Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37"

Transkriptio

1 Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske myös 14, 3 sin(π/3), e 1/ ja Ratkaisu: Esimerkki yhteen- ja vähennyslaskusta, kertolaskusta ja jakolaskusta: >> >> 3*3 9 >> 3/ Yllä käytettyjä merkkejä "*"ja "/"käytetään Matlabissa matriisien kerto- ja jakolaskuihin, matriisien alkioiden käsittelyyn käytetään komentoja ".*"ja "./". Skalaareilla molemmat muodot toimivat samalla tavalla. >> ^ >> 3*sin(*pi/3).5981 >> exp(1/) >> sqrt(7843)

2 Tehtävä : Kolmiulotteisen reaaliavaruuden R 3 pisteitä merkitään usein antamalla koordinaatit kolmen alkion pituisena pystyvektorina. Matlab-ohjelmalla tämä tapahtuu syöttämällä esimerkiksi» v=[1; ; 3] a) Luo jotkin R 3 :n vektorit u ja v. Laske sitten näiden summa, erotus ja jokin muu lineaarikombinaatio, eli muotoa a*u+b*v oleva lauseke, jossa a ja b ovat valitsemasi vakiokertoimet. b) Pystyvektorista saat vastaavan vaakavektorin komennolla» v tai» v. (Näillä komennoilla on itse asiassa pieni ero, joka mainitaan loppuviikon luennolla, kun aiheena ovat kompleksiluvut.) Mitä tapahtuu, jos kerrot vektorin itsellään? Entä jos kerrot pystyvektorin jommalta kummalta puolelta vastaavalla vaakavektorilla? Miten saat vektorin, jonka jokainen alkio on korotettu toiseen potenssiin? (Vihje: Viimeiseen kysymykseen voit saada apua kirjoittamalla» help power) Ratkaisu: a) >> v=[1; ; 3]; >> u=[1; 1; 1]; >> u+v 3 4 >> v-u 0 1 >> 8*v-3*u

3 b) >> v*v Error using * Inner matrix dimensions must agree. Kuten aikaisemmin mainittu, muotoa A*B oleva lauseke on Matlabissa matriisikertolasku, joka on määritelty vain jos A:ssa on yhtä monta saraketta kuin B:ssä on rivejä. Yllä tämä ehto ei toteudu, joten Matlab antaa virheilmoituksen. Seuraavissa ehto toteutuu: >> v*v >> v *v x1- ja 1x3-matriisien kertolasku tuottaa 3x3-matriisin, 1x3- ja 3x1-matriisien kertominen taas 1x1-matriisin eli skalaarin. Vektorin kaikki alkiot voidaan korottaa toiseen potenssiin kolmella eri tavalla: >> v.*v >> v.^

4 >> power(v,) A.*B-muotoinen lauseke kertoo matriisien A ja B alkiot keskenään, tässä tapauksessa siis vektorin u alkiot itsellään. A.ˆb ja power(a,b) korottavat molemmat A:n kaikki alkiot potenssiin b. Tehtävä 3: Matlab on vektori- ja matriisilaskentaohjelmisto, joten se operoi hyvin pitkälti vektorien ja matriisien (näihin perehdymme ensi viikosta alkaen) avulla. Funktion kuvaajat Matlab piirtää siten, että toisessa vektorissa annetaan laskentapisteet ja toisessa datapisteet. Siis esimerkiksi funktion f(x) = cos(x) kuvaaja välillä [ π, π] saadaan piirrettyä komennoilla» x = -pi:0.1:pi;» y = cos(x);» plot(x,y) Piirrä nyt funktioiden g(x) = x ja h(x) = x 3 kuvaajat jollakin sopivalla välillä, sopivalla askelpituudella. Saatko piirrettyä ne samaan kuvaan? Tallenna kuva ja tulosta se ratkaisusi liitteeksi. (Vihje:» help hold) Ratkaisu: Määritellään ensin laskenta- ja datapisteet: >> x=-:.1:; >> g=x; >> h=x.^3; Kuvaajat piirretään käskyillä plot(x,g) ja plot(x,h). Samaan kuvaan kuvaajat saadaan käskyllä plot(x,g,x,h) tai >> plot(x,g) >> hold on >> plot(x,h) Tehtävä 4: Luonnollisesti voimme piirtää myös kolmiulotteisia kuvia eli pintoja. Ideana tällöin on, että jokaiseen xy-tason pisteeseen on liitetty yksi arvo, joka määrittelee pinnan korkeuden sillä kohdalla. Nyt tarvitaan xy-tason pisteverkko ja data-arvot, jotka annetaan taulukkoina. Esimerkiksi >> [X,Y] = meshgrid(-8:0.5:8); >> Z = X.^-*Y.^; >> mesh(x,y,z) 4

5 Kuva 1: Käyrät tehtävässä 3. luo xy-tason pisteverkon, laskee kussakin näistä pisteistä funktion f(x, y) = x y arvon ja piirtää pinnan. Piirrä nyt jonkin itse valitsemasi kahden muuttujan funktion kuvaaja, eli mahdollisimman hieno pinta! Tulosta kuva ratkaisusi liitteeksi. Merkitse mukaan myös komennot, joilla kuva on piirretty. Lisäapuja voit katsoa Matlabin manuaalista. Ratkaisu: Pisteverkko ja datapisteet määritetään kuten tehtävänannossa, kuvaaja piirretään mesh(x,y,z)- komennolla. Esimerkki: >> [X,Y] = meshgrid(-5:.15:5); >> Z=sinc(sqrt(X.^+Y.^)); >> mesh(x,y,z) Kuvaaja löytyy kuvasta 4. Tehtävä 5 (L): a) Ovatko vektorit u = (, 1, 1) ja v = ( 1,, ) kohtisuorassa toisiaan vastaan? Jos eivät, mikä on niiden välinen kulma? b) Anna napakoordinaatiston pisteet (, π/3) ja (1, π/6) karteesisissa koordinaateissa. Tarkista piirtämällä kuva. Ratkaisu: a) Lasketaan pistetulo: u v = ( ( 1)) + (( 1) ) + (1 ) =. Koska u v 0, eivät vektorit ole kohtisuorassa toisiaan vastaan. Niiden välinen kulma saadaan 5

6 MS-A0004/MS-A0006 Matriisilaskenta, I/016 Kuva : Kuvaaja tehtävässä 4. 6

7 lausekkeesta: u v = u v cos(θ) ( ) ( ) u v θ = arccos = arccos u v 3 6 θ b) Napakoordinaatiston piste (r, ϕ) karteesisissa koordinaateissa löytyy seuraavilla kaavoilla: x = r cos(ϕ) y = r sin(ϕ) Joten (, π/3) on karteesisissa koordinaateissa: x = cos(π/3) = 1 y = sin(π/3) = 6 Ja (1, π/6) on x = cos( π/6) = 3 y = sin( π/6) = 1 Tehtävä 6 (L): Olkoot u = ( 1,, ) ja v = (1, 3, 3). Laske ristitulo u v sekä vektoreiden u ja v määräämän kolmion pinta-ala. Ratkaisu: Lasketaan i j k u v = = 3 3 i j k = ( 3 ( 3) )i (( 1) 3 1 )j + (( 1) ( 3) 1 )k = 1i + 5j + 1k Ristitulovektorin pituus on yhtä suuri kuin vektorien u ja v määräämän suunnikkaan pinta-ala. Vektorien määräämän kolmion ala on puolet tämän suunnikkaan alasta, eli A = 1 u v = = 170 7

8 Tehtävä 7 (P): a) Sievennä kompleksiluku 4 + i 3 i muotoon x + yi, missä x, y R. b) Tulkitse seuraavat kompleksiluvut tason R pisteiksi (piirrä kuva!) ja laske niiden napakoordinaatit eli itseisarvot ja vaihekulmat (välillä ] π, π]): i, i, 1 3 i. Ratkaisu: a) Ratkaisu saadaan laventamalla lauseketta nimittäjän kompleksikonjugaatilla: 4 + i 3 i = (4 + i)(3 + i) (3 i)(3 + i) = i 10 = 1 + i b) Kompleksilukua a+bi vastaa kompleksitason piste (a, b), jonka napakoordinaatit saadaan seuraavilla kaavoilla: r = a + b ϕ = arctan(b/a) Kompleksitason pisteen (1, 3) napakoordinaatit: r = 1 + ( 3) = ϕ = arctan( 3/1) = π 3 Pisteen ( 1, 3) on kompleksitason II-neljänneksessä, joten kulmaan pitää lisätä π: r = ( 1) + ( 3) = ϕ = arctan( 3/( 1)) + π = π 3 Piste ( 1, 3) on kompleksitason III-neljänneksessä, kulmasta pitää vähentää π: r = ( 1) + ( 3) = ϕ = arctan(( 3)/( 1)) π = arctan( 3)) π = π 3 8

9 Im -1+i3 1+i3 Re -1-i3 Kuva 3: Kuva pisteistä kompleksitasolla tehtävässä 7. Tehtävä 8 (P): Tarkastellaan kompleksilukuja z = i ja w = 1 + 3i. Laske luvut zw ja w z esitä ne napakoordinaateissa. Piirrä myös kuva ja tarkista vastauksesi sen avulla. ja Ratkaisu: Lasketaan zw =( i)(1 + 3i) = + 6i i + 3 = 5 + 5i w z =1 + 3i i = (1 + 3i)( + i) ( i)( + i) Napakoordinaatit saadaan edellisen tehtävän kaavoilla: = 1 + 7i 5 r zw = = 5 (( 1) ) + 7 r w/z = = 5 ϕ zw = arctan (1) = π 4.36 ϕ w/z = arctan ( 7) + π 1.71 = i Koska w on kompleksitason II-neljänneksessä, lisäsimme kulmaan π. Kuvasta nähdään, että 0 z ϕ wz π ja π ϕ w/z π kuten pitääkin. 9

10 10

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 1 / vko 44 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko Tehtävä (L): Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

y z = (x, y) Kuva 1: Euklidinen taso R 2

y z = (x, y) Kuva 1: Euklidinen taso R 2 Kompleksiluvut. Määritelmä Tarkastellaan euklidista tasoa R = {(, y), y R}. y y z = (, y) R Kuva : Euklidinen taso R Suorakulmaisessa koordinaatistossa on -akseli ja y-akseli. Luvut ja y ovat pisteen z

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Kompleksiluvut., 15. kesäkuuta /57

Kompleksiluvut., 15. kesäkuuta /57 Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä

mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä osittaisderivaatoista: y 1... J F =.

Lisätiedot

Kompleksiluvut. JYM, Syksy /99

Kompleksiluvut. JYM, Syksy /99 Kompleksiluvut JYM, Syksy 2014 1/99 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen

Lisätiedot

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9.

Matriisit ovat matlabin perustietotyyppejä. Yksinkertaisimmillaan voimme esitellä ja tallentaa 1x1 vektorin seuraavasti: >> a = 9.81 a = 9. Python linkit: Python tutoriaali: http://docs.python.org/2/tutorial/ Numpy&Scipy ohjeet: http://docs.scipy.org/doc/ Matlabin alkeet (Pääasiassa Deni Seitzin tekstiä) Matriisit ovat matlabin perustietotyyppejä.

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä? BM20A5840 - Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2017 1. Tunnemme vektorit a = [ 1 2 3 ] ja b = [ 2 1 2 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47 MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö

Lisätiedot

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 5 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan väitteiden todistamista tai kumoamista vastaesimerkin

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena

Lisätiedot

Kompleksiluvut Kompleksitaso

Kompleksiluvut Kompleksitaso . Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

1. Viikko. K. Tuominen MApu II 1/17 17

1. Viikko. K. Tuominen MApu II 1/17 17 1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt

Lisätiedot

Analyysi I. Visa Latvala. 3. joulukuuta 2004

Analyysi I. Visa Latvala. 3. joulukuuta 2004 Analyysi I Visa Latvala 3. joulukuuta 004 95 Sisältö 6 Kompleksiluvut 96 6.1 Yhteen- ja kertolasku.............................. 96 6. Napakoordinaattiesitys............................. 10 96 6 Kompleksiluvut

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A3/A5 Matriisilaskenta Laskuharjoitus 2 / vko 45 Tehtävä (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 2i = 2, b) z 2i < 2, c) /z

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

Matlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma

Matlab-perusteet. Jukka Jauhiainen. OAMK / Tekniikan yksikkö. Hyvinvointiteknologian koulutusohjelma Matlab-perusteet Jukka Jauhiainen OAMK / Tekniikan yksikkö Hyvinvointiteknologian koulutusohjelma Tämän materiaalin tarkoitus on antaa opiskelijalle lyhyehkö johdanto Matlabohjelmiston perusteisiin. Matlabin

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Talousmatematiikan perusteet: Luento 9

Talousmatematiikan perusteet: Luento 9 Talousmatematiikan perusteet: Luento 9 Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo ja pituus Vektorien välinen kulma Motivointi Tähän asti olemme tarkastelleet yhden

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =

Lisätiedot

4.3.7 Epäoleellinen integraali

4.3.7 Epäoleellinen integraali Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään

Lisätiedot

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1) . Osoita geometrisesti, että jos = ja niin pätee Im +) = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän htälön? Kirjoitetaan +) = 0 ) ), ) 0 jossa, ja 0 vastaavat kolmion pisteitä kompleksitasossa.

Lisätiedot

plot(f(x), x=-5..5, y=-10..10)

plot(f(x), x=-5..5, y=-10..10) [] Jokaisen suoritettavan rivin loppuun ; [] Desimaalierotin Maplessa on piste. [] Kommentteja koodin sekaan voi laittaa # -merkin avulla. Esim. #kommentti tähän [] Edelliseen tulokseen voi viitata merkillä

Lisätiedot

Äärettömät raja-arvot

Äärettömät raja-arvot Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0, Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0

Lisätiedot

1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet.

1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. BM0A5700 - Integraalimuunnokset Harjoitus 1 1. Piirrä kompleksitasoon seuraavat matemaattiset objektit/alueet. a Piste z 1 i. Ympyrä z 1 i. Avoin kiekko z 1 i

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden

Lisätiedot

Yleistä vektoreista GeoGebralla

Yleistä vektoreista GeoGebralla Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti

Lisätiedot

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v. Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT ARI LEHTONEN. Trigonometriset funktiot.. Peruskaavat. tan x := sin x cos x, cos x cot x := sin x Anglosaksisissa maissa käytössä ovat myös funktiot sekantti sec

Lisätiedot

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R }

Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. { (a, b) a, b œ R } 7 Kompleksiluvut Tämän luvun tarkoituksena on antaa perustaidot kompleksiluvuilla laskemiseen sekä niiden geometriseen tulkintaan. 7.1 Kompleksilukujen määritelmä Määritelmä 7.1.1. Kompleksilukujen joukko

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

(a) avoin, yhtenäinen, rajoitettu, alue.

(a) avoin, yhtenäinen, rajoitettu, alue. 1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z

Lisätiedot

Harjoitus 2 -- Ratkaisut

Harjoitus 2 -- Ratkaisut Harjoitus -- Ratkaisut Listat a Table-komento Huom. (*-merkki aloittaa kommentin ja *)-merkki päättää sen. Table x, x,. x:n arvo, viimeinen x:n arvo, askelpituus, 4, 9, 6, 5, 36, 49, 64, 8,,, 44, 69, 96,

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt Epäyhtälöt 1/7 Sisältö Epäyhtälö Epäyhtälöllä tarkoitetaan ehtoa, missä kahdesta lausekkeesta toinen on suurempi tai mahdollisesti yhtä suuri kuin toinen: f(x) < g(x), f(x) g(x).merkit voidaan luonnollisesti

Lisätiedot

1.1. Määritelmiä ja nimityksiä

1.1. Määritelmiä ja nimityksiä 1.1. Määritelmiä ja nimityksiä Luku joko reaali- tai kompleksiluku. R = {reaaliluvut}, C = {kompleksiluvut} R n = {(x 1, x 2,..., x n ) x 1, x 2,..., x n R} C n = {(x 1, x 2,..., x n ) x 1, x 2,..., x

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2 Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

Matlab-perusteet Harjoitustehtävien ratkaisut

Matlab-perusteet Harjoitustehtävien ratkaisut Matlab-perusteet Harjoitustehtävien ratkaisut Osa 1 Tehtävä: Määrittele muuttujat a ja b, anna niille vaikkapa arvot 3 ja 2 ja kokeile peruslaskutoimituksia niillä. >>a=1;b=2; >>a+b 3 >>a-b -1 >>a*b 2

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Kompleksilukujen alkeet

Kompleksilukujen alkeet Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa

Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Antti Rasila 2016 Polaarimuoto Kuvasta nähdään: { x = r cos θ, y = r sin θ. Siis z = x + iy = r cos θ + ir sin θ. Saadaan kompleksiluvun

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

6. Kompleksiluvut. Kompleksilukuja esiintyy usein polynomiyhtälöiden ratkaisuina. Esim:

6. Kompleksiluvut. Kompleksilukuja esiintyy usein polynomiyhtälöiden ratkaisuina. Esim: 6. Kompleksiluvut Yhtälöllä x = 1 ei ole reaalilukuratkaisua: tarvitaan uusia lukuja. Kompleksiluku on kahden reaaliluvun järjesteby "pari" (x,y): Z = x +iy Missä i on imaginääriyksikkö, jolla on ominaisuus

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa 1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

Valitse ruudun yläosassa oleva painike Download Scilab.

Valitse ruudun yläosassa oleva painike Download Scilab. Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download

Lisätiedot

Ohjelman käynnistäminen

Ohjelman käynnistäminen >> why Because he obeyed a good and young and smart and terrified and rich and rich and not very good and good and bald and not excessively tall and good programmer. Tässä materiaali on tarkoitettu insinööriopiskelijoille

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Matriiseista. Emmi Koljonen

Matriiseista. Emmi Koljonen Matriiseista Emmi Koljonen 3. lokakuuta 22 Usein meillä on monta systeemiä kuvaavaa muuttujaa ja voimme kirjoittaa niiden välille riippuvaisuuksia, esim. piirin silmukoihin voidaan soveltaa silmukkavirtayhtälöitä.

Lisätiedot

= 9 = 3 2 = 2( ) = = 2

= 9 = 3 2 = 2( ) = = 2 Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Matlabin perusteet. 1. Käyttöliittymä:

Matlabin perusteet. 1. Käyttöliittymä: Matlabin perusteet Matlabin (MATrix LABoratory) perusfilosofia on, että se käsittelee kaikkia muuttujia matriiseina, joiden erikoistapauksia ovat vektorit ja skalaariluvut. Näin ollen se soveltuu erityisesti

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien

SMG-2100: SÄHKÖTEKNIIKKA. Kompleksilukujen hyödyntäminen vaihtosähköpiirien SMG-100: SÄHKÖTEKNIIKKA Kompleksilukujen hyödyntäminen vaihtosähköpiirien analyysissä Osoitin Trigonometrinen muoto Polaarimuoto Kompleksilukujen peruslaskutoimitukset Viime luennolla esitettiin, että

Lisätiedot

mlgrafiikka 1. Piirrä samaan kuvaan funktioiden cos ja sin kuvaajat välillä [ 2π, 2π] Aloita tyyliin: 2. Piirrä

mlgrafiikka 1. Piirrä samaan kuvaan funktioiden cos ja sin kuvaajat välillä [ 2π, 2π] Aloita tyyliin: 2. Piirrä Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlgrafiikka 1. Piirrä samaan kuvaan funktioiden cos ja sin kuvaajat välillä [ 2π, 2π] Aloita tyyliin: x=linspace(-2*pi,2*pi); y1=cos(x); y2=sin(x);

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2

Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2 Differentiaali- ja integraalilaskenta 2 Ratkaisut: loppuviikko 2 Harjoitustehtävät 11-13 lasketaan alkuviikon harjoituksissa, 15-17 loppuviikon harjoituksissa. Kotitehtävä 14 palautetaan MyCourses-sivulle

Lisätiedot

Lineaarialgebra MATH.1040 / trigonometriaa

Lineaarialgebra MATH.1040 / trigonometriaa Lineaarialgebra MATH.1040 / trigonometriaa 1 Aste, 1 (engl. degree) Täsi kierros on 360 (360 astetta). Yksi aste jaetaan 60 kulmaminuuttiin (1 = 60 ) ja ksi kulmaminuutti jaetaan 60 kulmasekuntiin (1 =

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017

Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017 MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 3A (Vastaukset) Alkuviikolla

Lisätiedot