4. Integraalilaskenta

Koko: px
Aloita esitys sivulta:

Download "4. Integraalilaskenta"

Transkriptio

1 4. Inegrlilsken Joh8elev esimerkki: kun hiukksen pikk s( erivoin jn suheen, sn hiukksen nopeus: v( = s'( Kun nopeus erivoin jn suheen sn kiihyvyys ( = v'( Kääneinen ongelm: hiukksen kiihyvyys on (. Mikä on hiukksen nopeus v( j pikk s(? Trvin erivoinnille vskkinen lskuoimius: inegroinj s( erivoinj v( erivoinj ( inegroinj inegroinj Inegroinnin kksi ulkin. Määräämäön inegrli eli inegrlifunk3o InegroinJ on erivoinnille kääneinen prosessi F( = f( keroo minkä suheen inegroin Inegroinnin merkki f(=f(+ C f(:n inegrlifunkjo inegroimisvkio funkjo mikä piäisi inegroi (F( + C = (F( + (C = F( + = F( Inegroinnin kksi ulkin. Määräämäön inegrli eli inegrlifunk3o InegroinJ on erivoinnille kääneinen prosessi F( = f( f(=f(+ C (F( + C = (F( + (C = F( + = F(

2 Inegroinnin kksi ulkin. Määräämäön inegrli eli inegrlifunk3o InegroinJ on erivoinnille kääneinen prosessi F( = f( keroo minkä suheen inegroin Inegroinnin merkki f(=f(+ C f(:n inegrlifunkjo inegroimisvkio funkjo mikä piäisi inegroi (F( + C = (F( + (C = F( + = F( Inegroinnin kksi ulkin. Määräämäön inegrli eli inegrlifunk3o InegroinJ on erivoinnille kääneinen prosessi F( = f( keroo minkä suheen inegroin Inegroinnin merkki f(=f(+ C f(:n inegrlifunkjo inegroimisvkio funkjo mikä piäisi inegroi (F( + C = (F( + (C = F( + = F( Sm grfisesj Enä jos v ei ole vkio? Peruskoulup rkis eellä ollu esimerkki: muisjsäänöjen vull (esim s( =.5 + v + s jos vkio i grfisesj. Jos hiukksen nopeus v( = v = vkio, niin hiukksen ikn kulkem mk s( on v. v( v s( = v v( s( = v( Grfinen inegroinj

3 Inegroinnin kksi ulkin. Määrä6y inegrli eli inegroin3 sijoiusrjoill FunkJon f( inegrli välillä [,b] on käyrän f( j - kselin väliin jäävän lueen pin- l välillä [,b]. f( Merkiään: Inegroimisrj b b b f( = F( = F(b F( Inegrli siivujen summn FunkJo f(:n kuvj on käyrä. f(:n rvo :n eri piseissä kuvn pylväinä oheisess kuvss. Inegrlin f( ulkin: käyrän lle jäävä pin- l. Voin jell e8ä lue jen (ääre8ömän kpeisiin siivuihin, joien pin- l lsken yheen. Inegrlin merkinä ( venye8y S- kirjin ulee äsä inegrli on ikään kuin siivujen summ. f( Yheys inegrlifunkjon j määräyn inegrlin välillä f( = F( + C f( = F( = F( F( Yheys inegrlifunkjon j määräyn inegrlin välillä f( = F( + C f( = F( = F( F( Määrä8y inegrli C = - F(. f( on se inegrlifunkjo joll 3

4 Inegrlin lskeminen Kikill funkjoill ei ole inegrlifunkjo i sellis ei os lske (= esi8ää lkeisfunkjoien vull. InegroinJ ei muuenkn ole yhä suorviivis kuin erivoinj. Inegroinniss jouuu usein käy8ämään j solvelmn erilisi sregioi (j/i "kikkoj". Suorviivisi lähesymispoj ov esim: DerivoinJsäänöjen sovelminen "väärinpäin" Tulukkokirj => ulukkoinegrli Memcse ohjelm, esim MhemJc Numeerinen inegroinj (joskus ino keino InegroinJkeinoj Monimukisempi inegroinjkeinoj ov esim: Osi8isinegroinJ Sijoiusmene8ely eli muu8ujn viho Trigonomerise pluuskv RJonlifunkJon inegroinj Kompleksilskennn resiymeneelmä (ei käsiellä ällä kurssill InegroinJ erivoinjsäänöjen j kvojen vull (ks. esim MAOL Poenssifunk3on inegroin3 kun n - Esimerkkejä = C = C n = n n ( n + n+ = n Toisus: n n = n + C n = n + n+ + C kosk 5-3 = 5-3 ( C = = C = C n = n + n+ + C kosk ( n + n+ + C = n kosk ( C = 5-3 4

5 Summ j vkioll kerominen ( f (+ g( = f ( + g( + C kosk ( + 3 = C = C ( C = + 3 f ( = f ( 3 = 3 = 3 + C Yhiseyn funk3on erivoin3kvn sovelminen väärinpäin g( f ( = g'( f ( f '( g'( f ( f '( = g( f ( Voin käy8ää kun g ( osn inegroi. Sovelluksi: FunkJon poenssi, g (= n, jolloin g (f( = (f( n FunkJo sini- i kosinilusekkeess, g (=sin( i cos(, jolloin g (f( = sin(f( i cos(f( FunkJo eksponenjss, g (=e, jolloin g (f( = e f( Huom: jo8 inegroiv funkjo sn äsmälleen muooon g (f(f ( jouun usein keromn vkioll. Funk3on poenssin inegroin3 kun n -! Trkisus: n + f $ (n+ + C " # % & = n + (n + f (n f '( Trkisus: f ( n f '( = n + f (n+ + C = f ( n f '( f'( f( ( - 3 = 3+ ( C = 4 ( 4 + C 4 ( 4 = 4 4 ( 3 ( - = ( 3 = ( 3 Trkisus: f'( f( (3 + 5 = 3 3(3 + 5 = 3 6 ( C = 8 ( C ( 8 ( C = 8 6(3 + 5 (3 + = 8 6( = (

6 Funk3on / inegroin3 Kosk ln( = = ln + C Miksi iseisrvomerki? Vsus: jo8 funkjon j sen eriv8- i inegrlifunkjon määri8elyjouko olisiv sm. (Muis: ln( ei ole määriely kun <. ln( Sovellus: funk3on f'(/f( inegroin3 Kosk f '( = ln f ( + C f ( (ln( f ( = f '( f ( Tämäkin kv sn myös käänämällä yhiseyn funk<on erivoin<kv oisinpäin; ässä g ( = /. + = + = ln + + C Trigonomerisen funk3oien inegroin3 sin( = -cos(+ C D ( cos( = sin( cos( = sin(+ C D (sin( = cos( Esim. f '(sin[ f (] f '(cos[ f (] sin(5 = 5 = cos[ f (] + C = sin[ f (] + C 5sin(5 = 5 cos(5+ C sin( = sin( = cos( + C EksponenQfunk3on inegroin3 e = e + C D e = e f '(e f ( = e f ( + C D e f ( = f '(e f ( Esim. Logrimifunk3on inegroin3 kosk ( + 3e +3 = e +3 + C 5e 3 = e 3 = 5 3 e3 + C ln = ln - + C!" ln - + C # $ = ( ln + (ln = ln + = ln + = ln 6

7 Määräyn inegrlin lskeminen Esim. Esim π cos( = π / sin( = sin(π / sin( = = 3 3 = 3 3 = = 7.5 Määrä8y inegrli lsken khess viheess: Ensin inegroin Si8en sijoien Tpus : Erikoise inegroimisrj f ( = F( F( Joskus inegroinjrjn käyeään inegroinjmuu8uj. Tämä voi oll hämäävää, usein on selkeämpää käy8ää eri muu8uj inegroinjrjn j ise inegrlin merkinnässä, esim näin: f (uu hiukksen pikk j nopeus v( = s( s( = v( Tpus : ääreön j miinus ääreön inegroimisrjoin Hyöyllisiä limes- uloksi: lim e =, Joskus inegrlin rvo voi myös oll ääreön. Tällöin snon e8ä inegrli ivergoi. e -r r = = - e -r = lim - e - lim % & e e ' ( = lim % & = = lim ln( = lim ln( [ ln( ln( ] = lim e ' ( = = lim e = [ ln( ] = Inegrlilskuj kemiss, esim Aineen lämpökpsieec vkiopineess C p oeu8 ifferenjliyhälön " C p = H % $ ' # T & p missä H on enlpi j T bsoluucnen lämpöjl. Täsä sn H = C p T. Lämpökpsieec (yksikkö J K - mol - voin usein esi8ää lämpöjln kolmen prmerin funkjon: C p + bt + ct - Typelle (N prmerien rvo ov: = 8,58 J K - mol -, b = 3,77-3 J K - mol - j c = -,5-5 J K mol - Lske ΔH = H( - H(, kun ksu lämmieään lämpöjls = 5 C lämpöjln = C. 7

8 Rkisu: ΔH = H ( H = C p T H ( = ( + bt + c T = T T (T + b - c T = ( + b - c -( + b - c Sijoien nneu rvo, j sn ΔH = J mol - =, kj mol - Vinkki: rkis in erivoimll enä ole inegroinu oikein: nko inegrlifunk<on erivn lkuperäisen funk<on? Inegrlilskuj kemiss, esim Kun ksu ljenee (ulkois pine8 p e vsn, se suori8 ljenemisyön W = - p e V. Johen luseke ljenemisyölle W ksun ljeess Jlvuues Jlvuueen V eri puksiss. A. Kun pine on vkio, p = p e W = -p e V V V W = -p e V = p e V = p e (V = -p e (V V V B. Kun ksu on ieliksu vkiolämpöjlss (T j n vkioi, jolloin pv = nrt è p = nrt/v W = -pv = - nrt V V V V W = -pv = nrt V V V = - nrt V V = -nrt ln(v V V = -nrt(ln(v ln( = nrt ln( V Inegrlilskuj kemiss, esim 3 HCl molekyylin sioksen voimvkio on k = 58 N m - j spinosiospiuus r e =,7 nm. Hooken lin mukn siospiuuen muuos vsusv voim on F(Δr = kδr, missä Δr = (r- r e on poikkem spinosiospiuues. Lske Hooken lin mukinen siospiuuen muu8miseen rvi8v yö W(Δr kun HCl:n sios venyeään spinos,37 nm:n. Δr W (Δr = F(Δr(Δr = k Δr (Δr = = kδr k = kδr Δr Δr kδr Ny voin sijoi8 rvo: Δr =,37,7 nm =, nm, j W =,59-8 J. 8

9 Inegrlilskuj kemiss, esim 3 Huom: äsken olisi voiu käy8ää muu8ujn Δr:n sijn myös r:, jolloin olisi inegroiu F(r = k(r- r e sijoiusrjoill r e j r e + Δr. Lsku olisi ollu hiemn piempi, mu8 merkinä ehkä helpompi ymmärää: W (r = r e +Δr r e +Δr F(rr = k(r - r e r r e r e +Δr = k( r r r e r = k( r e r e +Δr r e r e re+δr r re - re re+δr r r e = k( (r + e Δr (r e (r e + Δr r e r e r e = k( r e + Δr r e r e r e Δr r e + r e = k Δr + Δr Inegrlilskuj kemiss, esim 4 AlkuJlneess 5, m 3 ksu on normli- ilmnpineess. Ksu purisen ibcsesj kymmenesosn lkuperäisesä Jlvuuesn. Aibcselle prosessille pv γ = k, missä γ = C p /C v =,44 ilmlle j k on vkio. Lske ehy yö W = pv. Rkisu: AlkuJlvuus = 5, m 3, loppujlvuus V =,5 m 3 p = V -γ k V W = pv = V -γ k V = k V -γ V = k V V V γ + V γ+ = k γ (V γ+ V γ+ V Äsken johecin W = k γ (V γ+ V γ+ Ennenkuin voin sijoi8 rvo, piää rkis k. Tämä voin ehä esimerkiksi lkujlvuuen = 5, m 3 j lkupineen p = m = 35 P vull. Sn k = p γ. Sijoien kvn: W = p γ γ (V γ+ V γ+ = 35P (5, m 3,44 ((, 5m 3,44+ (5, m 3,44+, 44 =9585, 5 J =, 9 6 J Inegrlilskuj kemiss, esim 5 Arrheniuksen yhälö on Osoi e8ä Rkisu: (ln k = E T R k = Ae E RT ln k = ln(ae E RT = ln A + ln(e E RT = ln A E RT (ln k = T T (ln A E RT = E R T = E R Huom: P = N m - ; P m 3 = N m = J 9

10 Arrheniuksen yhälö on b Jos k on rekjon nopeusvkio lämpöjlss j k on nopeusvkio lämpöjlss, osoi e8ä ln( k = E k R (T Rkisu: Äsken johecin (ln k = E R T k = Ae E RT (ln k = E T R. Täsä sn Ny voin inegroi molemm puole. k:n inegroinjrj ov k j k, T:lle vsvsj j. k (ln k = k E R T k (ln k = k k k E R T ln k = E T - R T T ln k ln k = E R ( ln ( k k = E R ( = E R ( ln ( k k = E R ( - Inegrlilskuj kemiss, esim 6 Osoi e8ä ieliksulle kun T on vkio (isoerminen prosessi k Rkisu: pv = nrt è p = nrt/v k nrtv pv = = nrt V V V kv = nrt V k k ln V = nrt (ln k ln = nrt ln( k = nrt ln k pv = nrt ln k Inegrlilskuj kemiss, esim 7 SiO :lle C - kvrsimuooss päee iemmin esiely lämpökpsieecyhälö C p + bt + ct - missä = 46, J K - mol -, b =,334 J K - mol - j c = - 8,9-5 J K mol - Lske enlpin j enropin muuokse kun kvrsi lämmieään lämpöjls 98 K lämpöjln 35 K. Enlpin j enropin ifferenjleille H j S päee: H/T = C p H = C p T S/T = C p /T S = (C p /TT Rkisu: inegroin yhälöien molemm puole.

11 H H ΔH = H = C p T = ( + bt + ct - T = T T (T + b - c T = ( - + b( - - c( - Sijoien = 98 K, = 35 K j nneu :n, b:n j c:n rvo, sn ΔH =,4 kj mol -. S ΔS = S = C - p T T = + bt + ct ( T T S = (T - + b + ct -3 T = T T ( ln T + bt - c = ln( + b( - - c ( - Sijoien = 98 K, = 35 K j nneu :n, b:n j c:n rvo, sn ΔS = 7,6 J mol - K -.

4. Integraalilaskenta

4. Integraalilaskenta 4. Integraalilaskenta Johda3eleva esimerkki: kun hiukkasen paikka s(t) derivoidaan ajan suhteen, saadaan hiukkasen nopeus: v(t) = s'(t) Kun nopeus derivoidaan ajan suhteen saadaan kiihtyvyys a(t) = v'(t)

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

Tehtävän 1 moottorin kuormana an työkone, jonka momentti on vakio T=30 Nm. Laske

Tehtävän 1 moottorin kuormana an työkone, jonka momentti on vakio T=30 Nm. Laske SÄHKÖENERGAEKNKKA Hrjoius - lueno 9 ehävä 1 Oheisess kuvss on ssähkökoneen sijiskykenämlli. Joh pyörimisnopeuden kv momenin funkion, kun mgneoinivuo φ j nkkurijännie V ov vkioin. Piirrä johmsi kv -ω soss,

Lisätiedot

6 Integraali ja derivaatta

6 Integraali ja derivaatta ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 6 Inegrli j deriv 6. Inegrli ylärjns funkion. Olkoon Määriä kun () [, ], (b) ], 3]., kun [, ],, kun ], 3]. f() d, [, 3],. Osoi, eä jos funkio f on Riemnn-inegroiuv

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

4. Integraalilaskenta

4. Integraalilaskenta 4. Integraalilaskenta Johda3eleva esimerkki: kun hiukkasen paikka s(t) derivoidaan ajan suhteen, saadaan hiukkasen nopeus: v(t) = s'(t) Kun nopeus derivoidaan ajan suhteen saadaan kiihtyvyys a(t) = v'(t)

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta. Viivaintegraali: "Pac- Man" - tulkinta. "Perinteisempi" tulkinta: 1D 3/19/13

Viivaintegraali: Pac- Man - tulkinta. Viivaintegraali: Pac- Man - tulkinta. Perinteisempi tulkinta: 1D 3/19/13 Viivintegrli: "Pc- Mn" - tulkint Otetn funk:o f(,), jok riippuu muudujist j. Jokiselle, tson pisteellä funk:oll on siis joku rvo. Tpillisiä fsiklis- kemillisi esimerkkejä voisivt oll esimerkiksi mss:hes

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi ATE.1xx tttisen kenttäteorin ljentminen ähkömgneettiseksi kenttäteoriksi syksy 212 1 / 5 skuhrjoitus 1: iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. Määritä tjuus, millä johtvuusvirrn tiheys

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

SATE2180 Kenttäteorian perusteet syksy / 6 Laskuharjoitus 7 / Siirrosvirta ja indusoitunut sähkömotorinen voima

SATE2180 Kenttäteorian perusteet syksy / 6 Laskuharjoitus 7 / Siirrosvirta ja indusoitunut sähkömotorinen voima ATE18 Kenäeorin perusee syksy 18 1 / 6 Lskuhrjoius 7 / iirrosvir j inusoiunu sähkömoorinen voim Tehävä 1. All olevn kuvn mukinen piiri on sinimuooisesi värähelevässä j epähomogeenisess mgneeikenässä sin

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta

Teoriaa tähän jaksoon on talvikurssin luentomonisteessa luvussa 10. Siihen on linkki sivulta Jkso 10. Sähkömgneettinen induktio Näytä ti plut tämän jkson tehtävät viimeistään tiistin 13.6.2017. Ekstr-tehtävät vstvt kolme tvllist tehtävää, kun lsketn lskuhrjoituspisteitä. Teori tähän jksoon on

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

Osi*aisintegroin2. Osi*aisintegroin2: esimerkkejä. Osi*aisintegroin2tapauksia 1/29/13. f'(x)g(x)dx=f(x)g(x) f(x)g'(x)dx. f'(x)g(x)dx=f(x)g(x)

Osi*aisintegroin2. Osi*aisintegroin2: esimerkkejä. Osi*aisintegroin2tapauksia 1/29/13. f'(x)g(x)dx=f(x)g(x) f(x)g'(x)dx. f'(x)g(x)dx=f(x)g(x) /9/ Osi*aisintegroin Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) df(x) g(x) + f(x) dg(x) f(x) g(x)

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

JÄYKÄN KAPPALEEN TASOKINEMATIIKKA

JÄYKÄN KAPPALEEN TASOKINEMATIIKKA JÄYKÄN KLEEN TSKINEMTIIKK TSLIIKKEEN LUKITTELU Liikkee yyppi Esimerkki ( Suoriiie rslio (b Käyräiiie rslio (c Roio (d Yleie soliike TRNSLTI Trslioss kikki pisee liikku smll ll eli kpplee liikeil uemisee

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta

Viivaintegraali: Pac- Man - tulkinta Viivintegrli: "Pc- Mn" - tulkint Otetn funk:o f(,), jok riippuu muudujist j. Jokiselle, tson pisteellä funk:oll on siis joku rvo. Tpillisiä fsiklis- kemillisi esimerkkejä voisivt oll esimerkiksi mss:hes

Lisätiedot

( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.

( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri. ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö:

Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö: 9//3 Osi+aisintegroin3 Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) = df(x) g(x) + f(x) dg(x) f(x)

Lisätiedot

(x) (tasaisesti suppeneva sarja)

(x) (tasaisesti suppeneva sarja) 6.3 MATEMAATTISET OPERAATIOT SARJOIE Jos srjss o äärellie äärä erejä, void derivoii i iegroii suori huole ereiäi. Ääreöä srj puksess ereiäi operoii o slliu, jos srj suppeee sisesi. Esi. Trksell ääreöä

Lisätiedot

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla?

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla? TKK, TTY, LTY, OY, ÅA, TY j VY insinööriosstojen vlintkuulustelujen fysiikn koe 26.5.2004 Merkitse jokiseen koepperiin nimesi, hkijnumerosi j tehtäväsrjn kirjin. Lske jokinen tehtävä siististi omlle sivulleen.

Lisätiedot

SATE2140 Dynaaminen kenttäteoria syksy / 6 Laskuharjoitus 0: Siirrosvirta ja indusoitunut sähkömotorinen voima

SATE2140 Dynaaminen kenttäteoria syksy / 6 Laskuharjoitus 0: Siirrosvirta ja indusoitunut sähkömotorinen voima ATE14 Dynminen kenttäteori syksy 1 1 / skuhrjoitus : iirrosvirt j inusoitunut sähkömotorinen voim Tehtävä 1. All olevss kuvss esitetyssä pitkässä virtlngss kulkee virt i 1 (t) j sen vieressä on kuvn mukinen

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

SATE1050 Piirianalyysi II syksy / 8 Laskuharjoitus 2 / Transientti-ilmiö (ratkaisut muodostaen diff. yhtälöt, EI saa käyttä Laplace-muunnosta!

SATE1050 Piirianalyysi II syksy / 8 Laskuharjoitus 2 / Transientti-ilmiö (ratkaisut muodostaen diff. yhtälöt, EI saa käyttä Laplace-muunnosta! SAT5 Piirinlyysi II syksy 6 / 8 skuhrjoius / Trnsini-ilmiö (rkisu muodosn diff. yhälö, I s käyä plc-muunnos!) Thävä. All olvss kuvss siyssä piirissä kykin siiryy hkllä = snnos snoon viivä (= induknssin

Lisätiedot

766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014)

766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014) 7668A Termofysiikk Hrjoitus no 1, rtkisut (syyslukukusi 14) 1 Lämpötilss T K elektronien energit eivät ylitä Fermin energi (ɛ i ɛ F ), lämpötilprmetri β j kemillinen potentili vst Fermin energi (µ() ɛ

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Muita määrätyn integraalin sovelluksia

Muita määrätyn integraalin sovelluksia Muit määrätyn integrlin sovelluksi Ekstr Pohint Auto kiihyttää tsisesti viiessä sekunniss vuhist 4 km/h vuhtiin 76 km/h. ) Muoost funktio, jok ilmisee uton vuhin v(t), kun on kulunut t sekunti kiihytyksen

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.4 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vasausen piireiden, sisälöjen ja piseiysen luonnehdina ei sido ylioppilasukinolauakunnan arvoselua. Lopullisessa arvoselussa

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

4 Pinta-alasovelluksia

4 Pinta-alasovelluksia Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

Geometrinen lukujono. Ratkaisu. a2 = 50 4 = 200 a3 = = 800 a4 = = 3 200

Geometrinen lukujono. Ratkaisu. a2 = 50 4 = 200 a3 = = 800 a4 = = 3 200 Geometrie lukujoo 7. Geometrise lukujoo esimmäie jäse o = 0 j peräkkäiste jäsete suhde =. Määritä lukujoo kolme seurv jäsetä. = 0 = 00 = 0 = 800 = 0 = 00 8. Geometrie lukujoo lk seurvsti: ), 0, 0, b) 000,

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Kaupunkikehityspalvelut. Kaupunkisuunnittelu KAAVA-ALUE 457:6:87 457:6:88 457:6:95 457:6:82 418:1: :1: :11:0 457:6:21 457:6:83 457:6:89

Kaupunkikehityspalvelut. Kaupunkisuunnittelu KAAVA-ALUE 457:6:87 457:6:88 457:6:95 457:6:82 418:1: :1: :11:0 457:6:21 457:6:83 457:6:89 Kupunkisuunnielu Kupunkikehiysplvelu KAAVA-ALUE 8::8 8:: 8::9 8:: 8::8 8::9 8::9 8:: 8:: 8:: 8:: 8:: 8:: 8::8 8::9 8::80 8: 8::8 8::89 8::90 8::9 8:: 8::9 8: 8::0 8::0 8:: 8:: 8:: 8:: 8:: 8:: 8:: 8:: 8::8

Lisätiedot

SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi

SATE1050 Piirianalyysi II syksy kevät / 8 Laskuharjoitus 12 / Siirtojohdot taajuusalueessa, ketjumatriisi SAT5 Piirinlyysi syksy 6 kevät 7 / 8 Tehtävä. Lske kuvss esitetyssä piirissä sisäänmenoimpednssi siirtojohdon ketjumtriisin vull, kun ) johdon loppupää on voin ) johdon loppupää on oikosuljettu c) johto

Lisätiedot

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä

Lisätiedot

5 VALON ETENEMINEN. Säteille voidaan antaa tarvittaessa myös polarisaatio-ominaisuuksia.

5 VALON ETENEMINEN. Säteille voidaan antaa tarvittaessa myös polarisaatio-ominaisuuksia. 113 5 VAON ETENEMINEN Opsell lueell (nfrpun, näkyvä, ulrvole) sähkömgneenen kenä värähelee hyvn suurell juudell (luokk 1 15 Hz). Vsvs llonpuus on hyvn lyhy (luokk 1-5 m). On ss odoevss, eä hyvä pproksmo

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi! MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske

Lisätiedot

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV. Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia

Lisätiedot

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11.

OH CHOOH (2) 5. H2O. OH säiliö. reaktori 2 erotus HCOOCH 3 11. Kemian laieekniikka 1 Koilasku 1 4.4.28 Jarmo Vesola Tuoee ja reakio: hiilimonoksidi, meanoli, meyyliformiaai C HC (1) vesi, meyyliformiaai, meanoli, muurahaishappo HC CH (2) hiilimonoksi, vesi, muurahaishappo

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

SATE2140 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6/ / Sähkömagneettisiin aaltoihin liittyvä teho

SATE2140 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6/ / Sähkömagneettisiin aaltoihin liittyvä teho SAT14 Dninn knäori sks 16 1 /6 Lskuhrjoius 6/ / Sähkögnisiin loihin liivä ho Thävä 1. Trksl survi rlisi sähköknäfunkioluskki, jok osoiv knän pikk- j ikriippuvuudn: ) cos c 1 ) sin c) cos 3 issä,,, c j

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f, eli missä k on jousen jousivakio. Neliöimällä yllä oleva yhtälö saadaan

b) (max 3p) Värähtelijän jaksonajan ja taajuuden välinen yhteys on T = 1/ f, eli missä k on jousen jousivakio. Neliöimällä yllä oleva yhtälö saadaan A1 Lbortoriokokeess keveen kierrejouseen ripustettiin eri mssisi punnuksi. Punnust vedettiin lspäin j sntneen hrmonisen värähteln jksonik mitttiin. Värähtelijän tjus f = 2π 1 k mp. Oheisess tulukoss on

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

4 Taso- ja avaruuskäyrät

4 Taso- ja avaruuskäyrät P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L )

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L ) 76638A Termofysiikk Hrjoitus no. 6, rtkisut syyslukukusi 014) 1. Trkstelln L:n pituist nuh, jonk termodynmiikn perusreltio on de = d Q + d W = T ds + F dl, 1) missä F on voim, joll nuh venytetään reversiibelisti

Lisätiedot

766319A Sähkömagnetismi, 7 op Kertaustehtäviä, 1. välikokeen alue Vastaukset tehtävien jälkeen

766319A Sähkömagnetismi, 7 op Kertaustehtäviä, 1. välikokeen alue Vastaukset tehtävien jälkeen 76619A Sähkömgnetismi, 7 op Kertustehtäviä, 1. välikokeen lue Vstukset tehtävien jälkeen 1. Kolme pistevrust sijitsee xy-koordintistoss ll olevn kuvn mukisesti. Vrus +Q sijitsee kohdss x =, toinen vrus

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Pinta-alan laskeminen

Pinta-alan laskeminen Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y) Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions

Lisätiedot

12. ARKISIA SOVELLUKSIA

12. ARKISIA SOVELLUKSIA MAA. Arkiia ovellukia. ARKISIA SOVELLUKSIA Oleeaan, eä kappale liikkuu ykiuloeia raaa, eimerkiki -akelia pikin. Kappaleen nopeuden vekoriluonne riiää oaa vauhdin eumerkin avulla huomioon, ja on ehkä arkoiukenmukaiina

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

3. Differen*aalilaskenta

3. Differen*aalilaskenta 3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A > B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. / Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,

Lisätiedot

Uusien teiden rakentaminen. Perusparannus. Kunnostusojitus

Uusien teiden rakentaminen. Perusparannus. Kunnostusojitus km km km UUSEN TEDEN RKENTMNEN TEDEN PERUSPRNNUS KUNNSTUSJTUS Suorite Varoja Suorite Varoja Suorite Varoja lue tavoite tavoit tuki tuki bud tavoite tavoit tuki tuki bud tavoite tavoit tuki tuki budkm km

Lisätiedot

YKSISIVUKAISTAMODULAATIO (SSB)

YKSISIVUKAISTAMODULAATIO (SSB) YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio

Lisätiedot

3. Differen*aalilaskenta

3. Differen*aalilaskenta 3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on

Lisätiedot

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13 4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt

Lisätiedot

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014

MAT-02450 Fourier n menetelmät. Merja Laaksonen, TTY 2014 MAT-45 Fourier n meneelmä Merja Laaksonen, TTY 4..4 Sisälö Johano 3. Peruskäsieiä................................... 4.. Parillinen ja parion funkio....................... 7.. Heavisien funkio............................

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

2. Matemaattinen malli ja funktio 179. a) f (-2) = -2 (-2) = = -6 b) f (-2) = 2 (-2) 2 - (-2) = (-8) + 7 = = 23

2. Matemaattinen malli ja funktio 179. a) f (-2) = -2 (-2) = = -6 b) f (-2) = 2 (-2) 2 - (-2) = (-8) + 7 = = 23 LISÄTEHTÄVÄT. Maemaainen malli ja funkio 9. a) f (-) = - (-) + = - + = -6 b) f (-) = (-) - (-) + = - (-8) + = 8 + 8 + = 80. a) f ( ) = + f ( ) = 0 + = 0 ( ) = ± = ± = ai = Vasaus: = - ai = b) + = + = 0

Lisätiedot

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä

Lisätiedot

R4 Harjoitustehtävien ratkaisut

R4 Harjoitustehtävien ratkaisut . Mitkä seurvist lusekkeist eivät ole polynomej? Miksi eivät? Polynomin termine eksponentti on luonnollinen luku, ne lusekkeet, joiss eksponentti ei ole luonnollinen luku ei ole myöskään polynomi.. x x

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi

Lisätiedot

Itseopiskeluohje to

Itseopiskeluohje to Itseopiskeluohje to 5.1.2018 Yleistä Torstin 5.1.2018 luennoitsijnne on Mtemtiikn päivillä Joensuuss vetämässä sessiot mtemtiikn opetuksest. Näin ollen luento ei pietä, vn trkoitus on itse käyä läpi kksi

Lisätiedot

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA

XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen

Lisätiedot

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja

Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja 58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on

Lisätiedot

Integraalilaskenta. Määrätty integraali

Integraalilaskenta. Määrätty integraali 9..08 Integrlilskent Määräämätön Etsitään funktiot Derivoinnille käänteistoimenpide integroiminen Integrlifunktio F(x), jolle F x = f x, lisäksi integrlifunktioille G x = F x + C. Vkion C lisäys (merkitys),

Lisätiedot