Sijoitus integraaliin

Koko: px
Aloita esitys sivulta:

Download "Sijoitus integraaliin"

Transkriptio

1 1 / 32

2 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi funktioksi tulee f g, mutta... lisäksi on otettava huomioon, että sijoitus muuttaa joukon V osavälien I mittoja. Yhden muuttujan tapauksessa sijoitusfunktio g muuttaa pisteen y lähistöllä olevan välin, pituus dy, väliksi jonka pituus on g (y) dy. Tällöin U f(x) dx = V (f g)(y) g (y) dy. Tässä usein (lukio, Analyysi II) derivaatan g (y) mahdollinen negatiivisuus otetaan huomioon vaihtamalla integroimisrajat keskenään. 2 / 32

3 Tasossa Katsotaan ensin, miten lineaarikuvaus muuttaa välin mittaa. Sitä varten palautetaan mieleen suunnikkaan pinta-alan kaava. Oletetaan, että suunnikkaan sivuina esiintyvät vektorit u = (u 1, u 2 ) ja v = (v 1, v 2 ). Jos niiden välinen kulma on θ, niin suunnikkaan ala on A = u v sin θ. Lineaarialgebran perusteella myös A = u v = u 1 u 2 v 1 v 2 Lineaarikuvaus T : (x 1, x 2 ) = (u 1 x 1 + v 1 x 2, u 2 x 1 + v 2 x 2 ) kuvaa siten tason suorakaiteet suunnikkaiksi, joiden pinta-ala on u 1 v 2 u 2 v 1 -kertainen.. 3 / 32

4 3-ulotteisessa avaruudessa Samaan tapaan R 3 :ssa vektorien u = (u 1, u 2, u 3 ), v = (v 1, v 2, v 3 ) ja w = (w 1, w 2, w 3 ) määräämän suuntaissärmiön tilavuus on skalaarikolmitulon itseisarvo V = [u, v, w] = u (v w) u 1 v 1 w 1 = ± u 2 v 2 w 2. u 3 v 3 w 3 Jos T : R 3 R 3 on ehtojen T(i) = u, T(j) = v ja T(k) = w määräämä lineaarikuvaus, niin kaikille väleille I R 3 on voimassa m(t(i)) = m(i) [u, v, w]. 4 / 32

5 n-ulotteinen tapaus Yleisestikin lineaarikuvauksen determinantin itseisarvo antaa mittojen skaalauskertoimien. Riittää todistaa tämä alkeismatriiseille sillä kaikki matriisit saadaan niiden tulona (determinantin tulosääntö!): Jos n-särmiön jonkin sivun pituus kerrotaan skalaarilla a, niin särmiön mitta tulee a -kertaiseksi. Jos n-särmiön kaksi sivua vaihtavat rooleja (det = 1), niin särmiö ei muutu. Miinusmerkki näkyy kätisyyden vaihtumisena (peilikuva). Jos johonkin särmävektoriin lisätään jonkiin toisen monikerta, niin mitta ei muutu (murroskuvaus = shearing, suunnikkaan ala = kanta kertaa korkeus kuten suorakaiteenkin). 5 / 32

6 n determinantti Kun kuvaus ei ole lineaarinen, niin mittaskaalan muunnoskerroin riippuu pisteestä x. Ideana on että lokaalisti differentioituvaa kuvausta g voidaan mielivaltaisen tarkasti approksimoida sen derivaatalla Dg. Mitan skaalauskerroin on siis matriisin g 1 g x 1 (x) 1 g x 2 (x) 1 x n (x) g 2 g x 1 (x) 2 g x 2 (x) 2 x n (x) g n x 1 (x) g n x 2 (x) determinantti, ns. n determinantti g n x n (x) J g (x) = (y 1, y 2,..., y n ) (x 1, x 2,..., x n ). 6 / 32

7 Napa/sylinterikoordinaatit Usein esiintyvät sijoitukset ovat koordinaatistomuunnoksia. Kun x = r cos φ, y = r sin φ, niin (x, y)/ (r, φ) = r (napakoordinaatit). 3-ulotteisessa avaruudessa puhutaan sylinterikoordinaateista, jolloin kolmantena koordinaattina on z. Tietenkin (x, y, z)/ (r, φ, z) = r. 7 / 32

8 Tehtävä: Demoissa näimme, että ellipsillä x 2 + xy + y 2 = molemmat koordinaatit on rajattu välille x, y [ 2, 2]. Näin ollen ellipsin sisällä ja reunalla funktio z = z(x, y) = 4 x 2 saa vain ei-negatiivisia arvoja, joten sen kuvaaja ellipsin sisäalueen päällä rajaa erään kappaleen. Laske sen tilavuus. 8 / 32

9 9 / 32

10 Olkoon E ellipsin sisäalue reunoineen. Kysytty tilavuus on V = (4 x 2 ) dx dy. E On monta tapaa edetä. Yksi on yksinkertaistaa integroimisalue helpommin käsiteltävään muotoon. Diagonalisoidaan ensin sen määrittelevä neliömuoto. Viime viikolla näimme, että muuttujien u = (x + y)/ 2 ja v = (x y)/ 2 avulla kirjoitettuna x 2 + xy + y 2 3 3u 2 + v 2 6. Tässä x = (u + v)/ 2 ja y = (u v)/ / 32

11 Näin ollen ( ( (x, y) (u, v) = det )) n determinantti on siis vakio 1, itseisarvoltaan 1. Jos merkitsemme E :lla ellipsin 3u 2 + v 2 = 6 sisäaluetta, niin saimme ( ) (u + v)2 V = 4 du dv. 2 E Skaalataan seuraavaksi ellipsi ympyräksi sijoituksella 3u = w. Tällöin u = w/ 3, joten du = dw/ 3, ja V = 1 3 w 2 +v 2 6 ( 4 w2 6 vw v ) dw dv. 11 / 32

12 Lopuksi siirrytään napakoordinaatteihin sijoituksella w = r cos φ, v = r sin φ, v 2 + w 2 = r 2, jolloin (v, w)/ (r, φ) = r. Integroimisalue on vw-tason origokeskinen ympyrä, joten φ [0, 2π] muuttujan r arvosta riippumatta: V = r=0 2π φ=0 ( 4 r 2 ( sin 2 φ 2 + sin φ cos φ 3 )) + cos2 φ r dφ dr 6 Tässä sisäintegraaleina esiintyvä trigonometriset integraalit ovat tunnetusti 2π 2π 2π cos 2 φ dφ = π = sin 2 φ dφ, sin φ cos φ dφ = / 32

13 Saadaan siis seuraava suoraviivainen ulompi integraali, joka antaa vastaukseksi V = 1 ( ) 6 π 8r 2r3 dr = 6 3π. 3 3 r=0 Jälkitarkastelu: Vaiheita oli useita, joten virheriskin pienentämiseksi tehdään lopuksi suuruusluokka-arvio. Ellipsin puoliakselit olivat pituudeltaan a = 6 ja b = 2, joten sen ala on A = πab = π 12 = 2 3π. Jos siis sen päällä oleva kappale olisikin lieriö, jonka korkeus on h = 3, niin senkin tilavuus olisi V 2 = Ah = 6 3π. Kuvan perusteella on hyvin uskottavaa, että tarkasteltavan kappaleen keskimääräinen korkeus on kolme. Saamamme vastaus on siis ainakin järkevää suuruusluokkaa. 13 / 32

14 Kun xz-tason piste (x 0, z 0 ), x 0 0, (tai 3-ulotteisessa maailmassa ehkä pikemminkin (x 0, 0, z 0 )) pyörähtää z-akselin ympäri, se piirtää ympyrän tasossa z = z 0. Ympyrällä ovat ne pisteet, jotka ovat etäisyydellä x 0 z-akselista. Jos φ on kiertokulma, niin ko. pisteen koordinaatit ovat (x, y, z) = (x 0 cos φ, x 0 sin φ, z 0 ), ja parametri φ [0, 2π). Yhtä hyvin voidaan valita φ joltakin muulta 2π:n mittaiselta väliltä, kuten napakoordinaattikulma aina muulloinkin. 14 / 32

15 Pallokoordinaatit 1 Parametrisoitu käyrä x(θ) = r sin θ, z(θ) = r cos θ, 0 θπ on xz-tason puoliympyrä x 2 + z 2 = r 2, x 0. Kun θ = 0 ollaan pohjoisnavalla (x, z) = (0, r), ja kun θ = π ollaan etelänavalla (x, z) = (0, r). Tämän käyrän pyörähtäessä z-akselin ympäri syntyy origokeskinen r-säteinen pallopinta, jolla x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ. Tässä φ on pallopinnan pituuspiiri (=meridiaani). Pohjoiset pallonpuoliskolla θ [0, π/2), päiväntasaajalla θ = π/2, ja eteläisellä pallonpuoliskolla θ (π/2, π]. Kun r [0, ), niin pallopinnat täyttävät koko avaruuden R / 32

16 Pallokoordinaatit 2 Kuvauksen (x, y, z) = g(r, θ, φ) derivaatan matriisi on D g (r, θ, φ) = sin θ cos φ r cos θ cos φ r sin θ sin φ sin θ sin φ r cos θ sin φ r sin θ cos φ cos θ r sin θ 0 Kehittämällä tämä alimman vaakarivin suhteen saadaan n determinantiksi (x, y, z) (r, θ, φ) = J g(r, θ, φ) = r 2 sin θ.. Pallokoordinaattien käyttö on jossain määrin indikoitu silloin, kun suure r 2 = x 2 + y 2 + z 2 ilmenee joko integroitavan funktion tai integroimisalueen määrittelyssä. 16 / 32

17 Kun tehdään sijoitus x = g(y), niin lähtöavaruuden pieni väli I = [y 1, y 1 + dy 1 ] [y 2, y 2 + dy 2 ] [y n, y n + dy n ], mitaltaan m(i) = dy 1 dy 2 dy n kuvautuu hieman vääristyneeksi joukoksi g(i). Kun välin mittasuhteet ovat kaikki pieniä, niin kuvajoukkoa voidaan approksimoida n-särmiöllä, jonka reunoina ovat vektorit Dg(y)(dy i e i ), i = 1, 2,..., n. Tämän laatikon, ns. tilavuusalkion mitta on siten m(g(i)) = J g (y) m(i). Näitä vastaavat kuvat helpottavat (ainakin Jyrkin mielestä) muistamista, vaikka jättävätkin hieman epätäsmällisen vaikutelman. 17 / 32

18 Tehtävä: Erään planeetan (pallomainen, säde R) tiheys sen pinnalla on ρ 0. Planeetan painovoiman ansioista tiheämpi aines on painunut sen keskelle. Oletetaan, että tiheys planeetan sisälle mentäessä kasvaa lineaarisesti syvyyden funktiona siten, että planeetan keskipisteessä se on 3ρ 0. Laske planeetan massa. Ratkaisu: Asetetaan origo planeetan keskipisteeseen. Tehtävässä annettiin, että tiheys riippuu vain etäisyydestä r ρ = ρ(r) = A + Br, missä A, B ovat vakioita. Yhtälöistä ρ(0) = 3ρ 0 ja ρ(r) = ρ 0 saadaan A = 3ρ 0, B = 2ρ/R. 18 / 32

19 Keskipisteestä etäisyydellä r = x 2 + y 2 + z 2 olevan tilavuusalkion dv = dx dy dz massa on siten dm = ρ( x 2 + y 2 + z 2 ) dv = ρ 0 (3 2 x 2 + y 2 + z 2 ) dv. R Planeetan massa m saadaan laskemalla nämä yhteen m = ρ 0 (3 2 x 2 + y 2 + z 2 ) dx dy dz. x 2 +y 2 +z 2 R 2 R Tässä on ilmeistä siirtyä pallokoordinaatteihin, jolloin x 2 + y 2 + z 2 = r ja dx dy dz = r 2 sin θ dr dθ dφ. 19 / 32

20 Näin ollen vastaukseksi saadaan m = ρ 0 R r=0 = 2πρ 0 R π r=0 2π θ=0 φ=0 π θ=0 (3 2r R )r2 sin θ dφ dθ dr (3 2r R )r2 sin θ dθ dr R = 2 2πρ 0 (3 2r r=0 R )r2 dr ( ) R 3 = 2 2πρ 0 = 2πR 3 ρ / 32

21 Jälkitarkastelu: Koska planeetan tilavuus on V = 4πR 3 /3, niin sen keskimääräinen tiheys on ρ average = m V = 3ρ 0/2. Tämä on välillä (ρ 0, 3ρ 0 ), joten ainakin jossain määrin järkevä. Suuri osa planeetan tilavuudesta on lähellä sen pintaa, joten on luonnollista, että tiheys pinnalle on merkitsevämpi kuin tiheys keskellä. 21 / 32

22 Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F2 22 / 32

23 Polkuyhtenäisyys 1 Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F2 Olkoon U R n. Sanotaan, että pisteet p 1, p 2 U voidaan yhdistää U:ssa kulkevalla käyrällä, jos on olemassa jatkuva polku γ : [a, b] U, jolle γ(a) = p 1 ja γ(b) = p 2. Merkitään p 1 U p 2. Kaikilla p U, p U p, sillä voidaan valita γ p : [0, 1] U, γ p (t) = p, kaikille t [0, 1]. Jos γ : [a, b] U on jatkuva polku p 1 p 2, niin käänteinen polku γ (t) = γ(a + b t) on jatkuva polku p 2 p 1. Näin ollen relaatio U on symmetrinen. Relaatio on myös transitiivinen. Jos γ 1 : [a, b] U on polku p 1 p 2 ja γ 2 : [b, c] U on polku p 2 p 3, niin tulopolku γ 2 γ 2 on polku p 1 p 3. Relaatio U on siis ekvivalenssirelaatio. Joukko U jakautuu siis ekvivalenssiluokkiin, joita kutsutaan joukon U (polku)yhtenäisyyskomponenteiksi. 23 / 32

24 Polkuyhtenäisyys 2 Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F2 24 / 32

25 Polkuyhtenäisyys 3 Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F2 Tarvitsemme näitä käsitteitä vain, kun U on avoin. Tällöin (Lause VIII.1.2) kertoo, että yhdistävät polut voidaan aina koota äärellisen monesta palasta, jotka ovat koordinaattiakselien suuntaisia. Jos ekvivalenssiluokkia on vain yksi, sanotaan että U on polkuyhtenäinen. Jos U on avoin, niin (Lause VIII.1.2) tämä on ekvivalenttia sen kanssa, ettei U:ta voida esittää kahden erillisen avoimen epätyhjän joukon A, B R n unionina. Alue = polkuyhtenäinen avoin joukko R n 25 / 32

26 Esimerkki 3.C Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F2 Tason osajoukko U = {(x, y) 1 < x 2 + y 2 < 9} on selvästi polkuyhtenäinen / 32

27 Esimerkki 3.D1 Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F2 Tason osajoukko V = {(x, y) xy > 1} sen sijaan ei ole polkuyhtenäinen. Esimerkiksi pisteitä p 1 = ( 3, 1) V ja p 2 = (2, 3) V ei voi yhdistää käyrällä, joka kulkee V :ssä. Jos nimittäin γ : [a, b] V, γ(t) = (x(t), y(t)) olisi tällainen käyrä, niin x(a) = 3 < 0, x(b) = 2 > 0, joten Bolzanon lauseen nojalla on olemassa c (a, b), jolle x(c) = 0. Kuitenkaan joukossa V ei ole yhtään pistettä, jonka x-koordinaatti olisi nolla. 27 / 32

28 Esimerkki 3.D2 Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F / 32

29 Vektorikenttä Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F2 Oletetaan, että U R n on alue. Funktiota f = (f 1, f 2,..., f n ) : U R n sanotaan vektorikentäksi. Jatkuvaa vektorikenttää voidaan visualisoida piirtämällä kuva, jossa kattavasta joukosta U:n pisteitä p 1,..., p N alkamaan on piirretty vektori f(p 1 ), f(p 2 ),..., f(p N ). WolframAlpha (ja Mathematica) piirtävät näitä komennolla VectorPlot. Jotta kuvasta ei tulisi liian sotkuinen, vektorit f(p) skaalataan piirtämisalueella lyhyemmiksi (joskus tämä tuottaa liian lyhyitä vektoreita, jolloin kuva ei hahmotu). Sanotaan, että funktio u : U R on vektorikentän f joukossa U, jos u on luokkaa C 1, ja kaikille x U u(x) = f(x). 29 / 32

30 Esimerkki 3.E Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F2 Alla tason vektorikenttä f = ( y, x). Koska f(x, y) = x 2 + y 2 niin kentän vektorit ovat sitä pidempiä, mitä kauempana origosta ollaan. Huomaa, että koska ( y, x) (x, y), niin kentän vektorit ovat kohtisuorassa pisteen paikkavektoria (x, y) vastaan / 32

31 Esimerkki 3.F1 Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F2 Alla joukon U = R 2 \ {(0, 0)} vektorikenttä x f(x, y) = ( (x 2 + y 2 ) 3/2, y (x 2 + y 2 ) 4 2 3/2 ) / 32

32 Esimerkki 3.F2 Polkuyht. 1 Polkuyht. 2 Polkuyht. 3 Esimerkki 3.C Esimerkki 3.D1 Esimerkki 3.D2 Vektorikenttä Esimerkki 3.E Esimerkki 3.F1 Esimerkki 3.F2 Suoraan osittaisderivoimalla nähdään lisäksi, että ( ) 1 x = ( x 2 + y 2 (x 2 + y 2 ) 3/2, y (x 2 + y 2 ) = f(x, y) ) 3/2 kaikilla (x, y) U. Näin ollen funktio u(x, y) = on vektorikentän f. 1 x 2 + y 2 32 / 32

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Käyrien välinen dualiteetti (projektiivisessa) tasossa

Käyrien välinen dualiteetti (projektiivisessa) tasossa Solmu 3/2008 1 Käyrien välinen dualiteetti (projektiivisessa) tasossa Georg Metsalo georg.metsalo@tkk.fi Tämä kirjoitus on yhteenveto kaksiosaisesta esitelmästä Maunulan yhteiskoulun matematiikkapäivänä

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

1.7 Gradientti ja suunnatut derivaatat

1.7 Gradientti ja suunnatut derivaatat 1.7 Gradientti ja suunnatut derivaatat Funktion ensimmäiset osittaisderivaatat voidaan yhdistää yhdeksi vektorifunktioksi seuraavasti: Missä tahansa pisteessä (x, y), jossa funktiolla f(x, y) on ensimmäiset

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi 5.3 Kartio Kun suora liikkuu avaruudessa niin, että yksi sen piste pysyy paikoillaan ja suoran jokin toinen piste kiertää jossakin tasossa jonkin suljetun käyrän palaten lähtöpaikkaansa, syntyy kaksiosainen

Lisätiedot

5. Integrointi n-ulotteisessa avaruudessa

5. Integrointi n-ulotteisessa avaruudessa 71 5. Integrointi n-ulotteisessa avaruudessa Taso-integraali 2 Yleistetään edellä esitetty määrätyn integraalin käsite ensin tasoon, 3 n sitten kolmiulotteiseen avaruuteen ja lopuksi yleiseen :ään. Kaikissa

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Trigonometriset funktiot

Trigonometriset funktiot Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo?

cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti. Piirrä integroitavan funktion kuvaaja. Mikä itse asiassa on integraalin arvo? Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos Matlab-tehtäviä, käyrän sovitus -e Differentiaali- ja integraalilaskenta 1. Laske integraali 2π cos x 13 12 cos 2x dx a) symbolisesti, b) numeerisesti.

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

1 Euklidiset avaruudet R n

1 Euklidiset avaruudet R n 1 Euklidiset avaruudet R n Tässä osiossa käymme läpi Euklidisten avaruuksien R n perusominaisuuksia. Olkoon n N + positiivinen kokonaisluku. Euklidinen avaruus R n on joukko R n = {(x 1, x 2,..., x n )

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Differentiaali- ja integraalilaskenta 2

Differentiaali- ja integraalilaskenta 2 ifferentiaali- ja integraalilaskenta 2 Riikka Kangaslampi Syksy 214 2 Esipuhe Tämä on Aalto-yliopiston Matematiikan ja systeemianalyysin laitoksen kurssin ifferentiaali- ja integraalilaskenta 2 tueksi

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ

33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen

4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA. T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 4 / 2013 TI-NSPIRE CAS TEKNOLOGIA LUKIOSSA T3-kouluttajat: Olli Karkkulainen ja Markku Parkkonen 1 2 TI-Nspire CX CAS kämmenlaite kevään 2013 pitkän matematiikan kokeessa Tehtävä 1. Käytetään komentoa

Lisätiedot

Stokesin lause LUKU 5

Stokesin lause LUKU 5 LUU 5 Stokesin lause 5.1. Integrointi monistolla Olkoot W R k alue, W kompakti Jordan-joukko ja ω jatkuva k-muoto alueessa W, ω f dx 1 dx k. Asetetaan ω : f, t.s. f dx 1 dx k : f(x dx f(x 1,, x k dx 1

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Fysiikan matemaattisia menetelmiä IPhO-kilpailijalle

Fysiikan matemaattisia menetelmiä IPhO-kilpailijalle Fysiikan matemaattisia menetelmiä IPhO-kilpailijalle Heikki Mäntysaari Jyväskylän yliopisto, fysiikan laitos Fysiikka on eksakti luonnontiede, jossa ilmiöitä pyritään kuvaamaan mahdollisimman tarkasti

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat Trigonometria. a) Määrittele trigonometriset funktiot. b) Vertaa trigonometristen funktioiden ominaisuuksia määritys- ja arvojoukko sekä perusjakso). * Trigonometriset funktiot suorakulmaisessa kolmiossa

Lisätiedot

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.

MAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon. MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise

Lisätiedot

MAA7 HARJOITUSTEHTÄVIÄ

MAA7 HARJOITUSTEHTÄVIÄ MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta

Viivaintegraali: Pac- Man - tulkinta Viivaintegraali: "Pac- Man" - tulkinta Otetaan funk6o f(x,y), joka riippuu muu@ujista x ja y. Jokaiselle x,y tason pisteellä funk6olla on siis joku arvo. Tyypillisiä fysikaalis- kemiallisia esimerkkejä

Lisätiedot

YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ

YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ INTERNETIX Ylioppilaskirjoitusten tehtävät Page YLIOPPILSTUTINTO MTEMTIIN OE PITÄ OPPIMÄÄRÄ okeessa saa vastata enintään kymmeneen tehtävään Eräät tehtävät sisältävät useita osia [merkittynä a), b) jne],

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Derivaatan sovelluksia

Derivaatan sovelluksia Derivaatan sovelluksia Derivaatta muutosnopeuden mittarina Tehdään monisteen esimerkistä 5 hiukan mutkikkaampi versio Olete- taan, että meillä on mpräpohjaisen kartion muotoinen astia, johon virtaa vettä

Lisätiedot

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit

Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Lääkisvalmennuskurssit DI-valmennuskurssit yo-valmennuskurssit Pitkä matematiikka, syksy 05 Mallivastaukset, 3.9.05 Mallivastausten laatimisesta ovat vastanneet filosofian maisteri Teemu Kekkonen ja diplomi-insinööri

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on

Lisätiedot

Differentiaaliyhtälöt

Differentiaaliyhtälöt Differentiaaliyhtälöt Differentiaaliyhtälöksi (lyh. DY) sanotaan yhtälöä, jossa on tuntemattomana jokin funktio y(x) ja jossa esiintyy sen derivaattoja y, y, y, y (4),... Esimerkiksi y + y = x, y y + y

Lisätiedot

Matemaattiset menetelmät II

Matemaattiset menetelmät II Matemaattiset menetelmät II 5. helmikuuta 214 Esipuhe Tämä on 1. versio Matemaattiset menetelmät II-kurssin opetusmonisteesta, joka perustuu Vaasan yliopistossa luennoimaani vastaavan nimiseen kurssiin.

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Riemannin pintojen visualisoinnista

Riemannin pintojen visualisoinnista Riemannin pintojen visualisoinnista eli Funktioiden R R kuvaajat Simo K. Kivelä 7.7.6 Tarkastelun kohteena olkoon kompleksimuuttujan kompleksiarvoinen funktio f : C C, f(z) = w eli f(x + iy) = u(x, y)

Lisätiedot

Grafiikka 205. Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita.

Grafiikka 205. Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita. Grafiikka 205 9 Grafiikka Tässä luvussa käsitellään geometriaa ja graafisia kohteita. Mukana on pääosin alkeisoperaatioita. 9.1 Kolmio Seuraavana tutkimme kolmiota: Minkä tahansa kolmion ala saadaan kaavasta:

Lisätiedot

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.

Harjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½. MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö

Lisätiedot

1.1. Ympäristön ja raja-arvon käsite

1.1. Ympäristön ja raja-arvon käsite .. Ympäristön ja raja-arvon käsite Matematiikan opintojen tässä vaiheessa aletaan olla kiinnostavimpien sisältöjen laidassa. Tähänastiset pitkän matematiikan opinnot ovat olleet kuin valmistelua, jatkossa

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Yleistä 1. Ratkaise yhtälöt. a) n n n n n 5 b) x 3 x 1 5 5 5 5 5 5 x 1 0 x c). Suureet x ja y ovat

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2008

Preliminäärikoe Pitkä Matematiikka 5.2.2008 Preliminäärikoe Pitkä Matematiikka 5..008 Kokeessa saa vastata enintään kymmeneen tehtävään. Tähdellä (*) merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. Ratkaise

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Differentiaali- ja integraalilaskenta 3

Differentiaali- ja integraalilaskenta 3 ifferentiaali- ja integraalilaskenta 3 Riikka Kangaslampi Marh 22, 216 2 Esipuhe Tämä on Aalto-yliopiston Matematiikan ja systeemianalyysin laitoksen kurssin ifferentiaali- ja integraalilaskenta 3 luentomoniste.

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

2 x 5 4x + x 2, [ 100,2].

2 x 5 4x + x 2, [ 100,2]. 7. Derivaatan sovellutuksia 7.1. Derivaatta tangentin kulmakertoimena 6. Määritä a, b ja c siten, että käyrät y = x + ax + b ja y = cx x sivuavat toisiaan pisteessä (1,). a = 0, b =, c = 4. 6. Määritä

Lisätiedot

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4

Mb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4 Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot