintoaineistoon verrattuna). Vilkkumaa / Kuusinen 13
14 Esimerkki - 30 havainnon otos jakaumasta N(0,1) Mean SD Min Q 1 Q 3 Max Skew Kurtosis Otos N(0, 1) Vilkkumaa / Kuusinen 14
15 Klikkeri-kysely Kuva esittää 50 havainnon aineiston histogrammia. Mistä jakaumasta arvelet aineiston olevan peräisin? 1. Tasajakaumasta, 2. Normaalijakaumasta, 3. F-jakaumasta, 4. Bernoulli-jakaumasta. 5 Frequency Vilkkumaa / Kuusinen 15
16 Otos ja otosjakaumat Vilkkumaa / Kuusinen 16
17 Tilastollinen aineisto Tilastollinen aineisto koostuu tutkimuksen kohteita kuvaavien muuttujien havaituista arvoista. Tilastollisissa tutkimusasetelmissa havaintoarvoihin liittyy aina epävarmuutta ja satunnaisuutta. Vilkkumaa / Kuusinen 17
18 Tilastollinen malli Tilastollisella mallilla tarkoitetaan tutkimuksen kohteita kuvaavien satunnaismuuttujien todennäköisyysjakaumaa, jonka ajatellaan generoineen ko. satunnaismuuttujien havaitut arvot. Nämä todennäköisyysjakaumat riippuvat tavallisesti parametreista, joiden arvoja ei yleensä tunneta. Tilastollista mallia sovellettaessa kohdataan tavallisesti seuraavat parametreja koskevat ongelmat: - Parametrien arvoja ei tunneta ja ne on estimoitava eli arvioitava havaintoaineistosta. - Parametrien arvoista on olemassa oletuksia, joita halutaan testata havaintoaineiston antaman informaation avulla. Vilkkumaa / Kuusinen 18
19 Yksinkertainen satunnaisotos Olkoot X 1, X 2,..., X n riippumattomia, identtisesti jakautuneita satunnaismuuttujia, joilla on sama pistetodennäköisyys- tai tiheysfunktio f(x). Tällöin satunnaismuuttujat X 1, X 2,..., X n muodostavat yksinkertaisen satunnaisotoksen jakaumasta f(x). Vilkkumaa / Kuusinen 19
20 Havainnot ja havaintoarvot Olkoon X 1, X 2,..., X n yksinkertainen satunnaisotos jakaumasta f(x). Satunnaismuuttujia X 1, X 2,..., X n kutsutaan havainnoiksi. Kun otos on poimittu, satunnaismuuttujat X 1, X 2,..., X n saavat havaituiksi arvoikseen havaintoarvot jotka eivät ole satunnaisia. x 1, x 2,..., x n, Vilkkumaa / Kuusinen 20
21 Aritmeettisen keskiarvon odotusarvo ja varianssi Oletetaan, että havainnot X 1, X 2,..., X n muodostavat yksinkertaisen satunnaisotoksen satunnaismuuttujan X jakaumasta, jonka odotusarvo ja varianssi ovat E(X) = μ ja V ar(x) = σ 2. Havaintojen aritmeettisen keskiarvon ˉX odotusarvo ja varianssi ovat E( ˉX) = μ V ar( ˉX) = σ2 n Aritmeettisen keskiarvon standardipoikkeamaa D( ˉX) = σ/ n kutsutaan keskiarvon keskivirheeksi. Vilkkumaa / Kuusinen 21
22 Aritmeettisen keskiarvon otosjakauma, kun otos on normaalijakautunut Oletetaan, että havainnot X 1, X 2,..., X n muodostavat yksinkertaisen satunnaisotoksen normaalijakaumasta N(μ, σ 2 ). Tällöin havaintojen aritmeettinen keskiarvo ˉX noudattaa eksaktisti normaalijakaumaa: ) ˉX N (μ, σ2 n Standardoitu satunnaismuuttuja Z = ˉX μ σ/ n noudattaa eksaktisti standardoitua normaalijakaumaa: Z N(0, 1) Vilkkumaa / Kuusinen 22
23 Keskeinen raja-arvolause Olkoon X i, i = 1, 2,..., n, riippumattomia, samoin jakautuneita satunnaismuuttujia, joiden odotusarvo ja varianssi ovat E(X i ) = μ ja D 2 (X i ) = σ 2. Keskeisen raja-arvolauseen mukaan n:n suurille, mutta äärellisille arvoille pätee: ˉX n = 1 n n i=1 ) X i a N (μ, σ2 n Vilkkumaa / Kuusinen 23
24 Keskeinen raja-arvolause Beta(0.5,0.5), μ=0.5, σ=0.35 n=4 n= LogN(0,1), μ=1.65, σ= n= n= Vilkkumaa / Kuusinen 24
25 Otosvarianssin odotusarvo ja varianssi Oletetaan, että havainnot X 1, X 2,..., X n muodostavat yksinkertaisen satunnaisotoksen satunnaismuuttujan X jakaumasta, jonka odotusarvo ja varianssi ovat E(X) = μ ja V ar(x) = σ 2. Havaintojen otosvarianssin s 2 odotusarvo ja varianssi ovat E(s 2 ) = σ 2 V ar(s 2 ) = 2σ4 n 1 Vilkkumaa / Kuusinen 25
26 Otosvarianssin otosjakauma, kun otos on normaalijakautunut Oletetaan, että havainnot X 1, X 2,..., X n muodostavat yksinkertaisen satunnaisotoksen normaalijakaumasta N(μ, σ 2 ). Tällöin satunnaismuuttuja V = (n 1)s2 σ 2 = n i=1 ( Xi ˉX σ ) 2 noudattaa eksaktisti χ 2 -jakaumaa vapausastein (n 1): V χ 2 (n 1) Vilkkumaa / Kuusinen 26
27 Frekvenssi ja suhteellinen frekvenssi Olkoon A jokin otosavaruuden S alkioiden ominaisuus Poimitaan otosavaruudesta yksinkertainen satunnaisotos, jonka koko on n Ominaisuuden A omaavien alkioiden lukumäärä satunnaisotoksessa, jonka koko on n, vastaa ominaisuuden A omaavien alkioiden frekvenssiä ja sitä merkitään f :llä Ominaisuuden A suhteellinen frekvenssi ˆp määritellään: ˆp = f n Vilkkumaa / Kuusinen 27
28 Frekvenssien odotusarvo ja varianssi Frekvenssi f noudattaa eksaktisti binomijakaumaa Bin(n, p). Frekvenssin f odotusarvo ja varianssi ovat siis: missä q = 1 p. E(f) = np V ar(f) = npq, Suhteellisen frekvenssin ˆp odotusarvo ja varianssi ovat: E(ˆp) = p V ar(ˆp) = pq n Vilkkumaa / Kuusinen 28
29 Suhteellisen frekvenssin normaaliapproksimaatio Keskeisestä raja-arvolauseesta johtuen suhteellinen frekvenssi ˆp noudattaa suurissa otoksissa approksimatiivisesti normaalijakaumaa: Standardoitu satunnaismuuttuja ˆp a N ( p, pq n ) Z = ˆp p pq/n noudattaa siten suurissa otoksissa approksimatiivisesti standardoitua normaalijakumaa: Z a N(0, 1) Vilkkumaa / Kuusinen 29
30 Klikkeri-kysely Oletetaan, että koripallopelaajan todellinen vapaaheittoprosentti on 70%. Pelaaja heittää testissä 30 vapaaheittoa. Mitä jakaumaa koriin menneiden heittojen suhteellinen osuus approksimatiivisesti noudattaa? 1. N(0.7, ) 2. N(0.4, ) 3. N(0.7, ) Mieti, millä todennäköisyydellä em. jakaumasta saadaan havaintoja, jotka ovat joko pienempiä kuin 0 tai suurempia kuin 1. Vilkkumaa / Kuusinen 30
Tilastotieteen kertaus. Kuusinen/Heliövaara 1
Tilastotieteen kertaus Kuusinen/Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla reaalimaailman ilmiöistä voidaan tehdä johtopäätöksiä tilanteissa, joissa
tilastotieteen kertaus
tilastotieteen kertaus Keskiviikon 24.1. harjoitukset pidetään poikkeuksellisesti klo 14-16 luokassa Y228. Heliövaara 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä, joiden avulla
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 18. lokakuuta 2007 Antti Rasila () TodB 18. lokakuuta 2007 1 / 19 1 Tilastollinen aineisto 2 Tilastollinen malli Yksinkertainen satunnaisotos 3 Otostunnusluvut
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Tilastolliset menetelmät. Osa 1: Johdanto. Johdanto tilastotieteeseen KE (2014) 1
Tilastolliset menetelmät Osa 1: Johdanto Johdanto tilastotieteeseen KE (2014) 1 Mitä tilastotiede on? Tilastotiede kehittää ja soveltaa menetelmiä ja malleja, joiden avulla reaalimaailman ilmiöistä voidaan
Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1
Todennäköisyyslaskun kertaus Vilkkumaa / Kuusinen 1 Satunnaismuuttujat ja todennäköisyysjakaumat Vilkkumaa / Kuusinen 2 Motivointi Kokeellisessa tutkimuksessa tutkittaviin ilmiöihin liittyvien havaintojen
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:
Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?
TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Väliestimointi TKK (c) Ilkka Mellin (2005) 1 Väliestimointi Todennäköisyysjakaumien parametrien estimointi Luottamusväli Normaalijakauman odotusarvon luottamusväli Normaalijakauman
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2004) 1 Testit laatueroasteikollisille muuttujille Laatueroasteikollisten muuttujien testit Testi suhteelliselle
Testit laatueroasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (004) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (005) 1 Testit suhdeasteikollisille muuttujille Testit normaalijakauman parametreille Yhden otoksen t-testi Kahden
Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1
Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus KE (2014) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet
Johdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1
Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n
Testejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman
Teema 8: Parametrien estimointi ja luottamusvälit
Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset
Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2005) 1 Tilastollisten aineistojen kuvaaminen Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten muuttujien tunnusluvut
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
Mat Tilastollisen analyysin perusteet. Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Tilastollisten aineistojen kerääminen ja mittaaminen Tilastollisten aineistojen kuvaaminen Väliestimointi Diskreetit muuttujat,
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5
MS-A Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko Tilastollinen testaus Tilastollisten testaaminen Tilastollisen tutkimuksen kohteena olevasta perusjoukosta on esitetty jokin väite tai
Testit järjestysasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
Tilastollisten aineistojen kuvaaminen
Ilkka Mellin Tilastolliset menetelmät Osa 1: Johdanto Tilastollisten aineistojen kuvaaminen TKK (c) Ilkka Mellin (2007) 1 Tilastollisten aineistojen kuvaaminen >> Havaintoarvojen jakauma Tunnusluvut Suhdeasteikollisten
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-2.2104 Tilastollisen analyysin perusteet, kevät 2007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen 1 Jakaumaoletuksien testaamiseen soveltuvat testit χ 2 -yhteensopivuustesti yksi otos otoksen
edellyttää valintaa takaisinpanolla Aritmeettinen keskiarvo Jos, ½ Ò muodostavat satunnaisotoksen :n jakaumasta niin Otosvarianssi Ë ¾
ËØÙ ÓØÓ Ø Mitta-asteikot Nominaali- eli laatueroasteikko Ordinaali- eli järjestysasteikko Intervalli- eli välimatka-asteikko ( nolla mielivaltainen ) Suhdeasteikko ( nolla ei ole mielivaltainen ) Otos
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia
Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia KE (2014) 1 Hypergeometrinen jakauma Hypergeometrinen jakauma
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tilastollisen analyysin perusteet, kevät 007 4. luento: Jakaumaoletuksien testaaminen Kai Virtanen Jakaumaoletuksien testaamiseen soveltuvat testit χ -yhteensopivuustesti yksi otos otoksen vertaaminen
Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1
Johdatus tilastotieteeseen Tilastolliset testit TKK (c) Ilkka Mellin (2005) 1 Tilastolliset testit Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset testit ja testisuureet Virheet testauksessa
9. laskuharjoituskierros, vko 12-13, ratkaisut
9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t
Regressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Viikko 2 Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä, Heikki Seppälä Matematiikan ja systeemianalyysin laitos Perustieteiden
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1 Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 27. syyskuuta 2007 Antti Rasila () TodB 27. syyskuuta 2007 1 / 15 1 Diskreetit jakaumat Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen
Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5
TKK (c) Ilkka Mellin (4) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (4) : Mitä opimme? 1/5 Tilastollisessa tutkimuksessa tutkimuksen kohteena olevasta perusjoukosta esitetään tavallisesti väitteitä
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi
Todennäköisyyden ominaisuuksia
Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset
pisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
Normaalijakaumasta johdettuja jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2007) 1 Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma
Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2005) 1 Jakaumien tunnusluvut Odotusarvo Varianssi Markovin ja Tshebyshevin epäyhtälöt Momentit Vinous ja huipukkuus Kvantiilit
Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta
MS-A00 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta 7.. Gripenberg Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot ja minkä kokeen suoritat! Laskin,
Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:
8.1 Satunnaismuuttuja Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella: Esim. Nopanheitossa (d6) satunnaismuuttuja X kertoo silmäluvun arvon. a) listaa kaikki satunnaismuuttujan arvot b)
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 1 Jatkuvia jakaumia Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen raja-arvolause TKK (c) Ilkka Mellin
D ( ) Var( ) ( ) E( ) [E( )]
Mat-.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Diskreettejä jakaumia Avainsanat: Binomijakauma, Diskreetti tasainen jakauma, Eksponenttijakauma, Geometrinen jakauma, Hypergeometrinen
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia TKK (c) Ilkka Mellin (2006) 1 Jatkuvia jakaumia >> Jatkuva tasainen jakauma Eksponenttijakauma Normaalijakauma Keskeinen
Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Diskreettejä jakaumia TKK (c) Ilkka Mellin (2007) 1 Diskreettejä jakaumia >> Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma
Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio
Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio KE (2014) 1 Satunnaismuuttujat ja niiden todennäköisyysjakaumat Satunnaismuuttujat
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia
Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit
Tilastollisen analyysin perusteet Luento 2: Tilastolliset testit Sisältö Tilastollisia testejä tehdään jatkuvasti lukemattomilla aloilla. Meitä saattaa kiinnostaa esimerkiksi se, että onko miesten ja
Todennäköisyyslaskun kertaus. Heliövaara 1
Todennäköisyyslaskun kertaus Heliövaara 1 Satunnaismuuttujat ja todennäköisyysjakaumat Heliövaara 2 Stunnaismuuttujat ja todennäköisyysjakaumat Jos satunnaisilmiötä halutaan mallintaa matemaattisesti,
7. laskuharjoituskierros, vko 10, ratkaisut
7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,
Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia TKK (c) Ilkka Mellin (2005) 1 Diskreettejä jakaumia Diskreetti tasainen jakauma Bernoulli-jakauma Binomijakauma Geometrinen jakauma Negatiivinen
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
Tilastollisia peruskäsitteitä ja Monte Carlo
Tilastollisia peruskäsitteitä ja Monte Carlo Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo Tutkimustiedonhallinnan peruskurssi Tilastollisia peruskäsitteitä ja Monte Carlo 1/13 Kevät 2003 Tilastollisia
Johdatus tilastotieteeseen Otos ja otosjakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus tilastotieteesee Otos ja otosjakaumat TKK (c) Ilkka Melli (004) 1 Otos ja otosjakaumat Yksikertaie satuaisotos Otostuusluvut ja otosjakaumat Aritmeettise keskiarvo otosjakauma Otosvariassi otosjakauma
Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
1. Nollahypoteesi on, että teksti on kirjoitettu lyhyemmällä murteella. Mahdollisiavaihtoehtojaonvainyksieliettäteksti
Sosiaalitieteiden laitos Tilastotieteen jatkokurssi, kevät 20 7. laskuharjoitusten ratkaisuehdotukset. Nollahypoteesi on, että teksti on kirjoitettu lyhyemmällä murteella. Mahdollisiavaihtoehtojaonvainyksieliettäteksti
Osa 2: Otokset, otosjakaumat ja estimointi
Ilkka Melli Tilastolliset meetelmät Osa : Otokset, otosjakaumat ja estimoiti Otokset ja otosjakaumat TKK (c) Ilkka Melli (007) 1 Otokset ja otosjakaumat >> Satuaisotata ja satuaisotokset Otostuusluvut
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
Kaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1
Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi,
Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos /Malmivuori MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi, kesä 017 Laskuharjoitus 4, Kotitehtävien palautus Mycourses:iin PDF-tiedostona
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II G. Gripenberg Aalto-yliopisto 11. helmikuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0502 Todennäköisyyslaskennan ja tilastotieteen
Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?
21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä
30A02000 Tilastotieteen perusteet
30A02000 Tilastotieteen perusteet Kertaus 1. välikokeeseen Lauri Viitasaari Tieto- ja palvelujohtamisen laitos Kauppatieteiden korkeakoulu Aalto-yliopisto Syksy 2019 Periodi I-II Sisältö Välikokeesta Joukko-oppi
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
031021P Tilastomatematiikka (5 op) viikko 3
031021P Tilastomatematiikka (5 op) viikko 3 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan
MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen
MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi
6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.
10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn
MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)
21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.
Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut TKK (c) Ilkka Mellin (2007) 1 Jakaumien tunnusluvut >> Odotusarvo Varianssi Markovin ja Tshebyshevin
MTTTP5, luento Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta)
MTTTP5, luento 7.12.2017 7.12.2017/1 6.1.3 Kahden jakauman sijainnin vertailu (jatkoa) Tutkimustilanteita y = neliöhinta x = sijainti (2 aluetta) y = lepopulssi x = sukupuoli y = musikaalisuus x = sukupuoli
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2
χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut
Mat-2.091 Sovellettu todennäköisyyslasku /Ratkaisut Aiheet: Yhteensopivuuden testaaminen Homogeenisuuden testaaminen Riippumattomuuden testaaminen Avainsanat: Estimointi, Havaittu frekvenssi, Homogeenisuus,
Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
031021P Tilastomatematiikka (5 op) viikko 4
031021P Tilastomatematiikka (5 op) viikko 4 Jukka Kemppainen Mathematics Division Tilastollinen aineisto Tilastolliset menetelmät ovat eräs keino tutkia numeerista havaintoaineistoa todennäköisyyslaskentaa
10. laskuharjoituskierros, vko 14, ratkaisut
10. laskuharjoituskierros, vko 14, ratkaisut D1. Eräässä kokeessa verrattiin kahta sademäärän mittaukseen käytettävää laitetta. Kummallakin laitteella mitattiin sademäärät 10 sadepäivän aikana. Mittaustulokset
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4B Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on
Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Otanta Poisson- Jakaumien tunnusluvut Diskreetit jakaumat Binomijakauma, Diskreetti tasainen jakauma, Geometrinen jakauma, Hypergeometrinen
Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi
TOD.NÄK JA TILASTOT, MAA0 Diskreetin satunnaismuuttujan odotusarvo, keskihajonta ja varianssi Kuten tilastojakaumia voitiin esittää tunnuslukujen (keskiarvo, moodi, mediaani, jne.) avulla, niin vastaavasti
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
Tilastollisen päättelyn perusteet
Tilastollisen päättelyn perusteet Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Motivointiako? opiskelijoiden, jotka kammoavat matematiikkaa tai eivät katso ehtivänsä tai haluavansa
Kvantitatiiviset tutkimusmenetelmät maantieteessä
Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi