MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
|
|
- Katriina Lehtilä
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuuta osa2016 I 1 / 17
2 Usean muuttujan vai vektorimuuttujan funktiot Funktio f : D R d R on sääntö tai yhteys (usein mutta ei suinkaan välttämättä, kaava) joka jokaiseen määrittelyjoukon D alkioon (x 1, x 2,..., x d ) liittää yksikäsitteisen arvon f (x 1, x 2,..., x d ) R. Funktion f : R d R m arvot ovat vektoreita ja vektorin f jokainen komponentti on funktio: R d R eli f 1 (x 1,..., x d ) f(x 1,..., x d ) =. f m (x 1,..., x d ) Usein voi olla hyödyllistä, että sen sijaan että käsittelemme funktiota f (x 1, x 2,..., x d ) usean muuttujan funktiona käsittelemmen sitä yhden vektorimuuttujan x funktiona f (x) missä vektorilla x on d komponenttia. Useimmiten otamme funktion argumentit pystyvektorina jolloin funktion derivaatta eli gradientti (kun funktio on reaaliarvoinen) on vaakavektori. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuuta osa2016 I 2 / 17
3 Tasa-arvokäyrät Jos f (x, y) on kahden muuttujan reaaliarvoinen funktio ja c R niin joukko { (x, y) : f (x, y) = c } on usein käyrä (tai sitten käyrien unioni) eli funktion tasa-arvokäyrä. Kuvio, jossa on piirrettynä monta tällaista tasa-arvokäyrää antaa tietynlaista informaatiota funktiosta. Funktion f (x, y) = x + 2y tasa-arvokäyrät ovat suoria kun taas funktion g(x, y) = x 2 + y 2 tasa-arvokäyrät ovat ympyröitä: c = 4 c = 1 c = 3 c = 1 c = 3 c = 1 Kolmen muuttujan tapauksessa saadaan vastaavasti tasa-arvopintoja. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuuta osa2016 I 3 / 17
4 Raja-arvo, määritelmä I lim (x,y) (x0,y 0 ) f (x, y) = L jos f (x, y) L on pieni aina kun (x, y) (x 0, y 0 ) = (x x 0 ) 2 + (y y 0 ) 2 on riittävän pieni ja (x, y) (x 0, y 0 ). Raja-arvo, määritelmä II lim x x0 f (x) = L jos f (x) L on pieni kun x x 0 on riittävän pieni ja x x 0. Vektorin pituus Vektorin x pituus, kun sen komponentit ovat x 1, x 2,..., x d, on tässä x = x1 2 + x x d 2 sillä on normaalit pituuden ominaisuudet. Raja-arvo, määritelmä III limx x 0 x Ω mutta raja-arvot eivät riipu siitä miten vektorin pituus on määritelty kunhan f (x) = L jos jokaisella ɛ > 0 on olemassa δ > 0 siten, että jos 0 < x x 0 < δ ja x Ω niin pätee f (x) L < ɛ. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuuta osa2016 I 4 / 17
5 Raja-arvo, ominaisuudet Jos lim x x0 f (x) = F ja lim x x0 g(x) = G niin pätee lim x x0 ( αf (x) + βg(x) ) = αf + βg, lim x x0 f (x)g(x) = FG, f (x) lim x x0 g(x) = F G jos G 0. Tästä seuraa, että raja-arvot, joiden määrittäminen on hankalaa ja näin ollen vaativat eniten työtä, ovat ne, joissa sijotus antaa tulokseksi 0 0. Raja-arvo, kuristusperiaate Jos lim x x0 g(x) = 0 ja f (x) g(x) (kun x x 0 ) niin lim x x0 f (x) = 0. Jos lim x x0 g(x) = lim x x0 h(x) = L ja g(x) f (x) h(x) (kun x x 0 ) niin lim x x0 f (x) = L. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuuta osa2016 I 5 / 17
6 Raja-arvo säteitä pitkin Jos f on yhden reaalimuuttujan funktio niin sillä on raja-arvo pisteessä t 0 jos ja vain jos oikean- ja vasemmanpuoliset raja-arvot ovat samat. Useamman muuttujan tapauksessa tilanne on osittain toinen: Jos raja-arvo lim t 0+ f (x 0 + αt, y 0 + βt) ei ole riippumaton parametrien α ja β arvoista niin raja-arvo lim (x,y) (x0,y 0 ) f (x, y) ei ole olemassa. Jos lim t 0+ f (x 0 + αt, y 0 + βt) = L kaikilla α ja β joilla α 2 + β 2 > 0 niin tästä seuraa ainoastaan, että jos raja-arvo on olemassa niin se on L. Epäyhtälöitä ym. Jos lim x x0 f (x) = F, lim x x0 g(x) = G ja f (x) g(x) kun x x 0 niin pätee F G. Jos lim x x0 f (x) = F niin pätee lim (x,y) (x0,y 0 ) f (x) = F. Jos lim x x0 g(x) = G ja g(x) G kun x x 0 niin pätee lim x x0 f ( g(x) ) = lim t G f (t). G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuuta osa2016 I 6 / 17
7 Jatkuvat funktiot Funktio f : Ω R on jatkuva pisteessä x 0 jos x 0 Ω R d ja lim x x 0 x Ω f (x) = f (x 0 ) eli Ω on R d :n osajoukko, x 0 kuuluu joukkoon Ω, f (x 0 ) on määritelty, raja-arvo on olemassa ja se on f (x 0 ). Funktion f : Ω R on jatkuva joukossa Ω R d jos lim x x 0 x Ω f (x) = f (x 0 ) kaikilla x 0 Ω. eli jos se on jatkuva joukon Ω jokaisessa pisteessä. Jatkuvat vektoriarvoiset funktiot Funktio f : Ω R m on jatkuva pisteessä x 0 Ω, (joukossa Ω), jos jokainen komponentti on jatkuva pisteessä x 0 Ω, (joukossa Ω). G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuuta osa2016 I 7 / 17
8 Jatkuvien funktioiden summa, tulo ja osamäärä Jos f ja g : Ω R ovat jatkuvia joukossa Ω R d niin αf (x) + βg(x) ja f (x)g(x) ovat jatkuvia joukossa Ω, f (x) g(x) on jatkuva joukossa { x Ω : g(x) 0 }. Jatkuvien funktioiden yhdistetty funktio on jatkuva Jos g : Ω g Ω f ja f : Ω f R m, missä Ω g R d ja Ω f R p, ovat jatkuvia määrittelyjoukoissaan niin funktio (f g)(x) = f (g(x)) on jatkuva joukossa Ω g. Huom! Jos funktio f (x, y) on jatkuva (esim. R 2 :ssa) niin funktio x f (x, y) on jatkuva kaikilla parametrin y arvoilla ja funktio y f (x, y) on jatkuva kaikilla parametrin x arvoilla. Mutta jos ainoastaan oletamme, että funktio x f (x, y) on jatkuva kaikilla y ja funktio y f (x, y) on jatkuva kaikilla x niin tästä ei välttämättä seuraa, että funktio (x, y) f (x, y) olisi jatkuva. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuuta osa2016 I 8 / 17
9 Osittaisderivaatat Erilaisia merkintätapoja f (x + h, y) f (x, y) f x (x, y) = lim h 0 h f (x, y + k) f (x, y) f y (x, y) = lim k 0 k f x = f x = D xf = f 1 = D 1 f = D (1,0) f... f xy = (f x ) y = y Derivoimisjärjestyksen vaihto f x = 2 f y x = D(1,1) f. Jos f x, f y, f xy ja f yx ovat olemassa ja jatkuvia niin pätee f xy = f yx. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuuta osa2016 I 9 / 17
10 Derivaatta Funktio f : R d R on derivoituva pisteessä x jos on olemassa (rivi)vektori, joka merkitään f (x):llä siten, että f (x + h) f (x) f (x)h lim = 0. h 0 h Tässä f (x)h on 1 d-rivivektorin f (x) ja d 1-sarakevektorin h matriisitulo, ja se voidaan myös esittää pistetulon muodossa f (x) h jos ei haluta tehdä eroa rivi- ja pystyvektorien välillä. Muita usein käytettyjä derivaatan merkintöjä ovat f (x) ja Df (x). Derivaatta ja osittaisderivaatat Jos funktiolla f : R d R on jatkuvat osittaisderivaatat niin f on derivoituva ja f (x) = f (x) = Df (x) = [ f x1 (x) f x2 (x)... f xd (x) ]. Jatkuvasti derivoituva Derivoituva ja derivaatta on jatkuva G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuutaosa 2016 I 10 / 17
11 Vektoriarvoisen funktion derivaatta Funktio f : R d R m on derivoituva pisteessä x jos jokainen komponentti on derivoituva pisteessä x, eli on olemassa m d matriisi f (x) siten, että f(x + h) f(x) f (x)h lim = 0. h 0 h Matriisin f (x) rivivektorit ovat vektorin f komponenttien derivaatat ja f (x)(i, j) = f i (x) x j. (Tätä matriisia kutsutaan usein Jacobin matriisiksi.) Ketjusääntö Jos h(x) = f(g(x)) missä f ja g ovat derivoituvia niin pätee h (x) = f (g(x))g (x). Huomaa, että tässä oletetaan, että x, g ja f ovat sarakevektoreita (mahdollisesti vain yhdellä komponentilla) ja on tärkeätä että ketjusääntö kirjoitetaan järjestyksessä f (g)g koska jos g : R d R p ja f : R p R m niin f on m p-matriisi ja g on p d-matriisi jolloin matriisitulo f (g(x))g (x) on hyvin määritelty. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuutaosa 2016 I 11 / 17
12 Suunnattu derivaatta Funktion f suunnattu derivaatta pisteessä x suuntaan u on funktion t f (x + t 1 u u) derivaatta pisteessä 0 ja on näin ollen D u f (x) = f (x)u 1 ( ) u = f (x) 1 u u, ja se kertoo miten nopeasti funktio f kasvaa tai vähenee kun kuljetaan pisteestä x suuntaan u. Huomaa, että D i f (x, y, z) = f x (x, y, z), D j f (x, y, z) = f y (x, y, z) ja D k f (x, y, z) = f z (x, y, z), eli osittaisderivaatat ovat suunnatut derivaatat koordinaattiakselien (positiivisiin) suuntiin. Mihin suuntaan osoittaa gradientti? Suunnattu derivaatta D u f (x) pisteessä x on suurimmillaan kun u Df (x) (ja pienin vastakkaiseen suuntaan ) joten funktio kasvaa nopeimmin gradientin suuntaan. Suunnattu derivaatta on 0 kun u Df (x) joten gradientti on kohtisuorassa tasa-arvokäyriä (tai -pintoja) kohti. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuutaosa 2016 I 12 / 17
13 Lineaarinen approksimointi f (x + h) f (x) + f (x)h = f (x) + f (x) h, tai toisella tavalla esitettynä f (x + x, y + y, z + z) f (x, y, z) f x (x, y, z) x + f y (x, y, z) y + f z (x, y, z) z. Tangenttitaso Koska gradientti on kohtisuorassa tasa-arvopintoja kohti niin pinnan f (x, y, z) = c normaali pisteessä (x 0, y 0, z 0 ) on f (x 0, y 0, z 0 ) = f x (x 0, y 0, z 0 )i + f y (x 0, y 0, z 0 )j + f z (x 0, y 0, z 0 )k, ja pinnan tangenttitasolla pisteessä (x 0, y 0, z 0 ) on yhtälö f x (x 0, y 0, z 0 )(x x 0 ) + f y (x 0, y 0, z 0 )(y y 0 ) + f z (x 0, y 0, z 0 )(z z 0 ) = 0 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuutaosa 2016 I 13 / 17
14 Jos Lineaarinen approksimointi ja suhteelliset virheet, erikoistapaus f (x 1, x 2,..., x n ) = cx α 1 1 x α x αn n, niin lineaarisella approksimoinnilla saadaan f f = f (x 1 + x 1, x 2 + x 2,..., x n + x n ) f (x 1, x 2,..., x n ) f (x 1, x 2,..., x n ) x 1 x 2 x n α 1 + α α n, x 1 x 2 x n ja erityisesti f f α 1 x 1 x 1 + α 2 x 2 x α n x n x n. G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuutaosa 2016 I 14 / 17
15 Newtonin menetelmä: f(x) = 0 x =? Jos f(x n + x) = 0 niin pätee 0 = f(x n + x) f(x n ) + f (x n ) x x f (x n ) 1 f(x n ) ja jotta x n+1 x n + x valitsemme x n+1 = x n f (x n ) 1 f(x n ). Käänteismatriisin f (x n) 1 laskeminen ei ole välttämätöntä mutta meidän pitää ratkaista yhtälösysteemi f (x n)(x n+1 x n) = f(x n). Milloin Newtonin menetelmä suppenee? Jos f(x) on jatkuvasti derivoituvia, f(x ) = 0, f (x ) on kääntyvä matriisi ja jos x 0 x on riittävän pieni (mille voi antaa riittävä ehto) niin pätee lim n x n = x, mutta muuten ei ole takeita siitä, että menetelmä konvergoi ja vaikeus on löytää sopiva alkuarvo (ja tietää milloin pitää luovuttaa jos näyttää siltä ettei menetelmä konvergoikaan). G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuutaosa 2016 I 15 / 17
16 Newtonin menetelmä Jos haluamme käyttää Newtonin mentelmää yhtälösysteemin x 2 + 4y 2 = 4, x 2 2x = y 1 ratkaisemiseksi niin kirjoitamme ensin systeemin muodossa f(x) = 0, missä siis f(x) = [ x 2 + 4y 2 ] 4 x 2, X = 2x y + 1 [ ] x. y Silloin ja meidän pitää laskea [ ] f 2x 8y (X) =, 2x 2 1 X n+1 = X n f (X n ) 1 f(x n ), n 0. Jos valitsemme X 0 = 3 2 ja y 0 = 1 2 niin saamme [ 3 ] [ ] 1 [ ] [ X 1 = ] [ = ] [ ] = 4 [ 7 ] G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuutaosa 2016 I 16 / 17
17 Newtonin menetelmä, jatk. Jos käytämme laskuihin Matlab/Octavea niin määrittelemme ensin funktion f komennolla f=@(x)[x(1)^2+4*x(2)^2-4;x(1)^2-2*x(1)-x(2)+1] ja sitten sen derivaatan f komennolla df=@(x)[2*x(1),8*x(2);2*x(1)-2,-1] Sitten valitsemme X=[1.5;0.5] ja laskemme monto kertaa X=Xdf(X)-1*f(X) (tai X= X-df(X)\f(X)) ja tuloksena saamme [ ] [ ] X 1 = X = [ ] [ ] X 3 = X 4 = X 5 = [ ] X 6 = [ ] G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) 21. Yhteenveto, tammikuutaosa 2016 I 17 / 17
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
Usean muuttujan funktiot MS-A007 Differentiaali- ja integraalilaskenta (Chem) Yhteenveto ja esimerkkejä ym., osa G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto ja esimerkkejä ym., osa I
MS-A007 Differentiaali- ja integraalilaskenta (Chem) Yhteenveto ja esimerkkejä ym., osa G. Gripenberg Aalto-yliopisto 1. tammikuuta 016 G. Gripenberg (Aalto-yliopisto) MS-A007 Differentiaali- ja integraalilaskenta
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I
Usean muuttujan funktiot MS-A7 Differentiaali- ja integraalilaskenta (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta eli gradientti.
LisätiedotAntti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.
MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Riikka Korte Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen
LisätiedotMatematiikka B1 - avoin yliopisto
28. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Nettitehtävät Kurssin sisältö 1/2 Osittaisderivointi Usean muuttujan funktiot Raja-arvot Osittaisderivaatta Pinnan
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1
LisätiedotDerivaatta: funktion approksimaatio lineaarikuvauksella.
Viikko 5 Tällä viikolla yleistetään R 2 :n ja R 3 :n vektorialgebran peruskäsitteet n-ulotteiseen avaruuteen R n, ja määritellään lineaarikuvaus. Tarkastellaan funktioita, joiden määrittelyjoukko on n-ulotteisen
LisätiedotLuento 8: Epälineaarinen optimointi
Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori = (,..., ). Reaalisten m n-matriisien joukkoa merkitään
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä.
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 7: Pienimmän neliösumman menetelmä ja Newtonin menetelmä. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä
LisätiedotMatematiikka B1 - TUDI
Osittaisderivointi Osittaisderivaatan sovellukset Matematiikka B1 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Osittaisderivointi Osittaisderivaatan sovellukset Kurssin
LisätiedotMatematiikan perusteet taloustieteilij oille I
Matematiikan perusteet taloustieteilijöille I Harjoitukset syksy 2006 1. Laskeskele ja sieventele a) 3 27 b) 27 2 3 c) 27 1 3 d) x 2 4 (x 8 3 ) 3 y 8 e) (x 3) 2 f) (x 3)(x +3) g) 3 3 (2x i + 1) kun, x
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa
LisätiedotBM20A0300, Matematiikka KoTiB1
BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 3. luento 17.11.2017 Neuroverkon opettaminen (ohjattu oppiminen) Neuroverkkoa opetetaan syöte-tavoite-pareilla
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
Lisätiedot. Kun p = 1, jono suppenee raja-arvoon 1. Jos p = 2, jono hajaantuu. Jono suppenee siis lineaarisesti. Vastaavasti jonolle r k+1 = r k, suhde on r k+1
TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-.39 Optimointioppi Kimmo Berg 8. harjoitus - ratkaisut. a)huomataan ensinnäkin että kummankin jonon raja-arvo r on nolla. Oletetaan lisäksi että
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
LisätiedotVektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotLaskuharjoitus 2A ( ) Aihepiiri: Raja-arvot etc. Adams & Essex, 8th Edition, Chapter 12. z = f(x, 0) = x2 a z = f(0, y) = 02 a 2 + y2
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Korte / Lindfors MS-A0207 Dierentiaali- ja integraalilaskenta 2 (CHEM), kevät 2017 Laskuharjoitus 2A (9.10.1.) Aihepiiri:
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotAnalyysi I (sivuaineopiskelijoille)
Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A23 Differentiaali- ja integraalilaskenta 2, kevät 216 Laskuharjoitus 2A (Vastaukset) Alkuviikolla
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa II
MS-A27 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa II G. Gripenberg Aalto-yliopisto 9. helmikuuta 216 G. Gripenberg (Aalto-yliopisto) MS-A27 Differentiaali- ja integraalilaskenta
LisätiedotTäydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
LisätiedotOletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
LisätiedotDifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet
ifferentiaali- ja integraalilaskenta 2 (CHEM) MS-A27 Hakula/Vuojamo Kurssitentti, 2.2, 28, arvosteluperusteet T Moniosaisten tehtävien osien painoarvo on sama ellei muuta ole erikseen osoitettu. Kokeessa
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Lisätiedot1 Rajoittamaton optimointi
Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y
LisätiedotDifferentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Lokaalit ääriarvot Yhden muuttujan funktion f (x) lokaali maksimi on piste x 0, jossa f (x) on suurempi kuin muualle pisteen x 0 ympäristössä, eli kun f (x 0 )
Lisätiedota) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:
6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
LisätiedotRatkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 3A (Vastaukset) Alkuviikolla
LisätiedotMS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
LisätiedotJohdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 2. luento 10.11.2017 Keinotekoiset neuroverkot Neuroverkko koostuu syöte- ja ulostulokerroksesta
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
Lisätiedot, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 017 Harjoitus 4 Ratkaisuehdotukset 4.1. Osoita, että tasa-arvojoukko S F (0), F : R 3 R, F (x) = 3x 1 x 3 + e x + x e x 3, on säännöllinen
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 4. Kurssikerta Petrus Mikkola 4.10.2016 Tämän kerran asiat Funktion raja-arvo Raja-arvon määritelmä Toispuolinen raja-arvo Laskutekniikoita Rationaalifunktion esityksen
LisätiedotNeliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja
7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien
LisätiedotTalousmatematiikan perusteet: Luento 13. Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto
Talousmatematiikan perusteet: Luento 13 Usean muuttujan funktiot Osittaisderivaatta ja gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia
Lisätiedotr > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
LisätiedotKuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
LisätiedotMatematiikan tukikurssi. Toinen välikoe
Matematiikan tukikurssi Toinen välikoe 1 Sisältö 1 Useamman muuttujan funktion raja-arvo 1 2 Useamman muuttujan funktion jatkuvuus 7 3 Osittaisderivaatat ja gradientti 8 4 Vektoriarvoiset funktiot 9 5
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotTalousmatematiikan perusteet: Luento 12. Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto
Talousmatematiikan perusteet: Luento 12 Usean muuttujan funktiot Osittaisderivaatta Gradientti Suhteellinen muutosnopeus ja osittaisjousto Aiemmilla luennoilla Tähän mennessä olemme tarkastelleet Erilaisia
LisätiedotTalousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään
LisätiedotMS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
LisätiedotTalousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
LisätiedotReaalilukuvälit, leikkaus ja unioni (1/2)
Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut
LisätiedotNumeeriset menetelmät
Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma
LisätiedotTalousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
LisätiedotLuento 9: Yhtälörajoitukset optimoinnissa
Luento 9: Yhtälörajoitukset optimoinnissa Lagrangen kerroin Oletetaan aluksi, että f, g : R R. Merkitään (x 1, x ) := (x, y) ja johdetaan Lagrangen kerroin λ tehtävälle min f(x, y) s.t. g(x, y) = 0 Olkoon
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotViikon aiheet. Funktion lineaarinen approksimointi
Viikon aiheet Funktion ääriarvot Funktion lineaarinen approksimointi Vektorit, merkintätavat, pituus, yksikkövektori, skalaarilla kertominen, kanta ja kannan vaihto Funktion ääriarvot 6 Väliarvolause Implisiittinen
LisätiedotTaustatietoja ja perusteita
Taustatietoja ja perusteita Vektorit: x R n pystyvektoreita, transpoosi x T Sisätulo: x T y = n i=1 x i y i Normi: x = x T x = ni=1 x 2 i Etäisyys: Kahden R n :n vektorin välinen etäisyys x y 1 Avoin pallo:
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
LisätiedotMatriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain
Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit
LisätiedotInjektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
LisätiedotMS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)
MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin
Lisätiedotmlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä osittaisderivaatoista: y 1... J F =.
LisätiedotVektorianalyysi I MAT Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21.
Vektorianalyysi I MAT21003 Luennoitsija: Ritva Hurri-Syrjänen Luentoajat: ti: 14:15-16:00, to: 12:15-14:00 Helsingin yliopisto 21. syyskuuta 2017 1 Sisältö 1 Euklidinen avaruus 3 1.1 Euklidinen avaruus
LisätiedotDifferentiaalimuodot
LUKU 2 Differentiaalimuodot Olkoot A R n ja p A. Vektori pisteessä p on pari (p; v), missä v R n. Pisteeseen p kiinnitetyn vektorin v p := (p; v) ensimmäinen komponentti p on vektorin v p paikkaosa ja
LisätiedotLineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi
Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja
LisätiedotLuento 11: Rajoitusehdot. Ulkopistemenetelmät
Luento 11: Rajoitusehdot. Ulkopistemenetelmät ja sisäpistemenetelmät Lagrangen välttämättömien ehtojen ratkaiseminen Newtonin menetelmällä Jos tehtävässä on vain yhtälörajoituksia, voidaan minimipistekandidaatteja
LisätiedotVASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
Lisätiedot3.4 Käänteiskuvauslause ja implisiittifunktiolause
3.4 Käänteiskuvauslause ja implisiittifunktiolause Tässä luvussa käsitellään kahta keskeistä vektorianalyysin lausetta. Esitellään aluksi kyseiset lauseet ja tutustutaan niiden käyttötapoihin. Lause 3.4.1
LisätiedotSelvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x
Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden
LisätiedotMS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotMatriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37
Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske
Lisätiedot2 Osittaisderivaattojen sovelluksia
2 Osittaisderivaattojen sovelluksia 2.1 Ääriarvot Yhden muuttujan funktiolla f(x) on lokaali maksimiarvo (lokaali minimiarvo) pisteessä a, jos f(x) f(a) (f(x) f(a)) kaikilla x:n arvoilla riittävän lähellä
LisätiedotBM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien
Lisätiedot3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Lisätiedoty x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1
1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y
Lisätiedot