1.1 Funktion kuvaaja. 1.2 Polku (=parametrisoitu käyrä) (%i1) load(draw)$
|
|
- Eija Virtanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Funktioiden_havainnollistamisesta.wxm 1 / 11 (%i1) load(draw Windoze-koneissa komentojen muodostamat kuvat ilmestyvät erilliseen Gnuplot-ohjelman ikkunaan. Jatkaaksesi eteenpäin sulje Gnuplot-ikkuna. Mac OS X -koneissa käynnistä ensin X11-ohjelma. Gnuplot-ohjelman kuvat ilmestyvät X11-ohjelman ikkunaan 3d-kuvissa kappaletta voi kiertää hiiren avulla Funktion kuvaaja (%i2) wxdraw2d( explicit(x*sin(1/x), x,-%pi/2,%pi/2) (%t2) (%i3) wxdraw2d(user_preamble="set size ratio -1", explicit(x*sin(1/x), x,-%pi/20,%pi/20) (%t3) 1.2 Polku (=parametrisoitu käyrä) Polku on jatkuva kuvaus reaaliakselin väliltä euklidiseen avaruuteen. Polun jälki (=polun käyrä) on polun kuvajoukko.
2 Funktioiden_havainnollistamisesta.wxm 2 / 11 (%i4) wxdraw2d(user_preamble="set size ratio -1", parametric( cos(t), sin(t), t,0,2*%pi) (%t4) Eri polku, mutta sama jälki: (%i5) wxdraw2d(user_preamble="set size ratio -1", parametric( cos(t^2), sin(t^2), t,0,sqrt(2*%pi)) (%t5) Samat kuvaukset, mutta nyt piirretään kuvaajat, ei jälkiä:
3 Funktioiden_havainnollistamisesta.wxm 3 / 11 (%i6) wxdraw3d(proportional_axes=xyz, xrange=[0,6*%pi], yrange=[-1,1], zrange=[-1,1], nticks=100, parametric( t, cos(t), sin(t), t,0,12*%pi) (%t6) (%i7) wxdraw3d(proportional_axes=xyz, xrange=[0,6*%pi], yrange=[-1,1], zrange=[-1,1], nticks=100, parametric( t, cos(t^2), sin(t^2), t,0,sqrt(12*%pi)) (%t7) 1.3 Funktion tasa-arvokäyrät Hyperbelit x^2 - y^2 = 1 ja x^2 - y^2 = -1 sekä niiden asymptootit (= suorat y = x ja y = -x):
4 Funktioiden_havainnollistamisesta.wxm 4 / 11 (%i8) wxdraw2d(user_preamble="set size ratio -1", color=green, implicit(x^2 - y^2 = 1, x,-3,3, y,-3,3), color=red, implicit(x^2 - y^2 = -1, x,-3,3, y,-3,3), color=blue, explicit(x, x,-3,3), explicit(-x, x,-3,3) (%t8) Funktion kuvaaja Pinta z = f(x,y) (%i9) wxdraw3d(xu_grid=50, yv_grid=50, xrange=[0,2*%pi], yrange=[0,2*%pi], zrange=[-1, 1], enhanced3d=false, surface_hide=true, view=[60, 30], explicit(sin(x)*sin(y), x,-2*%pi,2*%pi, y,-2*%pi,2*%pi) (%t9) 2.2 Funktion tasa-arvokäyrät Tasokäyriä f(x,y) = c vakion c eri arvoille:
5 Funktioiden_havainnollistamisesta.wxm 5 / 11 (%i10) wxdraw3d(xu_grid=50, yv_grid=50, proportional_axes=xy, contour_levels=10, contour=map, explicit(sin(x)*sin(y), x,0,2*%pi, y,0,2*%pi) (%t10) 2.3 Funktion kuvaaja ja tasa-arvokäyrät Tasokäyrät f(x,y) = c sekä projisoituna xy-tasoon että nostettuna pinnalle z = f(x,y), eli pistejoukot {(x,y) f(x,y) = c} ja {(x,y,z) f(x,y) = c, z = c}. (%i11) wxdraw3d(xu_grid=50, yv_grid=50, /*proportional_axes=xyz,*/ xrange=[0,2*%pi], yrange=[0,2*%pi], zrange=[-1, 1], enhanced3d=false, surface_hide=true, view=[60, 30], contour_levels=10, contour=both, explicit(sin(x)*sin(y), x,0,2*%pi, y,0,2*%pi) (%t11) 2.4 Origossa epäjatkuva funktio
6 Funktioiden_havainnollistamisesta.wxm 6 / 11 (%i12) wxdraw3d(xu_grid=50, yv_grid=50, /*proportional_axes=xyz,*/ /*xrange=[-1,1], yrange=[-1,1], zrange=[-1, 1],*/ enhanced3d=false, surface_hide=true, view=[60, 30], contour_levels=10, contour=base, explicit(x^2*y/(x^4 + y^2), x,-1,1, y,-1,1) (%t12) 2.5 Parametrisoitu pinta "Läpinäkyvä" pallo (piirrettynä pallokoordinaattien avulla) (%i14) wxdraw3d(xu_grid=50, yv_grid=50, proportional_axes=xyz, xrange=[-1,1], yrange=[-1,1], zrange=[-1, 1], enhanced3d=false, surface_hide=false, view=[60, 30], parametric_surface(cos(u)*cos(v), sin(u)*cos(v), sin(v), u,-%pi,%pi, v,-%pi/2,%pi/2) (%t14) Pallo piirrettynä stereografisen projektion (käänteiskuvauksen) avulla
7 Funktioiden_havainnollistamisesta.wxm 7 / 11 (%i15) wxdraw3d(xu_grid=50, yv_grid=50, proportional_axes=xyz, xrange=[-1,1], yrange=[-1,1], zrange=[-1, 1], enhanced3d=false, surface_hide=true, view=[60, 30], parametric_surface(2*u/(1+u^2+v^2), 2*v/(1+u^2+v^2), (-1+u^2+v^2)/(1+u^2+v^2), u,-%pi,%pi, v,-%pi,%pi) (%t15) Möbiuksen nauha (%i16) wxdraw3d(xu_grid=50, yv_grid=7, proportional_axes=xyz, xrange=[-3,3], yrange=[-3,3], zrange=[-1, 1], enhanced3d=false, surface_hide=true, view=[60, 30], parametric_surface(2*cos(u)+v*cos(u/2)*cos(u), 2*sin(u)+v*cos(u/2)*sin(u), v*sin(u/2), u,0,2*%pi, v,-1,1) (%t16) 2.6 Tasa-arvopinta (hyperboloidi)
8 Funktioiden_havainnollistamisesta.wxm 8 / 11 (%i17) wxdraw3d(x_voxel=20, y_voxel=20, z_voxel=20, proportional_axes=xyz, surface_hide=true, view=[60, 30], implicit(x^2 + y^2 - z^2 = 1, x,-2,2, y,-2,2, z,-2,2) (%t17) 3 "complexmap" xy-tason alueen kuvaus uv-tasoon. (Ei ole valmiina Maximassa.) Komennossa complexmap_xy2uv xy-tasosta rajataan koordinaattiakseleiden suuntainen suorakaide. (%i18) complexmap_xy2uv(f,g, x,x1,x2,dx, y,y1,y2,dy):= block([xylist,ylist,j,nx,ny,y_lines,x_lines], nx:floor((x2-x1)/dx), xlist:makelist(x1+j*dx,j,0,nx), ny:floor((y2-y1)/dy), ylist:makelist(y1+j*dy,j,0,ny), y_lines:makelist( parametric( subst(xlist[j], x, f), subst(xlist[j], x, g), y, y1, y2), j,1,length(xlist) ), x_lines:makelist( parametric( subst(ylist[j], y, f), subst(ylist[j], y, g), x, x1, x2), j,1,length(ylist) ), return([color=blue, y_lines, color=red, x_lines]) Komennossa complexmap_polar2uv xy-tasosta rajataan napakoordinaattien avulla ympyräsektoreiden muodostama alue. (%i19) complexmap_polar2uv(f,g, x,y, r1,r2,dr, theta1,theta2,dtheta):= block([r,theta,fp,gp,rlist,thetalist,j,nr,ntheta,theta_lines,r_lines], fp:subst([x=r*cos(theta), y=r*sin(theta)], f), gp:subst([x=r*cos(theta), y=r*sin(theta)], g), nr:floor((r2-r1)/dr), rlist:makelist(r1+j*dr,j,0,nr), ntheta:floor((theta2-theta1)/dtheta), thetalist:makelist(theta1+j*dtheta,j,0,ntheta), theta_lines:makelist( parametric( subst(rlist[j], r, fp), subst(rlist[j], r, gp), theta, theta1, theta2), j,1,length(rlist) ), r_lines:makelist( parametric( subst(thetalist[j], theta, fp), subst(thetalist[j], theta, gp), r, r1, r2), j,1,length(thetalist) ), return([color=blue, theta_lines, color=red, r_lines])
9 Funktioiden_havainnollistamisesta.wxm 9 / Karteesiset koordinaatit Kuvaus (f,g): (x,y) -> (%e^x*cos(y), %e^x*sin(y)) Identtinen kuvaus eli piirretään xy-tason alue, joka kuvauksella (x,y) -> (f(x,y), g(x,y)) kuvataan uv-tasoon (%i20) wxdraw2d(user_preamble="set size ratio -1", complexmap_xy2uv(x, y, x, 0.1, 1, 0.1, y, 0.1, 3.1, 0.1) (%t20) Punaiset käyrät kuvautuvat punaisiksi, siniset sinisiksi: (%i21) wxdraw2d(user_preamble="set size ratio -1", complexmap_xy2uv(%e^x*cos(y), %e^x*sin(y), x, 0.1, 1, 0.1, y, 0.1, 3.1, 0.1) (%t21)
10 Funktioiden_havainnollistamisesta.wxm 10 / 11 (%i22) wxdraw( gr2d(user_preamble="set size ratio -1", title="xy-region mapped...", complexmap_xy2uv(x, y, x, 0.1, 1, 0.1, y, 0.1, 3.1, 0.1) ), gr2d(user_preamble="set size ratio -1", title="...to uv-region", complexmap_xy2uv(%e^x*cos(y), %e^x*sin(y), x, 0.1, 1, 0.1, y, 0.1, 3.1, 0.1) ) (%t22) 3.2 Napakoordinaatit Komennossa complexmap_polar2uv xy-tasosta rajataan napakoordinaattien (r,theta) avulla ympyräsektoreiden muodostama alue; x = r*cos(theta), y = r*sin(theta), missä r1<=r<=r2 ja theta1<=theta<=theta2. Kuvaus (f,g): (x,y) -> (%e^x*cos(y), %e^x*sin(y)) Identtinen kuvaus eli piirretään xy-tason alue, joka kuvauksella (x,y) -> (f(x,y), g(x,y)) kuvataan uv-tasoon (%i23) wxdraw2d(user_preamble="set size ratio -1", complexmap_polar2uv(x, y, x, y, 0.1, 1, 0.1, 0.1, 3.1, 0.2) (%t23) Punaiset käyrät kuvautuvat punaisiksi, siniset sinisiksi:
11 Funktioiden_havainnollistamisesta.wxm 11 / 11 (%i24) wxdraw2d(user_preamble="set size ratio -1", complexmap_polar2uv(%e^x*cos(y), %e^x*sin(y), x, y, 0.1, 1, 0.1, 0.1, 3.1, 0.2) (%t24) (%i25) wxdraw( gr2d(user_preamble="set size ratio -1", title="xy-region mapped...", complexmap_polar2uv(x, y, x, y, 0.1, 1, 0.1, 0.1, 3.1, 0.2) ), gr2d(user_preamble="set size ratio -1", title="...to uv-region", complexmap_polar2uv(%e^x*cos(y), %e^x*sin(y), x, y, 0.1, 1, 0.1, 0.1, 3.1, 0.2) ) (%t25)
1 Pallo. 1.1 Pallokoordinaatit. 1.2 Puolipallo funktion kuvaajana. (%i1) load(draw)$
DL_pintoja.wxm 1 / 11 (%i1) load(draw)$ 1 Pallo 1.1 Pallokoordinaatit (%i) s(theta, tau):= [cos(theta)*cos(tau), sin(theta)*cos(tau), sin(tau)]; (%o) s θ, τ := [ cos θ cos τ, sin θ cos τ, sin τ ] (%i3)
1 Plot. 1.1 Funktion kuvaaja: y=f(x)
SL_esim_grafiikkaa.wxm 1 / 13 1 Plot Maximan sisäänrakennetut piirtokomennot sopivat "kevyeen" työskentelyyn. Komennot tunnistaa nimistä, joiden osana on plot. Avuksi Maximan käsikirjan luku "Plotting"
LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2
LUKU 4 Pinnat 4.. Määritelmiä ja esimerkkejä Määritelmä 4.. Epätyhjä osajoukko M R 3 on sileä (kaksiulotteinen) pinta, jos jokaiselle pisteelle p M on olemassa ympäristö V p R 3, avoin joukko U p R 2 ja
a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen
Symbolinen laskenta, syksy 2013
Symbolinen laskenta, syksy 0 Ari Lehtonen. Johdantoa Maxima on laaja symboliseen laskentaan suunniteltu ohjelma, joka on nykyisin vapaasti saatavissa ja jaettavissa (GNU GPL). Maximalla voidaan sieventää
Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2
Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2 Harjoitustehtävät 11-13 lasketaan alkuviikon harjoituksissa, 15-17 loppuviikon harjoituksissa. Kotitehtävä 14 palautetaan MyCourses-sivulle
Esimerkki 1.1. Kahdeksikkopolku α: u (sin u, sin 2u) on helppo todeta injektioksi
. Pinnoista.. Pinnan määritelmästä. Monisteen [] määritelmän 4.. mukainen pinta S on sama olio, jollaista abstraktimmassa differentiaaligeometriassa kutsutaan avaruuden R n alimonistoksi (tarkemmin upotetuksi
Käyrien välinen dualiteetti (projektiivisessa) tasossa
Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä
POHDIN - projekti. Funktio. Vektoriarvoinen funktio
POHDIN - projekti Funktio Funktio f joukosta A joukkoon B tarkoittaa sääntöä, joka liittää jokaiseen joukon A alkioon jonkin alkion joukosta B. Yleensä merkitään f : A B. Usein käytetään sanaa kuvaus synonyymina
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
Riemannin pintojen visualisoinnista
Riemannin pintojen visualisoinnista eli Funktioiden R R kuvaajat Simo K. Kivelä 7.7.6 Tarkastelun kohteena olkoon kompleksimuuttujan kompleksiarvoinen funktio f : C C, f(z) = w eli f(x + iy) = u(x, y)
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut
Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin
r > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.
13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y
Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus
8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon
Vektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.
Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
= + + = 4. Derivointi useammassa ulottuvuudessa
30 VEKTORIANALYYSI Lento 4 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f= f( r) = f( xyz,, ) on kolmen mttjan fnktio, jonka arvo yleensä mtt,
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A23 Differentiaali- ja integraalilaskenta 2, kevät 216 Laskuharjoitus 2A (Vastaukset) Alkuviikolla
Sijoitus integraaliin
1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi
Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2
8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason
kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ
58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT
TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec
Matematiikka B1 - TUDI
Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
Usean muuttujan funktiot MS-A7 Differentiaali- ja integraalilaskenta (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta eli gradientti.
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon
Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])
1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo
1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):
= 9 = 3 2 = 2( ) = = 2
Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100
4. Derivointi useammassa ulottuvuudessa
6 VEKTORIANALYYSI Lento 3 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f f ( r) f ( x, y, z) on kolmen mttjan fnktio, jonka arvo yleensä mtt,
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
Usean muuttujan funktiot MS-A007 Differentiaali- ja integraalilaskenta (Chem) Yhteenveto ja esimerkkejä ym., osa G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
MS-A007 Differentiaali- ja integraalilaskenta (Chem) Yhteenveto ja esimerkkejä ym., osa G. Gripenberg Aalto-yliopisto 1. tammikuuta 016 G. Gripenberg (Aalto-yliopisto) MS-A007 Differentiaali- ja integraalilaskenta
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja
Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,
Vektorianalyysi Harjoitus 9, Ratkaisuehdotuksia Anssi Mirka Tehtävä 1. ([Martio, 3.4:1]) Millä suoralla sylinterillä, jonka tilavuus on V > on pienin vaipan ja pohjan yhteenlaskettu pinta-ala? Ratkaisu
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
Täydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
Differentiaalimuodot
LUKU 2 Differentiaalimuodot Olkoot A R n ja p A. Vektori pisteessä p on pari (p; v), missä v R n. Pisteeseen p kiinnitetyn vektorin v p := (p; v) ensimmäinen komponentti p on vektorin v p paikkaosa ja
MATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 219 1. Tutki, suppenevatko seuraavat lukujonot: a) d) ( 3k 5 4k 2 ) +5 2k 3, b) 7k +4 k 1 (2x+3) 3 dx, e) ( ln(2k 2 +3) k 1 3 k ) cos(3kπx) dx, c), f) k 1
MATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 26. Tutki, suppenevatko seuraavat lukujonot: a) d) ( 9k 7 ) 3k + 2 4k 2, b) 5k + 7 k (4x + ) 3 dx, e) ( 2 ln(k 3 ) k 3e k ), c) cos(3πx) dx, f) k 3 9x 2 +
Tasokäyrän kaarevuus LUKU 1
LUKU Tasokäyrän kaarevuus.. Käyrät Määritelmä.. Polku (eli parametrisoitu käyrä) on jatkuva kuvaus α: I R n, missä I R on väli. Polku α = (α,..., α n ) on (jatkuvasti) derivoituva, jos jokainen α j, j
Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.
Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan
Differentiaali- ja integraalilaskenta 2
ifferentiaali- ja integraalilaskenta 2 Riikka Kangaslampi Syksy 214 2 Esipuhe Tämä on Aalto-yliopiston Matematiikan ja systeemianalyysin laitoksen kurssin ifferentiaali- ja integraalilaskenta 2 tueksi
ELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
Pinnan tangenttivektorit
LUKU 5 Pinnan tangenttivektorit Tästä lähtien oletetaan, että annetut polut, pinnat, funktiot ja vektorikentät ovat C. Vastaavasti, konstruoiduista poluista, pinnoista, funktioista ja vektorikentistä pitää
Luennoitsija: Jukka Maalampi Luennot: , ma 9-10 ja ke Luentoja ei ole viikoilla 15 (pääsiäisviikko).
1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2017 Luennoitsija: Jukka Maalampi Luennot: 63 35, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 15 (pääsiäisviikko) Harjoitusassistentit: Petri Kuusela ja Tapani
3.4 Käänteiskuvauslause ja implisiittifunktiolause
3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1
MATEMATIIKKA 5 VIIKKOTUNTIA
EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
3.4 Rationaalifunktion kulku ja asymptootit
.4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun
peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.
Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,
Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?
Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.
MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
x = sinu z = sin2u sinv
9. Toisen asteen käyrät ja pinnat 9.1. Käyrän ja pinnan käsitteet 371. Piirrä seuraavat käyrät: { x = cos3t a) y = sin5t, t [0,2π], b) x = cost t y = sint t, t 0. 372. Lausu napakoordinaattikäyrät a) r
Matematiikka B1 - avoin yliopisto
28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan
Laskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Korte / Lindfors MS-A0207 Dierentiaali- ja integraalilaskenta 2 (CHEM), kevät 2017 Laskuharjoitus 2A (9.10.1.) Aihepiiri:
JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali
JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen
Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3
MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =
235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti
8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
Sisältö Sisältö 14.Useamman muuttujan funktioiden integrointi
Sisältö Sisältö 1 9.1 Lukujono.............................. 3 9.1 Suppeneminen ja raja-arvo................... 6 9.2 Sarjat................................ 9 9.3 Suppenemistestejä........................
edition). Luennot seuraavat tätä kirjaa, mutta eivät orjallisesti.
1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2014 Luennoitsija: Jukka Maalampi Luennot: 53-55, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 16 ja 17 eli 14 274 Harjoitusassistentti: Ville Kotimäki Laskuharjoitukset:
z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2
BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden
2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
Esim. Liikkuvan kappaleen radiusvektori. on ajan funktio, missä komponentit x, y ja z riippuvat yhdestä muuttujasta, ajasta t.
147 7 VEKTORIT JA DIFFERENTIAALILASKENTA 7.1 YHDEN MUUTTUJAN VEKTORIFUNKTIOT Esim. Liikkuvan kappaleen radiusvektori r() t xt () ˆi yt () ˆjzt () k ˆ on ajan funktio, missä komponentit x, y ja z riippuvat
Derivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
1 Kertausta ja täydennystä
SL_esim_lin_alg.wxm / 9 Kertausta ja täydennystä. "assume" (%i) integrate(/(a+x^), x); Is a positive or negative? pos; x atan a (%o) a (%i) assume(a>); (%o) [ a > ] (%i) integrate(/(a+x^), x); x atan a
Sovituskomennot GeoGebrassa
Versio Dimensiota varten Mikko Rahikka Vanhempi lehtori, Helsingin yhteislyseo Sovituskomennot GeoGebrassa Funktion sovittaminen pisteistöön on tyypillinen ongelma, jonka ratkaisemiseminen onnistuu mukavahkosti
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
Tällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.
39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja
1 Kompleksitason geometriaa ja topologiaa
1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,
F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
MATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 17 1. Tutki, suppenevatko seuraavat lukujonot: a) d) ( k ) + 5 k, b) k 1 x 5 dx, e) ( ln(k + 1) k ), c) k 1 cos(πx) dx, f) k e x dx, 1 k e k k kx dx.. Olkoon
ABTEKNILLINEN KORKEAKOULU
ABTEKNILLINEN KORKEAKOULU Mat-1.411 Matematiikan peruskurssi C1 MAPLE Lempeä johdatus Harri Hakula 24. syyskuuta, 2004 1 Sisällys 1 Matemaattisista ohjelmistoista 2 1.1 Symboliset ohjelmistot 2 1.2 Numeeriset
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3. luento 17.11.2017 Neuroverkon opettaminen (ohjattu oppiminen) Neuroverkkoa opetetaan syöte-tavoite-pareilla
3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1
BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita
Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3
. Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat
Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä osittaisderivaatoista: y 1... J F =.
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009
EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa
Ohjeita. Datan lukeminen
ATK Tähtitieteessä Harjoitustyö Tehtävä Harjoitystyössä tehdään tähtikartta jostain taivaanpallon alueesta annettujen rektaskensio- ja deklinaatiovälien avulla. Karttaan merkitään tähdet aina kuudenteen
3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.
Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö