Matematiikka B1 - TUDI
|
|
- Krista Salo
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1
2 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan tangenttitaso ja normaali Korkeamman kertaluvun osittaisderivaatat Ketjusääntö Lineaarinen approksimaatio Gradientti ja suunnattu derivaatta Taylor-polynomi ja approksimointi Miika Tolonen Matematiikka B2 - TUDI 2
3 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin sisältö 2/2 Osittaisderivaatan sovellukset Ääriarvot Lagrangen menetelmä Pienimmän neliösumman menetelmä Newtonin menetelmä Miika Tolonen Matematiikka B2 - TUDI 3
4 Sisältö Osittaisderivointi Osittaisderivaatan sovellukset 1 Osittaisderivointi 2 Osittaisderivaatan sovellukset Miika Tolonen Matematiikka B2 - TUDI 4
5 Sisältö Osittaisderivointi Osittaisderivaatan sovellukset 1 Osittaisderivointi 2 Osittaisderivaatan sovellukset Miika Tolonen Matematiikka B2 - TUDI 5
6 Osittaisderivointi Osittaisderivaatan sovellukset Usean muuttujan funktioista 1/2 Lieriön tilavuus on V on V = πr 2 h, r > 0, h > 0. V on KAHDEN toisistaan riippumattoman muuttujan r ja h funktio. V(r,h) = πr 2 h, D(V) = {(r,h) R 2 r > 0,h > 0} Määritelmä n:n muuttujan reaaliarvoinen funktio f liittää jokaiseen pisteeseen (x 1,...,x n ) D(f) R n täsmälleen yhden arvon f(x 1,...,x n ) = y Miika Tolonen Matematiikka B2 - TUDI 6
7 Osittaisderivointi Osittaisderivaatan sovellukset Usean muuttujan funktioista 2/2 Kahden muuttujan funktion f kuvaaja z = f(x,y) on R 3 :n pistejoukko (x,y,f(x,y)), missä (x,y) D(f) R 2. Kuvaaja on R 3 :n pinta Esimerkki Määritä se funktio f, jonka kuvaaja on pisteiden (2,0,0), (0,4,0), (0, 0, 3) rajoittama kolmionpinta Esimerkki Funktion f(x,y) = 9 x 2 y 2 Määrittelyjoukko ja graafi Miika Tolonen Matematiikka B2 - TUDI 7
8 Määritä se funktio f, jonka kuvaaja on pisteiden (2,0,0), (0,4,0) ja (0, 0, 3) rajoittama kolmiopinta. n = u v = u = 2i +3k, v = 2i +4j i j k = 12i 6j 8k = 2(6i +3j +4k) 6x +3y +4z = C = C C = 12 6x +3y +4z = 12 z = 3 2 x 3 4 y +3 f(x,y) = 3 2 x 3 4 y +3, D(f) = { (x,y) 0 x 2, 0 y 2x +4 }.
9 Mikä on funktion f(x,y) = 9 x 2 y 2 määrittelyjoukko ja graafi? Määrittelyjoukko D(f): Ja graafi: 9 x 2 y 2 0 x 2 +y (kiekko). z = 9 x 2 y 2 z 2 = 9 x 2 y 2 x 2 +y 2 +z 2 = 3 2, z 0 (puolipallo).
10 Osittaisderivointi Osittaisderivaatan sovellukset Tasa-arvokäyrät Tasa-arvokäyrät ovat funktion f(x,y) kuvaajan ja tason z = c xy-tasoon piirrettyjä leikkauskäyriä f(x,y) = c, missä c on vakio kullakin käyrällä (korkeuskäyriä) Esimerkki Funktion f(x,y) = 9 x 2 y 2 tasa-arvokäyrät Miika Tolonen Matematiikka B2 - TUDI 10
11 Funktion f(x,y) = 9 x 2 y 2 tasa-arvokäyrät 9 x 2 y 2 = C x 2 +y 2 = 9 C 2
12 Raja-arvo Osittaisderivointi Osittaisderivaatan sovellukset Määritelmä lim f(x,y) = L jokaiselle ǫ > 0 on olemassa δ(ǫ) > 0 (x,y) (a,b) siten, että f(x,y) L < ǫ aina kun 0 < (x a) 2 +(y b) 2 < δ L ei saa riippua lähestymisen valinnasta Esimerkki Määritä lim (x,y) (0,0) xy x 2 +y 2 Miika Tolonen Matematiikka B2 - TUDI 12
13 Määritä lim (x,y) (0,0) xy x 2 +y 2. 1 o Lähestytään origoa pitkin x-akselia lim (x,0) (0,0) x 0 x = 0 2 Lähestytään origoa pitkin suoraa y = x lim x 0 1 ja 2 raja-arvoa ei ole. x x x 2 +x 2 = 1 2
14 Jatkuvuus Osittaisderivointi Osittaisderivaatan sovellukset Määritelmä Funktio f(x,y) on jatkuva pisteessä (a,b) f(x,y) = f(a,b) Esimerkki lim (x,y) (a,b) Miten funktio f(x,y) = x4 y 4 x y tulisi määritellä suoralla y = x, jotta siitä tulisi jatkuva koko R 3 Miika Tolonen Matematiikka B2 - TUDI 14
15 Miten funktio f(x,y) = x4 y 4 tulisi määritellä suoralla y = x, x y jotta siitä tulisi jatkuva koko R 2 :ssa? f(x,y) = x4 y 4 x y = (x y)(x +y)(x2 +y 2 ) x y (x y) (x +x)(x 2 +x 2 ) = 4x 3 (x = y) Määritellään f(x,y) = x 4 y 4 x y 4x 3, kun x y, kun x = y. Silloin lim f(x,y) = f(x,x). x y
16 Osittaisderivointi Osittaisderivaatan sovellukset Osittaisderivaatta Määritelmä Osittaisderivaatta f 1 (a,b) ilmoittaa funktion f(x,y) muutosnopeuden tasossa y = b pisteessä (a,b,f(a,b)) ja f 2 (a,b) vastaavasti x = a pisteessä (a,b,f(a,b)) Funktion f(x, y, z) 1. kertaluvun osittaisderivaatta muuttujan y suhteen merkitään mm. f y, f 2, f y, D 2 f, D y f Miika Tolonen Matematiikka B2 - TUDI 16
17 Laske funktion f(x,y,z) = xy 2 +3x 2 z +xyz kaikki osittaisderivaatat f x = 1 y xz +1 yz = y 2 +6xz +yz f y = x 2y +0+x 1 z = 2xy +xz f z = 0+3x 2 1+xy 1 = 3x 2 +xy Laske f 1 (0,π), kun f(x,y) = e xy cos(x +y). f 1 (x,y) = ye xy cos(x +y) e xy sin(x +y) = e xy( y cos(x +y) sin(x +y) ) f 1 (0,π) = e 0 π (πcosπ sinπ) = π.
18 f x, f y ja f z, kun f(x,y,z) = ln(1+exyz ) f x = 1 1+e xyz x (1+exyz ) = yzexyz 1+e xyz f y = xzexyz 1+e xyz f z = xyexyz 1+e xyz
19 Osittaisderivointi Osittaisderivaatan sovellukset Pinnan tangenttitaso ja normaali Funktion f(x,y) kuvaajan z = f(x,y) normaalivektori pisteessä (a,b,f(a,b)) on n = f 1 (a,b)ī +f 2 (a,b) j k eli Normaalivektori n = (f 1 (a,b),f 2 (a,b), 1) Tangenttitason yhtälö z = f(a,b)+f 1 (a,b)(x a)+f 2 (a,b)(y b) Normaalin yhtälö x a f 1 (a,b) = y b f 2 (a,b) = z f(a,b) 1 Miika Tolonen Matematiikka B2 - TUDI 19
20 Mikä on kuvaajan z = sin(xy) normaalivektorin, tangenttitason ja normaalin yhtälöt pisteessä, missä x = π ja y = 1? 3 ( π ) ( z 3, 1 = sin π ) 3 = 3 2 Normaalivektori: z x = y cos(xy), z y = x cosxy ( π ) ( z 1 3, 1 = cos π ) = ( π ) z 2 3,1 = π ( 3 cos π ) = π = π 6 n = 1 2 i + π 6 j k = ( 1 2, π 6, 1 ). Tangenttitaso: 3 z = 2 1 ( x π ) + π (y +1) 3x πy +6z = 2π 3 3.
21 Normaali: x π = y +1 π 6 = z x 2π 3 = 6y +6 π = 6z Mikä on pinnan z = x 2 4xy 2y 2 +12x 12y 1 vaakasuora tangenttitaso? Vaakasuoran tason yhtälö on muotoa z = k, joten pitää z x = z = 0 tangenttitason sivuamispisteissä. y z = 2x 4y +12 = 0 x z y = 4x 4y 12 = 0 { x = 4 y = 1 z( 4,1) = ( 4) 2 4( 4) ( 4) = 31 Eli tangenttitaso on z = 31 ja sivuamispiste on ( 4,1, 31).
22 Osittaisderivointi Osittaisderivaatan sovellukset Korkeamman kertaluvun osittaisderivaatat Jos funktion f(x,y) 1. kertaluvun osittaisderivaattoja f 1 (x,y) ja f 2 (x,y) osittaisderivoidaan edelleen x:n ja y:n suhteen, saadaan neljä 2. kertaluvun osittaisderivaattaa: f 11 (x,y), f 22 (x,y), f 12 (x,y), f 21 (x,y) Jos z = f(x,y), niin 2 z x 2 = z x x = f 11(x,y) 2 z y 2 = z y y = f 22(x,y) 2 z x y = ( ) z = f 21 (x,y) x y 2 z y x = ( ) z = f 12 (x,y) y x Miika Tolonen Matematiikka B2 - TUDI 22
23 Määritä funktion f(x,y) = x 3 y 4 2. kertaluvun osittaisderivaatat. f x = 3x 2 y 4 f y = 4x 3 y 3 f xx = 6xy 4 f yy = 12x 3 y 2 f xy = 12x 2 y 3 f yx = 12x 2 y 3 HUOM f xy = f yx jatkuville funktioille
24 Ketjusääntö Osittaisderivointi Osittaisderivaatan sovellukset Ketjusääntö yhden muuttujan yhdistetylle funktiolle on: d dx f(g(x)) = f (g(x))g (x) Usean muuttujan yhdistetty funktiota koskeva derivoimissääntö: Jos z = f(x,y) ja f(x,y):llä on jatkuvat osittaiderivaatat ja jos x ja y ovat derivoituvia t:n funktioita, niin dz dt = z dx x dt + z dy y dt Miika Tolonen Matematiikka B2 - TUDI 24
25 Olkoon z = x 2 lny, missä x = t 3 2 ja y = t 2. Laske dz dt, kun t = 2, Suoralla sijoituksella: z = (t 3 2 ) 2 lnt 2 = t 3 2lnt dz dt = 3t2 2 t, dz dt (2) = = 11. Ketjusäännöllä: dz dt = z dx x dt + z dy y dt = 2x 3 2 t y 2t = 3t2 2 t dz (2) = 11. dt
26 Laske w s, kun w = 4x +y 2 +z 3, x = e rs2, y = ln r +s t w s = w x x s +w y y s +w z z s ja z = rst 2 = 4 e rs2 2rs +2y 1 r+s t 1 t +3z2 rt 2 = 8rse rs2 +2ln r +s t 1 r +s +3(rst2 ) 2 rt 2 = 8rse rs s lnr +3r 3 s 2 t 6 r +s t
27 Osittaisderivointi Osittaisderivaatan sovellukset Lineaarinen approksimaatio Kahden muuttujan funktion likiarvon määrittäminen tangenttitason avulla: Pisteen (a, b) ympäristössä jatkuvan funktion f kuvaajan pisteeseen (a, b, f(a, b)) piirretyn tangenttitason yhtälö on z(x,y) = f(a,b)+f 1 (a,b)(x a)+f 2 (a,b)(y b) jos (x,y) on lähellä (a,b):tä niin f(x,y) z(x,y) eli f(x,y) f(a,b)+f 1 (a,b)(x a)+f 2 (a,b)(y b) Esimerkki Arvioi likimääräisesti funktion f(x,y) = x 3 +e 3y arvoa pisteessä (1.1, 2.01) pisteeseen (1, 2) kautta kulkevan tangenttitason avulla Miika Tolonen Matematiikka B2 - TUDI 27
28 Arvioi likimääräisesti funktion f(x,y) = x 3 +e 3y arvoa pisteessä (1.1, 2.01) pisteeseen (1, 2) kautta kulkevan tangenttitason avulla val. (a,b) = (1,2) (x,y) = (1.1,2.01) f(a,b) = f(1,2) = 1 3 +e 3 2 = 1+e 6 f x = 3x 2 f x (1,2) = 3 f y = e 3y 3 f y (1,2) = 3e 6 f(1.1,2.01) f(1,2)+f x (1,2)(1.1 1)+f y (1,2)(2.01 2) = 1+e 6 +3(0.1)+3e 6 (0.01) (oikea arvo 417.0)
29 Differentiaali Osittaisderivointi Osittaisderivaatan sovellukset Olkoon f n:n muuttujan funktio f(x 1,x 2,...,x n ), jolla on kaikki osittaisderivaatat f x 1, f x 2,..., f x n. Tällöin f:n kokonaisdifferentiaali df on df = f x 1 dx 1 + f x 2 dx f x n dx n Jos muuttujien x 1,x 2,...,x n mittaus- tai arviointivirhe on x 1, x 2,..., x n :n suuruinen, niin kokonaisvirhe [ ] [ ] [ ] f f f [ f] = x 1 + x x n x 1 x 2 x n Miika Tolonen Matematiikka B2 - TUDI 29
30 Olkoon f(x,y,z) = xyz +xy +2y 2 z 3. Jos x:n mittausvirhe on 2%, y:n 3% ja z:n 1%, niin mikä on kokonaisvirhe, kun x = 1, y = 2, z = 3? x = = 0.02, y = = 0.06, z = = 0.03 f x = yz +y, f y = xz +x +4yz 3, f z = xy +6y 2 z 2 f x (1,2,3) = = 8, f y (1,2,3) = = = 220 f z (1,2,3) = = = 218 f = = 19.9 absoluuttinen virhe Toisaalta f(1,2,3) = 224 f f(1,2,3) = 19.9 = 8.88% Suhteellinen virhe 224
31 Gradientti Osittaisderivointi Osittaisderivaatan sovellukset Määritelmä Funktion f(x,y) osittaisderivaattojen f 1 (x,y) ja f 2 (x,y) muodostamaa vektoria sanotaan GRADIENTIKSI ja merkitään f(x,y) = f 1 (x,y)ī +f 2 (x,y) j Gradientti f(a, b) on normaalivektori pisteen (a, b) kautta kulkevalle funktion f tasa-arvokäyrälle. Miika Tolonen Matematiikka B2 - TUDI 31
32 Piirrä funktion f(x,y) = x 2 +y 2 korkeuskäyrä ja gradientti pisteessä (1, 2) Tasa-arvokäyrä: x 2 +y 2 = 5. f(x,y) = x 2 +y 2 f(x,y) = 2xi +2yj f(1,2) = 2i +4j z = = 5
33 Osittaisderivointi Osittaisderivaatan sovellukset Gradientin ominaisuuksia pisteessä (a, b) 1 Pisteessä (a,b) funktio f kasvaa nopeiten f(a, b):n suuntaan ja suurin kasvunopeus on f(a,b) 2 Pisteessä (a,b) funktio f vähenee nopeiten f(a, b):n suuntaan ja suurin vähenemisnopeus on f(a, b) 3 Funktion f muutosnopeus pisteessä (a, b) on nolla pisteen (a, b) kautta kulkevan f:n tasa-arvokäyrän tangenttisuoran suuntaan Miika Tolonen Matematiikka B2 - TUDI 33
34 Ilmoittakoon funktio h(x,y) = x 2 y maaston korkeuden merenpinnasta (xy-taso). Jos ollaan paikassa ( 1, 1, 1), niin mihin suuntaan maasto on jyrkin ylöspäin? h(x,y) = x 2 y Eli suuntaan 2i +j. h(x,y) = 2xyi +x 2 j h( 1,1) = 2 ( 1)1i +( 1) 2 j = 2i +j Mihin suuntaan pallo lähtee vierimään kohdasta (1, 3, 3)? Eli suuntaan 6i j. h(1,3) = 6i j
35 Mihin suuntaan pisteessä (2, 1, 4) on lähdettävä, jotta pysytään samalla korkeudella? h(2,1) = 4i +4j v h(2,1) v h(2,1) = 0 (xi +yj)(4i +4j) = 0 4x +4y = 0 y = x Olkoon x = 1 y = 1. Eli suuntaan i j tai i +j.
36 Osittaisderivointi Osittaisderivaatan sovellukset Suunnattu derivaatta Suunnattu derivaatta D v f(a,b) ilmoittaa, mikä on funktion v f(x, y) muutosnopeus pisteessä (a, b) annetun xy-tason vektorin v suuntaan Määritelmä Esimerkki Dˆv f(a,b) = ˆv f(a,b) Laske funktion f(x,y) = y 4 +2xy 3 +x 2 y 2 muutosnopeus pisteessä (0,1) vektorin v = ī + j suuntaan Miika Tolonen Matematiikka B2 - TUDI 36
37 Laske funktion f(x,y) = y 4 +2xy 3 +x 2 y 2 muutosnopeus pisteessä (0,1) vektorin v = i +j suuntaan. v = 1+1 = 2 ˆv = v v = 1 2 (i +j) f(x,y) = (2y 3 +2xy 2 )i +(4y 3 +6xy 2 +2x 2 y)j f(0,1) = 2i +4j D v 0f(0,1) = 1 2 (i +j) (2i +4j) = 1 2 (2+4) = 6 2 = 3 2.
38 Osittaisderivointi Osittaisderivaatan sovellukset Taylor-polynomi ja approksimointi Mitä korkeampi on pisteen (a, b) ympäristössä jatkuvan funktion f(x, y) taylor-polynomin P n (x,y) = n j=0 ( 1 h j! x +k ) j f(a,b), y { h = x a k = y b asteluku n, sitä tarkemmin polynomi approksimoi funktiota f(x, y) pisteen (a,b) läheisyydessä f(x,y) P n (x,y) Miika Tolonen Matematiikka B2 - TUDI 38
39 Määritä funktion f(x,y) = e x 2y 3. asteen Taylor-polynomi pisteessä (2, 1) ja arvioi polynomilla lukua f(2.1, 0.9). (a,b) = (2,1), h = x 2 ja k = y 1. P 3 (x,y) = f(2,1)+f 1 (2,1)h +f 2 (2,1)k + 1 ( f11 (2,1)h 2 +2f 12 (2,1)hk +f 22 (2,1)k 2) ( f111 (2,1)h 3 +3f 112 (2,1)h 2 k +3f 122 (2,1)hk 2 +f 222 (2,1)k 3) 6 f(x,y) = e x 2y,f(2,1) = 1 f 2 (x,y) = 2e x 2y,f 2 (2,1) = 2 f 1 (x,y) = e x 2y,f 1 (2,1) = 1 f 22 = 4e x 2y,f22(2,1) = 4 f 11 (x,y) = e x 2y,f 11 (2,1) = 1 f 222 = 8e x 2y,f 222 (2,1) = 8 f 111 = e x 2y,f 111 (2,1) = 1 f 112 = 2e x 2y,f 112 (2,1) = 2 f 12 (x,y) = 2e x 2y,f 12 (2,1) = 2 f 122 = 4e x 2y,f 122 (2,1) = 4
40 P 3 (x,y) = 1+(x 2) 2(y 1)+ 1 [ (x 2) 2 4(x 2)(y 1)+4(y 1) [ (x 2) 3 6(x 2) 2 (y 1)+12(x 2)(y 1) 2 8(y 1) 3] 6 f(2.1,0.9) (tarkka: )
41 Sisältö Osittaisderivointi Osittaisderivaatan sovellukset 1 Osittaisderivointi 2 Osittaisderivaatan sovellukset Miika Tolonen Matematiikka B2 - TUDI 41
42 Ääriarvot Osittaisderivointi Osittaisderivaatan sovellukset Jatkuvasti derivoituvalla funktiolla f(x, y) voi olla lokaali tai absoluuttinen ääriarvo pisteessä (a,b) D(f) vain jos (a,b) on Kriittinen piste eli f(a,b) = 0 D(f):n reunapiste f(a, b) on funktion lokaali maksimiarvo (minimiarvo), jos pisteen (a,b) jossakin ympäristössä f(x,y) f(a,b) (f(x,y) f(a,b)) ja f(a, b) on funktion f absoluuttinen maksimiarvo (minimiarvo), jos jokaiselle (x,y) D(f) pätee f(x,y) f(a,b) (f(x,y) f(a,b)) Miika Tolonen Matematiikka B2 - TUDI 42
43 Osittaisderivointi Osittaisderivaatan sovellukset Ääriarvot sisäpisteissä ja niiden luokittelu 1 { Etsitään kriittiset pisteet yhtälöryhmästä fx = 0 f y = 0 f = 0 2 Lasketaan kussakin kriittisessäpisteessä (a,b) : D = f xx f yy (f xy ) 2 (a) D > 0 ja f xx < 0, niin (a,b) on lokaali maksimipiste (b) D > 0 ja f xx > 0, niin (a,b) on lokaali minimipiste (c) D < 0, niin (a,b) on satulapiste (d) D = 0, niin on käytettävä muita keinoja (ei informaatiota) Miika Tolonen Matematiikka B2 - TUDI 43
44 Etsi funktion f(x,y) = x 3 +x 2 y +y 2 4y +3 paikalliset ääriarvopisteet. { fx (x,y) = 3x 2 +2xy = 0 x(3x +2y) = 0 f y = x 2 +2y 4 = 0 Ratkaistaan nollakohdat ja sijoitetaan. x = 0 : 2y 4 = 0, y = 2 y = 3x 2 : x2 3x 4 = 0 x = 1 tai x = 4 Kriittiset pisteet:(0, 2), ( 1, 3 ), (4, 6). 2
45 Kullekin kriittiselle pisteelle tehdään nyt diskriminanttianalyysi: ja havaitaan: D(x,y) = f xx f yy (f xy ) 2 D(0,2) = ( ) 2 (2 0) 2 = 8 > 0 Koska f xx (0,2) = 4 > 0, kyseessä on lokaali minimipiste. ja D( 1, 3 2 ) = ( 6+3) 2 ( 2)2 = 10 < 0 D(4, 6) = ( ) 2 (2 4) 2 = 40 < 0 ovat nämä molemmat pisteet satulapisteitä. Näin ollen piste (0,2) on funktion f(x,y) = x 3 +x 2 y +y 2 4y +3 ainoa ääriarvopiste.
46 Osittaisderivointi Osittaisderivaatan sovellukset Määrittelyjoukko on suljettu ja rajoitettu R 2 :n osajoukko Tutkitaan erikseen funktion sisäpisteet ja määrittelyalueen reuna Esimerkki Etsi funktion f(x,y) = 2xy pienin ja suurin arvo joukossa A = {(x,y) x 2 +y 2 4} Miika Tolonen Matematiikka B2 - TUDI 46
47 Etsi funktion f(x,y) = 2xy pienin ja suurin arvo joukossa A = { (x,y) x 2 +y 2 4 }. Sisäpisteissä: { fx = 2y = 0 KRP = (0,0) f y = 2x = 0 Reunalla: f(0,0) = = 0. f xx = 0, f yy = 0, f xy = 2 D = = 4 < 0 (0,0) satulapiste Ei ääriarvoja x 2 +y 2 = 4 y = ± 4 x 2, x [ 2,2], sij. funktioon f h(x) = f(x, 4 x 2 ) = 2x 4 x 2 h (x) = 2 4 x 2 + 2x( 2x) 2 4 x = x 2 x 2 = 0 x = ± 2
48 h( 2) = 0, h ( 2 ) = 2 ( 2 ) 2 = 4, h ( 2 ) = 4, h(2) = 0 g(x) = f(x, 4 x 2 ) = 2x 4 x 2 g (x) = 2 4 x 2 + 2x2 = 0 4 x 2 4+x 2 +x 2 = 0 x = ± 2 g( 2) = 0, g ( 2 ) = 2 ( 2 ) 2 = 4, g( 2) = 4, g(2) = 0 Maksimiarvo: f ( 2, 2 ) = f ( 2, 2 ) = 4 Minimiarvo: f ( 2, 2 ) = f ( 2, 2 ) = 4
49 Osittaisderivointi Osittaisderivaatan sovellukset Sidotut ääriarvot Kahden muuttujan funktioiden sidotuilla ääriarvoilla tarkoitetaan sellaisia ääriarvoja, jotka funktio saa määrittelyjoukkoonsa sisältyvällä käyrällä Määritelmä Lagrangen menetelmä etsii ääriarvoja funktiolle f(x, y) rajoitteella g(x,y) = 0 seuraavasti Mikäli rajoitteita on useampia: L(x,y,λ) = f(x,y)+λg(x,y) L(x,y,λ,µ) = f(x,y)+λg(x,y)+µh(x,y) Miika Tolonen Matematiikka B2 - TUDI 49
50 Määritä origon ja käyrän x 2 y = 16 lyhin etäisyys Lagrangen kertoimien menetelmällä. Minimoidaan f(x,y) = x 2 +y 2 ehdolla g(x,y) = x 2 y 16 = 0 L(x,y,λ) = f(x,y)+λg(x,y) = x 2 +y 2 +λ(x 2 y 16) L = 2x +2λxy = 0 x L y = 2y +λx2 = 0 L λ = x2 y 16 = 0 välttämättä x 0 ja y 0. 2y +λx 2 = 0 2y 2 = λx 2 y 2y 2 = 16λ 2x +2λxy = 0 1+λy = 0 λ = 1 y 2y 2 = 16 y 2y 3 = 16 y = 2
51 x 2 2 = 16 x = ±2 2 Pisteet (±2 2,2) ovat kuvion perusteella todella ne käyrän pisteet, jotka ovat lähinpänä origoa. Minimietäisyys = f(±2 2,2) = 8+4 = 2 3.
52 Osittaisderivointi Osittaisderivaatan sovellukset Pienimmän neliösumman menetelmä Määritelmä Määrätään funktion f(x) parametrit siten, että summa S = n (y i f(x i )) 2 i=1 on pienin Esimerkki Etsi vakioiden a ja b arvot siten, että suora y = ax +b parhaiten liittyy data-pisteisiin (0, 2.10),(1, 1.92),(2, 1.84),(3, 1.71) ja (4, 1.64) Miika Tolonen Matematiikka B2 - TUDI 52
53 Etsi vakioiden a ja b arvot siten, että suora y = ax +b parhaiten liittyy data-pisteisiin (0, 2.1), (1, 1.92), (2, 1.84), (3, 1.71) ja (4,1.64). S = 5 (y i ax i b) 2 i=1 S on pienin kriittisessä pisteessä. 0 = S 5 a = 2 x i (y i ax i b) i=1 0 = S 5 b = 2 y i ax i b i=1 0 = 2 [ 0 (2.1 a 0 b)+1 (1.92 a 1 b) +2(1.84 a 2 b)+3(1.71 a 3 b)+4(1.64 a 4 b) ] 0 = 2 [ 2.1 a 0 b a b a b a b a b ]
54 { 60a+20b = a+10b = { a = b = 2.068
Matematiikka B1 - avoin yliopisto
28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan
LisätiedotPisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
LisätiedotKuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
LisätiedotBM20A0300, Matematiikka KoTiB1
BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja
Lisätiedot2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen
Lisätiedota) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
LisätiedotAntti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
Lisätiedot, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
Lisätiedotläheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?
BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotDerivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 10 to
Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin
Lisätiedot3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3. luento 17.11.2017 Neuroverkon opettaminen (ohjattu oppiminen) Neuroverkkoa opetetaan syöte-tavoite-pareilla
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
LisätiedotTilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,
Vektorianalyysi Harjoitus 9, Ratkaisuehdotuksia Anssi Mirka Tehtävä 1. ([Martio, 3.4:1]) Millä suoralla sylinterillä, jonka tilavuus on V > on pienin vaipan ja pohjan yhteenlaskettu pinta-ala? Ratkaisu
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
LisätiedotOletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Lisätiedot1.7 Gradientti ja suunnatut derivaatat
1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotDifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet
ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
Lisätiedotja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 211 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 ja B = 2 1 6 3 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A. 2. Laske seuraavat determinantit
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
LisätiedotMatematiikan perusteet taloustieteilij oille I
Matematiikan perusteet taloustieteilijöille I Harjoitukset syksy 2006 1. Laskeskele ja sieventele a) 3 27 b) 27 2 3 c) 27 1 3 d) x 2 4 (x 8 3 ) 3 y 8 e) (x 3) 2 f) (x 3)(x +3) g) 3 3 (2x i + 1) kun, x
LisätiedotJouni Sampo. 5. helmikuuta 2014
B1 Jouni Sampo 5. helmikuuta 2014 Sisältö 1 Usean muuttujan funktioista 2 1.1 Raja arvot ja jatkuvuus............................... 2 1.2 Osittaisderivaatat................................... 4 1.3 Normaalivektori,
LisätiedotTutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3
2. Reaaliarvoiset funktiot 2.1. Jatkuvuus 23. Tutki funktion f (x,y) = xy x 2 + y 2 raja-arvoa, kun piste (x,y) lähestyy origoa pitkin seuraavia xy-tason käyriä: a) y = ax, b) y = ax 2, c) y 2 = ax. Onko
LisätiedotVektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
LisätiedotMATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 26. Tutki, suppenevatko seuraavat lukujonot: a) d) ( 9k 7 ) 3k + 2 4k 2, b) 5k + 7 k (4x + ) 3 dx, e) ( 2 ln(k 3 ) k 3e k ), c) cos(3πx) dx, f) k 3 9x 2 +
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
Usean muuttujan funktiot MS-A7 Differentiaali- ja integraalilaskenta (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta eli gradientti.
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
LisätiedotDemonstraatioharjoitus 1, pe 17.1
Mat-.4 Matematiikan peruskurssi S, kevät 00 Demonstraatioharjoitukset, erä Högnäs Tässä ensimmäinen erä ratkaisuja demonstraatiotehtäviin. (Kuvat ovat melko heikkolaatuisia ja ainoastaan "kvalitatiivisia".)
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä
Lisätiedotja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)
LisätiedotMATEMATIIKAN ALKEET II (YE19B), SYKSY 2011
MATEMATIIKAN ALKEET II (YE19B), SYKSY 011 Sisältö 1. Matriisin definiittisyys 1. Konkaavit ja konveksit funktiot 3 3. Ääriarvotehtävien toisen kertaluvun riittävät ehdot 7 3.1. Rajoittamaton ääriarvotehtävä
Lisätiedotf(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.
Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotMatematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit
LisätiedotMapu 1. Laskuharjoitus 3, Tehtävä 1
Mapu. Laskuharjoitus 3, Tehtävä Lineaarisessa approksimaatiossa funktion arvoa lähtöpisteen x 0 ympäristössä arvioidaan liikkumalla lähtöpisteeseen sovitetun tangentin kulmakertoimen mukaisesti: f(x 0
LisätiedotVektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.
Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus
LisätiedotYLE11, MATEMATIIKKAA TALOUSTIETEILIJÖILLE
YLE11, MATEMATIIKKAA TALOUSTIETEILIJÖILLE Tämä luentomoniste on koottu useista lähteistä, joista tärkeimmät lienevät Sydsæter & Hammond (008). Essential Mathematics for Economic Analysis, Sydsæter, Hammond,
Lisätiedot12. Hessen matriisi. Ääriarvoteoriaa
179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
LisätiedotViikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
Lisätiedot= + + = 4. Derivointi useammassa ulottuvuudessa
30 VEKTORIANALYYSI Lento 4 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f= f( r) = f( xyz,, ) on kolmen mttjan fnktio, jonka arvo yleensä mtt,
Lisätiedot763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 2012
763101P FYSIIKAN MATEMATIIKKAA Seppo Alanko Oulun yliopisto Fysiikan laitos Syksy 01 1 Sisältö: 1 Differentiaalilaskentaa Integraalilaskentaa 3 Vektorit 4 Potenssisarjoja 5 Kompleksiluvut 6 Differentiaaliyhtälöistä
Lisätiedotf(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 7 Harjoitus 6 Ratkaisuehdotukset 6.. Olkoon f : G R, G = {(x, x ) R x > }, f(x, x ) = x x. Etsi differentiaalit d k f(, ), k =,,. Ratkaisu:
Lisätiedot= 2±i2 7. x 2 = 0, 1 x 2 = 0, 1+x 2 = 0.
HARJOITUS 1, RATKAISUEHDOTUKSET, YLE11 2017. 1. Ratkaise (a.) 2x 2 16x 40 = 0 (b.) 4x 2 2x+2 = 0 (c.) x 2 (1 x 2 )(1+x 2 ) = 0 (d.) lnx a = b. (a.) Toisen asteen yhtälön ratkaisukaavalla: x = ( 16)± (
Lisätiedot4. Derivointi useammassa ulottuvuudessa
6 VEKTORIANALYYSI Lento 3 4. Derivointi seammassa lottvdessa Osittaisderivaatta. Kerrataan alksi osittaisderivaatan käsite. Fnktio f f ( r) f ( x, y, z) on kolmen mttjan fnktio, jonka arvo yleensä mtt,
LisätiedotMat Matematiikan peruskurssi C2
Mat-1.110 Matematiikan peruskurssi C Petri Latvala 18. helmikuuta 007 Sisältö 1 Useamman muuttujan funktiot ja niiden differentiaalilasku 1.1 Useamman muuttujan funktion jatkuvuus ja derivoituvuus... 1.
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotMATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 17 1. Tutki, suppenevatko seuraavat lukujonot: a) d) ( k ) + 5 k, b) k 1 x 5 dx, e) ( ln(k + 1) k ), c) k 1 cos(πx) dx, f) k e x dx, 1 k e k k kx dx.. Olkoon
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Lisätiedotsin(x2 + y 2 ) x 2 + y 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 2 Ratkaisuedotukset 2.1. Tutki funktion g : R 2 R, g(0, 0) = 0, jatkuvuutta. g(x, y) = sin(x2 + y 2 ) x 2 + y 2, kun (x,
LisätiedotMatematiikan tukikurssi. Toinen välikoe
Matematiikan tukikurssi Toinen välikoe 1 Sisältö 1 Useamman muuttujan funktion raja-arvo 1 2 Useamman muuttujan funktion jatkuvuus 7 3 Osittaisderivaatat ja gradientti 8 4 Vektoriarvoiset funktiot 9 5
Lisätiedot13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
Usean muuttujan funktiot MS-A007 Differentiaali- ja integraalilaskenta (Chem) Yhteenveto ja esimerkkejä ym., osa G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
MS-A007 Differentiaali- ja integraalilaskenta (Chem) Yhteenveto ja esimerkkejä ym., osa G. Gripenberg Aalto-yliopisto 1. tammikuuta 016 G. Gripenberg (Aalto-yliopisto) MS-A007 Differentiaali- ja integraalilaskenta
LisätiedotLaskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Korte / Lindfors MS-A0207 Dierentiaali- ja integraalilaskenta 2 (CHEM), kevät 2017 Laskuharjoitus 2A (9.10.1.) Aihepiiri:
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Lisätiedot4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3
. Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
LisätiedotMatematiikka B3 - Avoin yliopisto
2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli
Lisätiedot3. Useamman muuttujan funktioiden differentiaalilaskentaa Olkoon A R n. Kuvaus f : A R on n:n muuttujan reaalifunktio. Se kuvaa
3 Useamman muuttujan funktioiden differentiaalilaskentaa Olkoon A R n Kuvaus f : A R on n:n muuttujan reaalifunktio Se kuvaa A:n pisteet x = (x,, x n ) A (x,, x n R) reaaliluvuiksi f(x) ja koko A:n R:n
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotRatkaisu: Tutkitaan derivoituvuutta Cauchy-Riemannin yhtälöillä: f(x, y) = u(x, y) + iv(x, y) = 2x + ixy 2. 2 = 2xy xy = 1
1. Selvitä missä tason pisteissä annetut funktiot ovat derivoituvia/analyyttisiä. Määrää funktion derivaatta niissä pisteissä, joissa se on olemassa. (a) (x, y) 2x + ixy 2 (b) (x, y) cos x cosh y i sin
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 5A Vastaukset alkuviikolla
LisätiedotBM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016 1. (a) Anna likiarvo lineaarisen approksimaation avulla sille mitä on T (100.5), kun T (100) = 45 ja T (100) = 10. (b) Käyttäen lineaarista
Lisätiedotr > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
LisätiedotDifferentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40
Differentiaali- ja integraalilaskenta 2 Laskuharjoitus 4 / vko 40 Alkuviikolla harjoitustehtäviä lasketaan harjoitustilaisuudessa. Loppuviikolla näiden harjoitustehtävien tulee olla ratkaistuina harjoituksiin
LisätiedotVektorilaskenta, tentti
Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle
Lisätiedota) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotDifferentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3
MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
LisätiedotLisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
Lisätiedot, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
Lisätiedotx = (1 t)x 1 + tx 2 x 1 x 2
4 Konveksisuus ja ääriarvot Palautan mieliin, että R:n välillä I derivoituvaa funktiota sanottiin konveksiksi (alaspäin kuperaksi), jos käyrä y = f(x) on välillä I jokaisen tangenttisuoransa yläpuolella
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
Lisätiedot1. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 20x 2 +10xy +5y 2 (b.) f(x,y) = 4x 2 2y 2 xy +x+2y +100
HARJOITUS, RATKAISUEHDOTUKSET, YLE 07.. Etsi seuraavien funktioiden kriittiset pisteet ja tutki niiden laatu: (a.) f(x,y) = 0x +0xy +5y (b.) f(x,y) = 4x y xy +x+y +00 (a.) Funktion kriittiset pisteet ratkaisevat
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
Lisätiedotx + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli
BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
LisätiedotVektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 23.
Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 23. lokakuuta 2017 Sisältö Luennot syyslukukaudella 2017 3 Esimakua 4 Kertaus
Lisätiedot(d) f (x,y,z) = x2 y. (d)
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 2, Kevät 2017 Tässä harjoituksessa ja tulevissakin merkitään punaisella tähdellä sellaisia tehtäviä joiden tyyppisten osaamattomuus tentissä/välikokeessa
Lisätiedot2.6 Funktioiden kuvaajat ja tasa-arvojoukot
2.6 Funktioiden kuvaajat ja tasa-arvojoukot Olkoon I R väli. Yhden muuttujan funktion g : I R kuvaaja eli graafi on avaruuden R 2 osajoukko {(x, y) R 2 : x I, y = g(x)}. 1 0 1 2 3 1 0.5 0 0.5 1 Kuva 2.1:
Lisätiedot