1 Pallo. 1.1 Pallokoordinaatit. 1.2 Puolipallo funktion kuvaajana. (%i1) load(draw)$
|
|
- Sanna-Kaisa Eeva Lahti
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 DL_pintoja.wxm 1 / 11 (%i1) load(draw)$ 1 Pallo 1.1 Pallokoordinaatit (%i) s(theta, tau):= [cos(theta)*cos(tau), sin(theta)*cos(tau), sin(tau)]; (%o) s θ, τ := [ cos θ cos τ, sin θ cos τ, sin τ ] (%i3) wxdraw3d(proportional_axes=xyz, surface_hide=true, parametric_surface(s(theta, tau)[1], s(theta, tau)[], s(theta, tau)[3], theta,-%pi,%pi, tau,-%pi/,%pi/) )$ (%t3) 1. Puolipallo funktion kuvaajana (%i4) r:1$ (%i5) f:sqrt(r^ - (x^+y^)); (%o5) - y - x + 1 (%i6) wxdraw3d(proportional_axes=xyz, surface_hide=true, explicit(f, x,-r,r, y,-r,r) )$ (%t6) Parametrialueen tulee olla suorakaide; parametrisoidaan xy-tason yksikköympyrä napakoordinaattien avulla:
2 DL_pintoja.wxm / 11 (%i7) [s_x,s_y,s_z]:trigsimp(ev([x,y,f], x=rho*cos(theta), y=rho*sin(theta))); (%o7) [ ρ cos θ, ρ sin θ, 1 - ρ ] (%i8) wxdraw3d(proportional_axes=xyz, surface_hide=true, parametric_surface(s_x, s_y, s_z, rho,0,r, theta,-%pi,%pi) )$ (%t8) 1.3 Stereografinen projektio (%i9) kill(values)$ Stereografisen projektion käänteiskuvauksen määräävät lausekkeet: (%i10) spk(u,v):=[*u/(u^ + v^ + 1), *v/(u^ + v^ + 1), (u^ + v^ - 1)/(u^ + v^ + 1)]; u v (%o10) spk u, v := [,, u + v - 1 ] u + v + 1 u + v + 1 u + v + 1 (%i11) wxdraw3d(proportional_axes=xyz, surface_hide=true, xu_grid=30, yv_grid=0, parametric_surface(spk(u,v)[1], spk(u,v)[], spk(u,v)[3], u,-3,3, v,-3,3) )$ (%t11)
3 DL_pintoja.wxm 3 / 11 --> with_slider_draw3d(t, makelist(0.1*j,j,1,10), proportional_axes=xyz, surface_hide=true, xu_grid=30, yv_grid=0, xrange=[-1,1], yrange=[-1,1], zrange=[-1,1], parametric_surface(spk(u,v)[1], spk(u,v)[], spk(u,v)[3], u,-t*3,t*3, v,-t*3,t*3) )$ Parametrisoidaan uv-taso napakoordinaattien avulla (nähdään, miten ympyrän muotoiset alueet kuvautuvat): (%i1) ev([spk(u,v)[1], spk(u,v)[], spk(u,v)[3]], u=r*cos(theta), v=r*sin(theta)); r cos θ r sin θ (%o1) [,, r sin θ + r cos θ - 1 ] r sin θ + r cos θ + 1 r sin θ + r cos θ + 1 r sin θ + r cos θ + 1 (%i13) [sp_x,sp_y,sp_z]:trigsimp(%); (%o13) [ r cos θ r + 1, r sin θ r + 1, r - 1 ] r + 1 (%i14) wxdraw3d(proportional_axes=xyz, surface_hide=true, xu_grid=30, yv_grid=0, view=[63, 340], parametric_surface(sp_x, sp_y, sp_z, r,0,5, theta,-%pi/,%pi) )$ (%t14) (%i15) wxdraw3d(proportional_axes=xyz, surface_hide=true, xu_grid=30, yv_grid=0, view=[63, 340], parametric_surface(sp_x, sp_y, sp_z, r,0,4, theta,-%pi/,%pi), xu_grid=10, yv_grid=15, parametric_surface(r*cos(theta), r*sin(theta), -1, r,0,4, theta,-%pi/,%pi) )$ (%t15)
4 DL_pintoja.wxm 4 / 11 Torus (%i16) kill(values)$ (%i17) (a:3, b:1)$ (%i18) t(theta, tau):=[cos(theta)*(a+b*cos(tau)), sin(theta)*(a+b*cos(tau)), b*sin(tau)]; (%o18) t θ, τ := [ cos θ a + b cos τ, sin θ a + b cos τ, b sin τ ] (%i19) wxdraw3d(proportional_axes=xyz, surface_hide=true, view=[60,30], xrange=[-a-1,a+1], yrange=[-a-1,a+1], zrange=[-b,b], parametric_surface(t(theta, tau)[1], t(theta, tau)[], t(theta, tau)[3], theta,-%pi,%pi/, tau,-%pi,%pi) )$ (%t19) --> with_slider_draw3d(t, makelist(j**%pi/30,j,1,30), /*proportional_axes=xyz,*/ surface_hide=true, view=[60,30], xrange=[-a-1,a+1], yrange=[-a-1,a+1], zrange=[-b,b], parametric_surface(t(theta, tau)[1], t(theta, tau)[], t(theta, tau)[3], theta,-%pi,%pi/, tau,-%pi,%pi), color=green, line_width=3, parametric(a*cos(theta), a*sin(theta), 0, theta,-%pi,%pi), color=red, parametric(t(t, tau)[1], t(t, tau)[], t(t, tau)[3], tau,-%pi,%pi) )$ --> with_slider_draw3d(t, makelist(j**%pi/30,j,1,30), /*proportional_axes=xyz,*/ surface_hide=true, view=[60,30], xrange=[-a-1,a+1], yrange=[-a-1,a+1], zrange=[-b,b], parametric_surface(t(theta, tau)[1], t(theta, tau)[], t(theta, tau)[3], theta,-%pi,%pi/, tau,-%pi,%pi), color=red, line_width=3, parametric(t(theta, t)[1], t(theta, t)[], t(theta, t)[3], theta,-%pi,%pi) )$ 3 Scherkin minimipinta (%i0) equ:cos(x)*%e^z-cos(y); (%o0) cos x %e z - cos y
5 DL_pintoja.wxm 5 / 11 (%i1) f:log(cos(y)/cos(x)); (%o1) log cos y cos x (%i) wxdraw3d(surface_hide=true, xrange=[-1.56,1.56], yrange=[-1.56,1.56], zrange=[-6,6], explicit(f, x,-1.56,1.56, y,-1.56,1.56) )$ (%t) (%i3) wxdraw3d(enhanced3d=true, surface_hide=true, x_voxel=5, y_voxel=5, z_voxel=5, implicit( equ=0, x,-%pi,%pi, y,-%pi,%pi, z,-6,6) )$ (%t3) 4 Pyörähdyspintoja (%i4) kill(values)$ 4.1 Ketjukäyrä (%i5) f:cosh(t)$
6 DL_pintoja.wxm 6 / 11 (%i6) wxdrawd(proportional_axes=xy, explicit(f, t,-1,1) )$ (%t6) Pyöräytys x-akselin suhteen (%i7) [sr_x,sr_y,sr_z]:[t, f*cos(theta), f*sin(theta)]; (%o7) [ t, cosh t cos θ, cosh t sin θ ] (%i8) wxdraw3d(proportional_axes=xyz, surface_hide=true, parametric_surface(sr_x, sr_y, sr_z, theta,-%pi,%pi, t,-1,1) )$ (%t8) Pyöräytys z-akselin suhteen (%i9) [sr_x,sr_y,sr_z]:[t*cos(theta), t*sin(theta), f]; (%o9) [ t cos θ, t sin θ, cosh t ]
7 DL_pintoja.wxm 7 / 11 (%i30) wxdraw3d(proportional_axes=xyz, surface_hide=true, parametric_surface(sr_x, sr_y, sr_z, theta,-%pi,%pi, t,0,1) )$ (%t30) 4. Pascalin simpukka (%i31) kill(values)$ Pascalin simpukka (pyöräytys z-akselin suhteen): (%i3) rc:b-cos(t); (%o3) b - cos t (%i33) [xc,yc]:subst(0.5,b,rc*[cos(t), sin(t)]); (%o33) [ cos t cos t, cos t sin t ] (%i34) wxdrawd(proportional_axes=xy, nticks=00, yaxis=true, parametric(xc, yc, t,-%pi,%pi) )$ (%t34) (%i35) [sr_x,sr_y,sr_z]:[xc*cos(theta), xc*sin(theta), yc]; (%o35) [ cos t cos t cos θ, cos t cos t sin θ, cos t sin t ]
8 DL_pintoja.wxm 8 / 11 (%i36) wxdraw3d(proportional_axes=xyz, surface_hide=true, xu_grid=30, yv_grid=35, parametric_surface(sr_x, sr_y, sr_z, theta,-%pi,%pi/, t,0,*%pi) )$ (%t36) (%i37) [xc,yc]:subst(1.3,b,rc*[cos(t), sin(t)]); (%o37) [ cos t cos t, cos t sin t ] (%i38) wxdrawd(proportional_axes=xy, nticks=00, yaxis=true, parametric(xc, yc, t,-%pi,%pi) )$ (%t38) (%i39) [sr_x,sr_y,sr_z]:[xc*cos(theta), xc*sin(theta), yc]; (%o39) [ cos t cos t cos θ, cos t cos t sin θ, cos t sin t ]
9 DL_pintoja.wxm 9 / 11 (%i40) wxdraw3d(proportional_axes=xyz, surface_hide=true, xu_grid=30, yv_grid=35, parametric_surface(sr_x, sr_y, sr_z, theta,-%pi,%pi/, t,0,*%pi) )$ (%t40) 5 Suunnistumattomia pintoja (%i41) kill(values)$ 5.1 Möbiuksen nauha (%i4) mb(theta, tau):= s(theta, 0) + tau*s(theta, theta/); (%o4) mb θ, τ := s θ, 0 + τ s θ, θ (%i43) mb(theta, tau); (%o43) [ τ cos θ cos θ + cos θ, τ cos θ sin θ + sin θ, τ sin θ ] (%i44) wxdraw3d(proportional_axes=xyz, surface_hide=true, enhanced3d=false, xu_grid=30, yv_grid=10, parametric_surface(mb(theta, tau)[1], mb(theta, tau)[], mb(theta, tau)[3], theta,-%pi,%pi, tau,-0.3,0.3) )$ (%t44) Möbiuksen nauha syntyy, kun jana kiertää pitkin ympyrää samalla kiertyen 180 astetta:
10 DL_pintoja.wxm 10 / 11 (%i45) jmb(theta, tau, s):= s(theta, 0) + tau*s(theta, s*theta/); (%o45) jmb θ, τ, s := s θ, 0 + τ s θ, s θ (%i46) jmb(theta, tau, s); (%o46) [ τ cos θ cos s θ + cos θ, τ sin θ cos s θ + sin θ, τ sin s θ ] Tässä z-akselin suuntainen jana lähtee pisteestä (-1,0,0); janan päät on merkitty eri värisiksi ja pitkin yksikköympyrää liikkuva keskipiste mustaksi: --> with_slider_draw3d(theta, makelist(-%pi+(*%pi/30)*j,j,0,30), enhanced3d=false, surface_hide=true, xu_grid=0, yv_grid=10, xrange=[-1.4,1.4], yrange=[-1.4,1.4], zrange=[-0.5,0.5], parametric(cos(t), sin(t), 0, t,0,*%pi), line_width=3, parametric(mb(theta, tau)[1], mb(theta, tau)[], mb(theta, tau)[3], tau,-0.3,0.3), point_type=filled_circle, point_size=, color=black, points([ [-1,0,0] ]), points([ mb(theta, 0) ]), color=green, points([ mb(theta, -0.3) ]), color=red, points([ mb(theta, 0.3) ]) )$ --> with_slider_draw3d(st, makelist(j/10,j,0,10), enhanced3d=false, surface_hide=true, xu_grid=0, yv_grid=10, xrange=[-1.4,1.4], yrange=[-1.4,1.4], zrange=[-0.5,0.5], parametric_surface(jmb(theta, tau, st)[1], jmb(theta, tau, st)[], jmb(theta, tau, st)[3], theta,-%pi,%pi, tau,-0.3,0.3) )$ 5. Kleinin pullo Eräs malli Kleinin pullolle saadaan, kun annetaan kahdeksikon mutoisen käyrän kiertää pitkin ympyrää samalla kiertyen 180 astetta: (%i47) wxdrawd(nticks=100, parametric( sin(*tau), sin(tau), tau,-%pi,%pi) )$ (%t47) (%i48) s_dtau(theta, tau):= ''(diff(s(theta, tau), tau)); (%o48) s_dtau θ, τ := [ - sin τ cos θ, - sin τ sin θ, cos τ ]
11 DL_pintoja.wxm 11 / 11 (%i49) kb(theta, tau):= r*s(theta,0) + sin(tau)*s(theta, theta/) + sin(*tau)*s_dtau(theta, theta/); (%o49) kb θ, τ := r s θ, 0 + sin τ s θ, θ + sin τ s_dtau θ, θ Tässä xz-tasossa sijaitseva kahdeksikkokäyrä lähtee liikkumaan pitkin xy-tason yksikköympyrää samalla kiertyen. (%i50) r:3$ (%i51) wxdraw3d(enhanced3d=false, surface_hide=true, xu_grid=40, yv_grid=30, view=[60,80], parametric_surface(kb(theta, tau)[1], kb(theta, tau)[], kb(theta, tau)[3], theta,-0.9*%pi,0.9*%pi, tau,-%pi,%pi) )$ (%t51) --> with_slider_draw3d(t, makelist(0.1*j,j,,10), enhanced3d=false, surface_hide=true, xu_grid=40, yv_grid=0, view=[60,80], xrange=[-4.,4.], yrange=[-4.,4.], zrange=[-,], parametric_surface(kb(theta, tau)[1], kb(theta, tau)[], kb(theta, tau)[3], theta,-0.95*%pi,0.95*%pi, tau,-t*%pi,t*%pi) )$ (%i5) k8p_kb(theta, tau, s):= r*s(theta,0) + sin(tau)*s(theta, s*theta/) + sin(*tau)*s_dtau(theta, s*theta/); (%o5) k8p_kb θ, τ, s := r s θ, 0 + sin τ s θ, s θ + sin τ s_dtau θ, s θ --> with_slider_draw3d(st, makelist(j/10,j,0,10), enhanced3d=false, surface_hide=true, xu_grid=40, yv_grid=0, view=[60,80], xrange=[-4.,4.], yrange=[-4.,4.], zrange=[-,], parametric_surface(k8p_kb(theta, tau, st)[1], k8p_kb(theta, tau, st)[], k8p_kb(theta, tau, st)[3], theta,-0.9*%pi,0.9*%pi, tau,-%pi,%pi) )$
1.1 Funktion kuvaaja. 1.2 Polku (=parametrisoitu käyrä) (%i1) load(draw)$
Funktioiden_havainnollistamisesta.wxm 1 / 11 (%i1) load(draw Windoze-koneissa komentojen muodostamat kuvat ilmestyvät erilliseen Gnuplot-ohjelman ikkunaan. Jatkaaksesi eteenpäin sulje Gnuplot-ikkuna. Mac
1 Plot. 1.1 Funktion kuvaaja: y=f(x)
SL_esim_grafiikkaa.wxm 1 / 13 1 Plot Maximan sisäänrakennetut piirtokomennot sopivat "kevyeen" työskentelyyn. Komennot tunnistaa nimistä, joiden osana on plot. Avuksi Maximan käsikirjan luku "Plotting"
LUKU 4. Pinnat. (u 1, u 2 ) ja E ϕ 2 (u 1, u 2 ) := ϕ u 2
LUKU 4 Pinnat 4.. Määritelmiä ja esimerkkejä Määritelmä 4.. Epätyhjä osajoukko M R 3 on sileä (kaksiulotteinen) pinta, jos jokaiselle pisteelle p M on olemassa ympäristö V p R 3, avoin joukko U p R 2 ja
Käyrien välinen dualiteetti (projektiivisessa) tasossa
Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä
Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus
8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon
Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3
MS-A35 Differentiaali- ja integraalilaskenta 3, I/27 Differentiaali- ja integraalilaskenta 3 Ratkaisut viikko 3 Tehtävä : Hahmottele seuraavat vektorikentät ja piirrä niiden kenttäviivat. a) F(x, y) =
Esimerkki 1.1. Kahdeksikkopolku α: u (sin u, sin 2u) on helppo todeta injektioksi
. Pinnoista.. Pinnan määritelmästä. Monisteen [] määritelmän 4.. mukainen pinta S on sama olio, jollaista abstraktimmassa differentiaaligeometriassa kutsutaan avaruuden R n alimonistoksi (tarkemmin upotetuksi
Riemannin pintojen visualisoinnista
Riemannin pintojen visualisoinnista eli Funktioiden R R kuvaajat Simo K. Kivelä 7.7.6 Tarkastelun kohteena olkoon kompleksimuuttujan kompleksiarvoinen funktio f : C C, f(z) = w eli f(x + iy) = u(x, y)
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut
Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin
MATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 26. Tutki, suppenevatko seuraavat lukujonot: a) d) ( 9k 7 ) 3k + 2 4k 2, b) 5k + 7 k (4x + ) 3 dx, e) ( 2 ln(k 3 ) k 3e k ), c) cos(3πx) dx, f) k 3 9x 2 +
= 9 = 3 2 = 2( ) = = 2
Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
Symbolinen laskenta, syksy 2013
Symbolinen laskenta, syksy 0 Ari Lehtonen. Johdantoa Maxima on laaja symboliseen laskentaan suunniteltu ohjelma, joka on nykyisin vapaasti saatavissa ja jaettavissa (GNU GPL). Maximalla voidaan sieventää
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
z 1+i (a) f (z) = 3z 4 5z 3 + 2z (b) f (z) = z 4z + 1 f (z) = 12z 3 15z 2 + 2
BM20A5700 - Integraauunnokset Harjoitus 2 1. Laske seuraavat raja-arvot. -kohta ratkeaa, kun pistät sekä yläkerran että alakerran muotoon (z z 1 )(z z 2 ), missä siis z 1 ja z 2 ovat näiden lausekkeiden
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18
JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali
JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia
10. Toisen asteen käyrien ja pintojen geometriaa 10.1. Ympyrän ja pallon ominaisuuksia 446. Minkä käyrän muodostavat ne tason E 2 pisteet, joista pisteitä ( a,0) ja (a,0) yhdistävä jana (a > 0) näkyy 45
kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ
58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,
Partikkelit pallon pinnalla
Simo K. Kivelä, 14.7.2004 Partikkelit pallon pinnalla Tehtävänä on sijoittaa annettu määrä keskenään identtisiä partikkeleita mahdollisimman tasaisesti pallon pinnalle ja piirtää kuvio syntyvästä partikkelikonfiguraatiosta.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?
BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT
TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.
MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään
LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto
LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen
Äärettömät raja-arvot
Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /
Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2
8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason
Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora
Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen
f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.
13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y
Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä.
1 Laaja matematiikka 5 Kevät 009 Integrointi n-ulotteisessa avaruudessa Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä. Tasointegraali Tasointegraali f voidaan laskea kaksinkertaisena
Oletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
POHDIN - projekti. Funktio. Vektoriarvoinen funktio
POHDIN - projekti Funktio Funktio f joukosta A joukkoon B tarkoittaa sääntöä, joka liittää jokaiseen joukon A alkioon jonkin alkion joukosta B. Yleensä merkitään f : A B. Usein käytetään sanaa kuvaus synonyymina
Tehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen
F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.
7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f
3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.
Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman
d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali
6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf
Tutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3
2. Reaaliarvoiset funktiot 2.1. Jatkuvuus 23. Tutki funktion f (x,y) = xy x 2 + y 2 raja-arvoa, kun piste (x,y) lähestyy origoa pitkin seuraavia xy-tason käyriä: a) y = ax, b) y = ax 2, c) y 2 = ax. Onko
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
PYÖRÄHDYSKAPPALEEN PINTA-ALA
PYÖRÄHDYSKAPPALEEN PINTA-ALA PYÖRÄHDYSKAPPALEEN PINTA-ALA Pyörädyskappaleen pinta syntyy, kun funktion kuvaaja pyörätää suoran ympäri., suomennos Matti Pauna LIERIÖ JA KARTIO Lieriöt ja kartiot ovat yksinkertiaisimpia
= ( F dx F dy F dz).
17 VEKTORIANALYYSI Luento 2 3.4 Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin
2. Funktiot. Keijo Ruotsalainen. Mathematics Division
2. Funktiot Keijo Ruotsalainen Mathematics Division Kompleksimuuttujan funktio Kompleksimuuttujan z kompleksiarvoinen funktio f(z) voi olla yksiarvoinen tai moniarvoinen, esimerkiksi f(z) = e z f(z) =
RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.
Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =
Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).
u = 2 u (9.1) x + 2 u
9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa
1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo
1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Tasokäyrän kaarevuus LUKU 1
LUKU Tasokäyrän kaarevuus.. Käyrät Määritelmä.. Polku (eli parametrisoitu käyrä) on jatkuva kuvaus α: I R n, missä I R on väli. Polku α = (α,..., α n ) on (jatkuvasti) derivoituva, jos jokainen α j, j
Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2
Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2 Harjoitustehtävät 11-13 lasketaan alkuviikon harjoituksissa, 15-17 loppuviikon harjoituksissa. Kotitehtävä 14 palautetaan MyCourses-sivulle
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
HYPERBOLINEN JA KVASIHYPERBOLINEN GEOMETRIA
HYPERBOLINEN JA KVASIHYPERBOLINEN GEOMETRIA Markus Glader Pro gradu -tutkielma Syyskuu 2011 MATEMATIIKAN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Matematiikan laitos GLADER, MARKUS: Hyperbolinen ja kvasihyperbolinen
MATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 17 1. Tutki, suppenevatko seuraavat lukujonot: a) d) ( k ) + 5 k, b) k 1 x 5 dx, e) ( ln(k + 1) k ), c) k 1 cos(πx) dx, f) k e x dx, 1 k e k k kx dx.. Olkoon
MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
Vektorilaskenta. Luennot / 66. Vektorilaskenta Lineaarikuvauksen vaikutus mittaan Sijoitus integraaliin.
Luennot 03.10. - 05.10.2018 1 / 66 Mitta Yleistä Laatikko Venytys Venytys, 2 Rivin lisääminen toiseen Rivien vaihto 2 / 66 Mitta Mitta Yleistä Laatikko Venytys Venytys, 2 Rivin lisääminen toiseen Rivien
l 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
Täydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
Matematiikan johdantokurssi Johdatusta funktiosääntöihin ja piirtelyyn. Harjoitusta 9, tehtävien käsittelyä Maplella
Matematiikan johdantokurssi 2018 Harjoitusta 9, tehtävien käsittelyä Maplella Aikaisemmin tutustuimme alustavasti Mapleen, lausekkeiden käsittelyyn, jono- ja listarakenteisiin ja alkeisjoukko-oppiin. Nyt
Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
Differentiaali- ja integraalilaskenta 3 Laskuharjoitusviikko 5 /
M-A3x ifferentiaali- ja integraalilaskenta 3, IV/217 ifferentiaali- ja integraalilaskenta 3 Laskuharjoitusviikko 5 / 2. 24.3. Harjoitustehtäviä 1 6 lasketaan alkuviikon harjoituksessa. Harjoituksessa laskematta
Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)
Matematiikan TESTI 3, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/07 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
Vektorilaskenta, tentti
Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle
Derivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
Inversiosta stereografiseen projektioon
Inversiosta stereografiseen projektioon Laura Heikkilä Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2017 Tiivistelmä Jyväskylän yliopisto, Matematiikan ja tilastotieteen
Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
f(tx + (1 t)y) tf(x) + (1 t)f(y) jokaisella x, y A ja t [0, 1].
Tässä luvussa näytetään divergenssilause konveksin joukon tapauksessa. Määritelmä 4.5.1. 1. Joukko R m on konveksi, jos kaikilla x, y pisteet tx + (1 t)y jokaisella t [0, 1]. 2. Olkoon R m konveksi. Funktio
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
Usean muuttujan funktiot MS-A7 Differentiaali- ja integraalilaskenta (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta eli gradientti.
3 Yhtälöryhmä ja pistetulo
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5..06 Yhtälöryhmä ja pistetulo Ennakkotehtävät. z = x y, x y + z = 6 ja 4x + y + z = Sijoitetaan z = x y muihin yhtälöihin. x y + x y =
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
MS-A007 Differentiaali- ja integraalilaskenta (Chem) Yhteenveto ja esimerkkejä ym., osa G. Gripenberg Aalto-yliopisto 1. tammikuuta 016 G. Gripenberg (Aalto-yliopisto) MS-A007 Differentiaali- ja integraalilaskenta
235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti
8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.
13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja
Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2
Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
r > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 )
BMA58 - Integraalilaskenta ja sovellukset Harjoitus 3, Kevät 6 = Kuva : Tehtävä a. a Slinterinkuorelle tässä h = ja r = ja kä läpi välin [,], joka johtaa lausekkeeseen: V = π 6 / 3 d 3 3 3 = 3 Kuva : Tehtävä
6 Funktioita ja yhtälöitä
6 Funktioita ja yhtälöitä 6. Rationaali- ja juurifunktio LUVUN 6. YDINTEHTÄVÄT 60. a) Määritelty, kun a 0. ( a ) ( a ) a a y y ( a a )( a ( a )) a a a a y y a 6 a ( y) ( y) Toinen tapa: ( a ) ( a ) a a
Kompleksiluvut Kompleksitaso
. Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen
1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.
ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.