3.4 Rationaalifunktion kulku ja asymptootit
|
|
- Kimmo Manninen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 .4 Rationaalifunktion kulku ja asymptootit Rationaali- eli murtofunktiolla tarkoitetaan funktiota R, jonka lauseke on kahden polynomin osamäärä: P() R(). Q() Ainakin nimittäjässä olevan polynomin asteluvun tulee olla vähintään yksi. Osoittajassa tosin saa olla vaikka nollannenkin asteen polynomi, siis vakio. Jos nimittäjä on vakio, kyseessä on polynomifunktio. Murtofunktion kulun ja kuvaajan piirtäminen vahvistuu tuntuvasti, jos paikallisten ääriarvojen ja funktion kasvamisen/vähenemisen lisäksi määritetään kuvaajan ns. asymptootit. Nämä ovat tavallisimmin suoria, joita funktion kuvaaja rajattomasti lähestyy. Joskus sanotaan, että kuvaaja sivuaa asymptoottiaan äärettömän kaukana. Kun murtofunktion kuvaajien piirtämiseen perehtyy, saa huomata, että asymptootit määräävät funktion kulun kaikkein oleellisimmin. Näissä yhteyksissä on nyt hyvä osata määrittää ns. epäoleellisia raja-arvoja, joissa itse raja-arvo saattaa olla ääretön (usein vain toispuoleisesti) taikka sitten tutkitaan lausekkeen/funktion arvoja muuttujan itseisarvon lähestyessä ääretöntä. Kun yhdellä lausekkeella ilmoitetusta polynomifunktiosta voi aina sanoa sen olevan derivoituva (ja siten jatkuva) koko R:ssä, niin rationaalifunktion laita ei ole samalla tavalla kovinkaan usein. Edellä on jo toisteltu sitä alkeistosiasiaa, ettei nollalla saa jakaa. Mikäli reaalilukujen joukosta poistetaan ne, jotka tekevät nimittäjän Q() nollaksi, niin määritysjoukko on käsissä. Tällainen funktio ei tietysti ole jatkuva millään sellaisella suljetulla välillä, joka sisältää nimittäjän nollakohtia. Muutoin voidaan käyttää sanontaa, että rationaalifunktio on määritysjoukossaan derivoituva ja siten jatkuva. Esim. 1 Piirrä funktion R() kuvaaja. Mitä arvoja funktio saa? Tällä funktiolla ei ole nimittäjän nollakohtia, joten funktio on määritelty koko R:ssä. Onhan ( + 1) + 1 > 1. Tällaisella funktiolla ei ole koskaan y-akselin suuntaista asymptoottia,
2 sillä koskaan ei jouduta funktion arvoja laskettaessa muotoon, jossa vakiota jaettaisiin nollalla. On hyvä huomata sekin, että funktion nimittäjä on kaikilla :n arvoilla positiivinen. Mitenkähän R käyttäytyy, kun rajattomasti itseisarvoltaan kasvaa? lim lim Itseisarvoltaan suurilla :n arvoilla funktion arvot lähestyvät rajattomasti -akselia, kuten aina niissä tapauksissa, joissa funktion lausekkeessa osoittajan asteluku on nimittäjän astelukua alempi. Sen, kummasta suunnata funktion kuvaaja lähestyy -akselia, määrää funktion merkki. Tässä nimenomaisessa esimerkissä R() > 0 silloin 1 kun > 0 eli kun >. 4 Paikallisten ääriarvojen määrittämistä varten derivoidaan, ja saadaan R() 4 R () ( R () ) (4 + 1) ( + ) ( + + ) ( ) ( + + ) ( + + ) Derivaatan merkin määrää sen osoittaja yksin. Haetaan osoittajan nollakohdat: tai. Derivaattalausekkeen osoittaja on 4 + 6, ja tämä saa positiivisia arvoja nollakohtiensa välissä. Huomaa, ettei derivaattaa itseään saa mennä kertomaan esim. luvulla 1, vaikka siinä olisi kuinka monta miinusmerkkiä tahansa. Koska tarkasteltava funktio on derivoituva koko R:ssä, ainoat mahdolliset ääriarvokohdat ovat derivaatan nollakohdat, joissa ääriarvo myös saavutetaan, koska derivaatta vaihtaa niissä merkin. Tämä näkyy derivaatan merkkikaaviosta:
3 1 R () + R() väh kas väh 4( ) R( ) 4 1 ( ) + ( ) R(1) 1 ma min, Funktio saa arvot 4 < R() < 1. Tämä voidaan varmuudella sanoa nojautuen siihen, että tiedetään funktion arvojen lähestyvän asymptoottisesti nollaa, kun itseisarvoltaan kasvaa tunnetaan derivaatan merkkikaavio
4 Esim. Piirrä funktion R() 6 4 kuvaaja. Mitä arvoja funktio saa? Tätä funktiota ei ole määritelty pisteissä tai. Määritettäessä raja-arvoa lim R() saadaan todeta, että funktion arvot joko kasvavat tai pienenevät rajattomasti. Funktion kuvaajalla on ns. pystyasymptootit näissä kahdessa kohdassa. Toisaalta 6 6 lim R() lim lim Funktion arvot kummassakin äärettömyydessä lähestyvät suoraa y. Tässä, kuten aina murtolausekkeen osoittajan ja nimittäjän ollessa samanasteiset, kuvaajalla on -akselin suuntainen asymptootti, jonka yhtälö on korkeinta astetta olevien termien kertoimien suhde. Kummalla puolen vaaka-asymptoottia käyrä milloinkin sijaitsee, saadaan selville arvioimalla erotusta R() : Kun ollaan hyvin kaukana origosta, joka tapauksessa alueessa, missä >, on 4 > 0. Kun ollaan alueessa >, niin 8 6 < 0 ja ollaan siten suoran alapuolella. Kun ollaan alueessa <, tilanne on päinvastainen. R() 4 R () 6 ( R () R () ( 4) ( ( 4) )(4 6) ( ) ( 4) 6)
5 Derivaatalla ei ole nollakohtia, koska yhtälön diskriminantti on negatiivinen. Derivaatta on aina positiivinen, missä se on määritelty, ja R() siten aidosti kasvava. On otettava kuitenkin huomioon, että nimittäjän nollakohdissa R() on epäjatkuva. Kuvaajan piirtämisessä auttaa kovasti, jos piirretään derivaatan merkkikaavion sijasta itse funktion merkkikaavio: 6 > 0 ( ) > 0 < 0 4 > 0 < tai > tai > R()
6 Funktio R saavuttaa kaikki reaaliarvot. Funktion kasvaminen nimittäjän nollakohtien läheisyydessä on erittäin jyrkkää. Toisaalta R kasvaa varsin loivasti, kun ollaan kaukana nimittäjän nollakohdista. Esim. Piirrä funktion R() + kuvaaja. Mitä arvoja funktio saa? Funktio on määritelty, derivoituva ja jatkuva, kun 1. Funktio vaihtaa merkkinsä tässä pisteessä, koska nimittäjäpolynomin merkki muuttuu, mutta osoittajan ei. Entä funktion merkki muuten? ± R() + + Kun 1, niin funktion arvot lähestyvät ääretöntä, jos lähestytään ykköstä pluspuolelta, oikealta. Funktion arvot lähestyvät miinus-ääretöntä, kun lähestytään ykköstä vasemmalta, miinuspuolelta. Kun ±, myös R() ±, mutta varsin lineaarisesti. Kun funktion R määrittelevässä yhtälössä osoittaja jaetaan nimittäjällä, ja sovelletaan varhaislapsuudessa opittua lainalaisuutta: jaettava jakaja kertaa osamäärä plus jakojäännös, saadaan + ( + )( ) Jakolasku suoritetaan jakokulmassa tavalliseen tapaan jatkaen jakoa niin kauan, että jakojäännös on alempaa astetta kuin jakaja (ellei satu menemään tasan).
7 Funktion kuvaajan ja suoran y + y koordinaattien erotus R() ( + ) 1 0, kun ±. Suora y + on funktion kuvaajan (ns. vino) asymptootti, ja äkkiä nähdään erotuksesta käyrä asymptootti, että käyrä on vinon asymptoottinsa yläpuolella, kun > 1 ja alapuolella, kun < 1. Kuvaajan asymptootit ovat siis 1 ja y + +. R() + ( )( + ) ( R () ( ) + ) ( ) ( ) 0 1 ( ) + + R () + + R() kas väh väh kas R(0) 1 on paikallinen maksimi ja R() on paikallinen minimi. Paikallinen minimi on paikallista maksimia suurempi!!. Tämä selittyy sillä, että funktio on epäjatkuva pisteessä 1. Funktio saa muutoin kaikki reaaliarvot, mutta ei arvoja väliltä 1 < R() < koskaan. Käyrä saattaa olla vaikka hyperbeli, katso kuvaa.
8 Käsiteltyjen esimerkkien jälkeen voidaan rationaalifunktioiden asymptooteista esittää jonkinlainen yhteenveto. Asia on kiinteässä yhteydessä epäoleellisiin rajaarvoihin. Tilanteet, joissa muuttuja lähestyy nimittäjän nollakohtaa, liittyvät rajaarvotarkasteluissa tapauksiin. Jos nimittäjän nollakohta on ns. parillinen, vakio 0 kohdassa on epäoleellinen raja-arvo ääretön tai miinus-ääretön. Nimittäjän nollakohdan ollessa pariton, kyseessä ovat toispuoleiset epäoleelliset raja-arvot (kuten oheisessa kuvassa). Muiden asymptoottien määrityksissä ovat kyseessä raja-arvot äärettömyyksissä. Kootaan yhteenveto lauseeksi:
9 ****************************************************************** LAUSE 1 Jokaista nimittäjäpolynomin nollakohtaa vastaa y-akselin suuntainen asymptootti. Osoittajan ollessa alempaa astetta kuin nimittäjä akseli on asymptootti. Osoittajan asteluvun ollessa nimittäjän asteluku kuvaajalla on - akselin suuntainen asymptootti, jonka yhtälö on korkeinta astetta olevien termien kertoimien suhde Osoittajan asteluvun ollessa yhtä suurempi kuin nimittäjän kuvaajalla on muotoa y k + b oleva asymptootti, jonka yhtälö saadaan selville jakamalla osoittaja nimittäjällä ja jatkamalla jakoa, kunnes jakojäännös on alempaa astetta kuin jakaja. Vaillinainen osamäärä antaa suoraan asymptoottisuoran lausekkeen. Jos osoittajan asteluku on vähintään kaksi nimittäjän astelukua suurempi, kuvaajalla on käyräviivainen asymptootti, jonka yhtälö selviää edelliskohdassa esitellyllä jakomenetelmällä. Asymptootin asteluku osoittajan asteluvun ja nimittäjän asteluvun erotus. ******************************************************************
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(
LisätiedotRationaalilauseke ja -funktio
4.8.07 Rationaalilauseke ja -funktio Määritelmä, rationaalilauseke ja funktio: Kahden polynomin ja osamäärä, 0 on rationaalilauseke, jonka osoittaja on ja nimittäjä. Huomaa, että pelkkä polynomi on myös
Lisätiedot5 Differentiaalilaskentaa
5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.
LisätiedotKERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.
KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a
LisätiedotVastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
LisätiedotJuuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K. a) E Nouseva suora. b) A 5. asteen polynomifunktio, pariton funktio Laskettu piste f() = 5 =, joten piste (, ) on kuvaajalla. c) D Paraabelin mallinen, alaspäin aukeava. Laskettu piste f() =
Lisätiedot6*. MURTOFUNKTION INTEGROINTI
MAA0 6*. MURTOFUNKTION INTEGROINTI Murtofunktio tarkoittaa kahden polynomin osamäärää, ja sen yleinen muoto on P() R : R(). Q() Mikäli osoittajapolynomin asteluku on nimittäjäpolynomin astelukua korkeampi
LisätiedotMAA7 HARJOITUSTEHTÄVIÄ
MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan
LisätiedotMATP153 Approbatur 1B Harjoitus 6 Maanantai
. (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
Lisätiedot4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
LisätiedotTekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.
Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
LisätiedotMatematiikkaa kauppatieteilijöille
Matematiikkaa kauppatieteilijöille Harjoitus 7, syksy 2016 1. Funktio f(x) = x 2x 2 + 4 on jatkuva ja derivoituva kaikilla x R. Nyt funktio f(x) on aidosti alaspäin kupera kun f (x) > 0 ja aidosti ylöspäin
Lisätiedot1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
Lisätiedot1.4 Funktion jatkuvuus
1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,
Lisätiedotn. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.
MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla
LisätiedotMAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele
LisätiedotRatkaisuehdotus 2. kurssikokeeseen
Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin
LisätiedotRatkaisuehdotus 2. kurssikoe
Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen
LisätiedotVASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
Lisätiedotjakokulmassa x 4 x 8 x 3x
Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:
LisätiedotMatematiikan peruskurssi (MATY020) Harjoitus 7 to
Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat
Lisätiedot2 Raja-arvo ja jatkuvuus
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti
LisätiedotA = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
LisätiedotTekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)
K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +
Lisätiedot3.1 Väliarvolause. Funktion kasvaminen ja väheneminen
Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille
LisätiedotMatematiikan pohjatietokurssi
Matematiikan pohjatietokurssi Demonstraatio, 8.-9.9.015, ratkaisut 1. Jaa tekijöihin (joko muistikaavojen avulla tai ryhmittelemällä) (a) x +x+ = x + x + = (x+) x +x+ = (x +x+1) = (x+1) (c) x 9 = (x) 3
Lisätiedot2 Yhtälöitä ja epäyhtälöitä
2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja
LisätiedotMAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
LisätiedotRaja arvokäsitteen laajennuksia
Raja arvokäsitteen laajennuksia Näitä ei ole oppikirjassa! Raja arvo äärettömyydessä: Raja arvo äärettömyydessä on luku, jota funktion arvot lähestyvät, kun muuttujan arvot kasvavat tai vähenevät rajatta.
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo -. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x +9, b) log (x) 7, c) x + x 4 =.. Määrää kaikki ne
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,
Lisätiedotmäärittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.
MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 3 Supremum ja infimum Tarkastellaan aluksi avointa väliä, ) = { : < < }. Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen. Kuitenkaan päätepisteet
LisätiedotMAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7. Koe Jussi Tyni 1..01 1. Laske raja-arvot: a) 5 x lim x5 x 10 b) x 8x16 lim x x 9 x. a) Määritä erotusosamäärän avulla funktion f (5). b) Onko funktio f x vastauksesi lyhyesti 1 9 x ( ) x f ( x)
Lisätiedotx 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua
Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö
Lisätiedot1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1
Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,
LisätiedotMatriisit ja optimointi kauppatieteilijöille
Matriisit ja optimointi kauppatieteilijöille Harjoitus 4, kevät 2019 1. a) f(x) = x 3 6x 2 + 9x + 1, 3 x 3 Funktio f(x) on jatkuva ja derivoituva. Funktio f(x) saavuttaa suurimman ja pienimmän arvonsa
LisätiedotMatematiikan tukikurssi, kurssikerta 4
Matematiikan tukikurssi, kurssikerta 4 1 Raja-arvo äärettömyydessä Tietyllä funktiolla f() voi olla raja-arvo äärettömyydessä, jota merkitään f(). Tämä tarkoittaa, että funktio f() lähestyy jotain tiettyä
Lisätiedot1 Peruslaskuvalmiudet
1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,
LisätiedotMikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.
4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 10. Kurssikerta Petrus Mikkola 22.11.2016 Tämän kerran asiat Globaali ääriarvo Konveksisuus Käännepiste L Hôpitalin sääntö Newtonin menetelmä Derivaatta ja monotonisuus
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
LisätiedotHarjoituskokeiden ratkaisut Painoon mennyt versio.
Harjoituskokeiden ratkaisut 8.6.7 Painoon mennyt versio. PYRAMIDI NUMEERISIA JA ALGEBRALLISIA MENETELMIÄ RATKAISUT, HARJOITUSKOE SIVU.7.7 Koe a) i) =,, = kpl ii) 9,876 =,9876,99 = 9,9 iii),66,66 =,7 =,7
LisätiedotKertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.
LisätiedotLisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Supremum ja inmum Tarkastellaan aluksi avointa väliä, Tämä on joukko, johon kuuluvat kaikki reaaliluvut miinus yhdestä yhteen Kuitenkaan päätepisteet eli luvut ja
Lisätiedot3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?
Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x
LisätiedotMAA2.3 Koontitehtävät 2/2, ratkaisut
MAA.3 Koontitehtävät /, ratkaisut. (a) 3x 5x 4 = 0 x = ( 5) ± ( 5) 4 3 ( 4) 6 (b) (x 4) = (x 4)(x + 4) (x 4)(x 4) = (x 4)(x + 4) x 8x + 6 = x 6 x 6 8x = 3 : 8 x = 4 = 5 ± 73 6 (c) 4 x + x + = 0 4 x + 4x
LisätiedotJuuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
LisätiedotMatematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
Lisätiedotk-kantaisen eksponenttifunktion ominaisuuksia
3.1.1. k-kantaisen eksponenttifunktion ominaisuuksia f() = k (k > 0, k 1) Määrittely- ja arvojoukko M f = R, A f = R + Jatkuvuus Funktio f on jatkuva Monotonisuus Funktio f aidosti kasvava, kun k > 1 Funktio
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
LisätiedotJuuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =
Lisätiedot4. Kertausosa. 1. a) 12
. Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
LisätiedotJuuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K. a) Polynomi P() = 3 + 8 on jaollinen polynomilla Q() = 3, jos = 3 on polynomin P nollakohta, eli P(3) = 0. P(3) = 3 3 3 + 8 3 = 54 08 + 54 = 0. Polynomi P on jaollinen polynomilla Q. b) Jaetaan
Lisätiedot11 MATEMAATTINEN ANALYYSI
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 4. Kurssikerta Petrus Mikkola 4.10.2016 Tämän kerran asiat Funktion raja-arvo Raja-arvon määritelmä Toispuolinen raja-arvo Laskutekniikoita Rationaalifunktion esityksen
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä
LisätiedotMITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?
MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
Lisätiedot5 Rationaalifunktion kulku
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 5 Rationaalifunktion kulku. Funktion f määrittelyehto on. Muodostetaan symbolisen laskennan ohjelman avulla derivaattafunktio f ja
LisätiedotFunktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?
Funktio. a) Mikä on funktion f (x) = x + lähtöjoukko eli määrittelyjoukko, kun 0 x 5? b) Mikä on funktion f (x) = x + maalijoukko eli arvojoukko? c) Selitä, mikä on funktion nollakohta. Anna esimerkki.
LisätiedotMatematiikan tukikurssi: kurssikerta 10
Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen
Lisätiedot1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ
Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän
Lisätiedot1.1. YHDISTETTY FUNKTIO
1.1. YHDISTETTY FUNKTIO (g o f) () = g(f()) Funktio g = yhdistetyn funktion g o f ulkofunktio Funktio f = yhdistetyn funktion g o f sisäfunktio E.2. Olkoon f() = 2 + 3 ja g() = 4-5. Muodosta funktio a)
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
LisätiedotLue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:
MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x
LisätiedotMAA7 Harjoitustehtävien ratkaisuja
Harjoitustetävien ratkaisuja MAA7 Harjoitustetävien ratkaisuja. a) < < < < < + < < b) U(, ) tarkoittaa lukuja, jotka ovat alla puolikkaan etäisyydellä luvusta eli kyseessä väli <
LisätiedotMatematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.
7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f
LisätiedotInjektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
Lisätiedot3 Yleinen toisen asteen yhtälö ja epäyhtälö
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
Lisätiedot3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö
3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan
LisätiedotYHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus
YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus Ensimmäisen asteen yhtälö: :n korkein eksponentti = 1 + 5 = 4( 3) Toisen asteen yhtälö: :n korkein eksponentti = 3 5 + 4 = 0 Kolmannen asteen yhtälö: :n korkein
LisätiedotKertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a
LisätiedotMAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x
MAA0 A-osa. Ratkaise. a) x + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x a) Kirjoitetaan summa x + 6x yhteisen tekijän avulla tulomuotoon ja ratkaistaan yhtälö tulon nollasäännön avulla. x + 6x = 0 x(x + 6) =
LisätiedotEpäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt
Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
LisätiedotReaalilukuvälit, leikkaus ja unioni (1/2)
Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut
LisätiedotSinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.
Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn
Lisätiedotd Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali
6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla
LisätiedotVastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen
Vastausehdotukset analyysin sivuainekurssin syksyn 015 1. välikokeeseen Heikki Korpela November 1, 015 1. Tehtävä: funktio f : R R toteuttaa ehdot ax, kun x 1 f(x) x + 1, kun x < 1 Tutki, millä vakion
Lisätiedot