4. Integraalilaskenta

Koko: px
Aloita esitys sivulta:

Download "4. Integraalilaskenta"

Transkriptio

1 4. Integraalilaskenta Johda3eleva esimerkki: kun hiukkasen paikka s(t) derivoidaan ajan suhteen, saadaan hiukkasen nopeus: v(t) = s'(t) Kun nopeus derivoidaan ajan suhteen saadaan kiihtyvyys a(t) = v'(t) Käänteinen ongelma: hiukkasen kiihtyvyys on a(t). Mikä on hiukkasen nopeus v(t) ja paikka s(t)? Tarvitaan derivoinnille vastakkainen laskutoimitus: integroine

2 s(t) derivoine v(t) derivoine a(t) integroine integroine

3 Integroinnin kaksi tulkintaa 1. Määräämätön integraali eli integraalifunk3o IntegroinE on derivoinnille käänteinen prosessi d dx F(x) = f(x) kertoo minkä suhteen integroidaan f(x)dx=f(x)+ C f(x):n integraalifunkeo integroimisvakio Integroinnin merkki funkeo mikä pitäisi integroida d dx (F(x) + C) = d dx (F(x)) + d dx (C) = d dx F(x) + 0 = d dx F(x)

4 Integroinnin kaksi tulkintaa 1. Määräämätön integraali eli integraalifunk3o IntegroinE on derivoinnille käänteinen prosessi d dx F(x) = f(x) f(x)dx=f(x)+ C d dx (F(x) + C) = d dx (F(x)) + d dx (C) = d dx F(x) + 0 = d dx F(x)

5 Integroinnin kaksi tulkintaa 1. Määräämätön integraali eli integraalifunk3o IntegroinE on derivoinnille käänteinen prosessi d dx F(x) = f(x) kertoo minkä suhteen integroidaan f(x)dx=f(x)+ C f(x):n integraalifunkeo integroimisvakio Integroinnin merkki funkeo mikä pitäisi integroida d dx (F(x) + C) = d dx (F(x)) + d dx (C) = d dx F(x) + 0 = d dx F(x)

6 Integroinnin kaksi tulkintaa 1. Määräämätön integraali eli integraalifunk3o IntegroinE on derivoinnille käänteinen prosessi d dx F(x) = f(x) kertoo minkä suhteen integroidaan f(x)dx=f(x)+ C f(x):n integraalifunkeo integroimisvakio Integroinnin merkki funkeo mikä pitäisi integroida d dx (F(x) + C) = d dx (F(x)) + d dx (C) = d dx F(x) + 0 = d dx F(x)

7 Sama graafisese Peruskoulutapa ratkaista edellä ollut esimerkki: muisesääntöjen avulla (esim s(t) = 0.5at 2 + v 0 t + s 0 jos a vakio) tai graafisese. Jos hiukkasen nopeus v(t) = v = vakio, niin hiukkasen aikana t kulkema matka s(t) on v t. v(t) v s(t) = v t t t

8 Entä jos v ei ole vakio? v(t) s(t) = t 0 v(t)dt t t Graafinen integroine

9 Integroinnin kaksi tulkintaa 2. Määrä6y integraali eli integroin3 sijoitusrajoilla FunkEon f(x) integraali välillä [a,b] on käyrän f(x) ja x- akselin väliin jäävän alueen pinta- ala välillä [a,b]. f(x) Merkitään: a Integroimisrajat b a f(x)dx = a b b F(x) = F(b) F(a) x

10 Integraali siivujen summana FunkEo f(x):n kuvaaja on käyrä. f(x):n arvo x:n eri pisteissä kuvataan pylväinä oheisessa kuvassa. Integraalin f(x)dx tulkinta: käyrän alle jäävä pinta- ala. Voidaan ajatella e3ä alue jaetaan (ääre3ömän kapeisiin) siivuihin, joiden pinta- ala lasketaan yhteen. Integraalin merkintä ( venyte3y S- kirjain ) tulee tästä integraali on ikään kuin siivujen summa. f(x)dx

11 Yhteys integraalifunkeon ja määrätyn integraalin välillä x a f(x)dx = F(x) + C x f(x)dx = a F(x) = F(x) F(a)

12 Yhteys integraalifunkeon ja määrätyn integraalin välillä f(x)dx = F(x) + C x a f(x)dx = a x F(x) = F(x) F(a) Määrä3y integraali C = - F(a). x a f(x)dx on se integraalifunkeo jolla

13 Integraalin laskeminen Kaikilla funkeoilla ei ole integraalifunkeota tai sellaista ei osata laskea (= esi3ää alkeisfunkeoiden avulla). IntegroinE ei muutenkaan ole yhtä suoraviivaista kuin derivoine. Integroinnissa joutuu usein käy3ämään ja solveltamaan erilaisia strategioita (ja/tai "kikkoja"). Suoraviivaisia lähestymistapoja ovat esim: DerivoinEsääntöjen soveltaminen "väärinpäin" Taulukkokirjat => taulukkointegraalit Matemaa`set ohjelmat, esim MathemaEca Numeerinen integroine (joskus ainoa keino)

14 IntegroinEkeinoja Monimutkaisempia integroinekeinoja ovat esim: Osi3aisintegroinE Sijoitusmene3ely eli muu3ujan vaihto Trigonometriset palautuskaavat RaEonaalifunkEon integroine Kompleksilaskennan residymenetelmät (ei käsitellä tällä kurssilla)

15 IntegroinE derivoinesääntöjen ja kaavojen avulla (ks. esim MAOL) Potenssifunk3on integroin3 kun n - 1 d dx xn = nx n 1 d dx ( 1 n +1 xn+1 ) = x n nx n 1 dx = x n + C x n dx = 1 n +1 xn+1 + C Todistus: x n dx = 1 n +1 xn+1 + C koska d dx ( 1 n +1 xn+1 + C) = x n

16 Esimerkkejä x 2 dx = x2+1 + C = 1 3 x3 + C koska d dx (1 3 x3 + C) = x 2 5x -3 dx = 5 x -3 dx = x C = -5 2 x-2 + C koska d dx (-5 2 x-2 + C) = 5x -3

17 Summa ja vakiolla kertominen ( f (x)+ g(x)) dx = f (x) dx + g(x) dx + C Esim: (x 2 + 3x) dx = x 2 dx + 3x dx + C = 1 3 x x2 + C koska d dx (1 3 x x2 + C) = x 2 + 3x a f (x) dx = a f (x) dx Esim: 3x dx = 3 x dx = 3 2 x2 + C

18 Yhdistetyn funk3on derivoin3kaavan soveltaminen väärinpäin d dx g( f (x)) = g'( f (x)) f '(x) g'( f (x)) f '(x) dx = g( f (x)) Voidaan käy3ää kun g (x) osataan integroida. Sovelluksia: FunkEon potenssi, g (x)=x n, jolloin g (f(x)) = (f(x)) n FunkEo sini- tai kosinilausekkeessa, g (x)=sin(x) tai cos(x), jolloin g (f(x)) = sin(f(x)) tai cos(f(x)) FunkEo eksponenessa, g (x)=e x, jolloin g (f(x)) = e f(x) Huom: jo3a integroitava funkeo saadaan täsmälleen muotoon g (f(x)f (x) joudutaan usein kertomaan vakiolla.

19 Funk3on potenssin integroin3 kun n - 1 Tarkistus: f (x) n f '(x) dx = 1 n +1 f (x)n+1 + C d dx! 1 n +1 f $ (x)n+1 + C " # % & = 1 n +1 (n +1) f (x)n f '(x) = f (x) n f '(x) f'(x) Esim: f(x) 2x(x 2-1) 3 dx = (x2-1) C = 1 4 (x2 1) 4 + C Tarkistus: d 1 dx 4 (x2 1) 4 = (x2 1) 3 d dx (x2-1) = 1 (x 2 1) 3 2x = 2x(x 2 1) 3

20 Esim: f'(x) f(x) (3x + 2) 5 = 1 3 3(3x + 2) 5 = (3x + 2)6 + C = 1 18 (3x + 2)6 + C Tarkistus: d dx ( 1 18 (3x + 2)6 + C) = (3x + 2)5 d dx = (3x + 2)5 3 = (3x + 2) 5 (3x + 2)

21 Funk3on 1/x integroin3 Koska d dx ln(x) = 1 x 1 dx = ln x + C x Miksi itseisarvomerkit? Vastaus: jo3a funkeon ja sen derivaa3a- tai integraalifunkeon määri3elyjoukot olisivat samat. (Muista: ln(x) ei ole määritelty kun x < 0.) 1 x ln(x)

22 Sovellus: funk3on f'(x)/f(x) integroin3 f '(x) dx = ln f (x) + C f (x) Koska d dx (ln( f (x)) = f '(x) 1 f (x) Tämäkin kaava saadaan myös kääntämällä yhdistetyn funk<on derivoin<kaava toisinpäin; tässä g (x) = 1/x. Esim: 1 2x +1 dx = x +1 dx = 1 2 ln 2x +1 + C

23 Trigonometristen funk3oiden integroin3 sin(x)dx = -cos(x)+ C D x ( cos(x)) = sin(x) cos(x)dx = sin(x)+ C D x (sin(x)) = cos(x) f '(x)sin f (x) [ ]dx f '(x)cos f (x) [ ]dx = cos f (x) [ ] + C = sin f (x) [ ] + C Esim. sin(5x)dx = 1 5 5sin(5x)dx = 1 5 cos(5x)+ C x sin(x 2 )dx = 1 2 2x sin(x2 )dx = 1 2 cos(x2 )+ C

24 EksponenQfunk3on integroin3 e x dx = e x + C D x e x = e x f '(x)e f (x) dx = e f (x) + C D x e f (x) = f '(x)e f (x) Esim. (2x + 3)e x2 +3x dx = e x2 +3x + C 5e 3x dx = e 3x = 5 3 e3x + C Logaritmifunk3on integroin3 ln x dx = x ln x - x + C koska d dx x ln x - x + C!" # $ = d dx (x) ln x + x d dx (ln x ) 1 =1 ln x + x 1 x 1= ln x +1 1= ln x

25 Määrätyn integraalin laskeminen Esim. 1 Esim 2 π 2 0 cos(x)dx = π /2 0 sin(x) = sin(π / 2) sin(0) =1 0 = x dx = x2 = = 7.5 Määrä3y integraali lasketaan kahdessa vaiheessa: Ensin integroidaan Si3en sijoitetaan

26 Erikoiset integroimisrajat Tapaus 1: x f (x)dx = F(x) F(0) 0 Joskus integroinerajana käytetään integroinemuu3ujaa. Tämä voi olla hämäävää, usein on selkeämpää käy3ää eri muu3ujaa integroinerajan ja itse integraalin x merkinnässä, esim näin: Esim: hiukkasen paikka ja nopeus v(t) = ds(t) dt s(t) = t 0 v(t)dt 0 f (u)du

27 Tapaus 2: ääretön ja miinus ääretön integroimisrajoina Esim: e -r dr = 0 = Hyödyllisiä limes- tuloksia: 0 - e -r = lim a a 0 - e -a lim % & a e a e 0 ' ( = lim a lim a e a = 0, 1 e a Joskus integraalin arvo voi myös olla ääretön. Tällöin sanotaan e3ä integraali divergoi. % & ' ( =1 0 =1 lim a ae a = 0 Esim: dx = x 1 1 ln(x) = lim a a 1 ln(x) = lim a [ ln(a) ln(1) ] = lim a [ ln(a) ] =

28 Integraalilaskuja kemiassa, esim 1 Aineen lämpökapasitee` vakiopaineessa C p toteu3aa differeneaaliyhtälön " C p = H % $ ' # T & p missä H on entalpia ja T absoluu`nen lämpöela. Tästä saadaan dh = C p dt. Lämpökapasitee` (yksikkö J K - 1 mol - 1 ) voidaan usein esi3ää lämpöelan kolmen parametrin funkeona: C p a + bt + ct - 2 Typelle (N 2 ) parametrien arvot ovat: a = 28,58 J K - 1 mol - 1, b = 3, J K - 2 mol - 1 ja c = - 0, J K mol - 1 Laske ΔH = H(T 2 )- H(T 1 ), kun kaasua lämmitetään lämpöelasta T 1 = 25 C lämpöelaan T 2 = 100 C.

29 Ratkaisu: ΔH = H (T 2 ) dh = C p dt H (T 1 ) T 2 T 1 T = 2 (a + bt + c T )dt 2 T 1 = T2 T1 (at bt 2 - c T ) = (at bt c )-(at T 2 2 bt c ) T 1 Sijoitetaan annetut arvot, ja saadaan ΔH = 2200 J mol - 1 = 2,20 kj mol - 1 Vinkki: tarkista aina derivoimalla enä olet integroinut oikein: antaako integraalifunk<on derivaana alkuperäisen funk<on?

30 Integraalilaskuja kemiassa, esim 2 Kun kaasu laajenee (ulkoista) paine3a p ex vastaan, se suori3aa laajenemistyön dw = - p ex dv. Johdetaan lauseke laajenemistyölle W kaasun laajetessa Elavuudesta V 1 Elavuuteen V 2 eri tapauksissa. A. Kun paine on vakio, p = p ex dw = -p ex dv V 2 W = -p ex dv = p ex dv = p ex (V ) V 1 = -p ex (V 2 V 1 ) V 2 V 1 V2 V 1

31 B. Kun kaasu on ideaalikaasu vakiolämpöelassa (T ja n vakioita), jolloin pv = nrt è p = nrt/v dw = -pdv = - nrt V V 2 V 2 dv W = -pdv = nrt V dv = - nrt dv V2 = -nrt ln(v ) V V1 V 1 V 1 = -nrt(ln(v 2 ) ln(v 1 )) = nrt ln( V 2 V 1 ) V 2 V 1

32 Integraalilaskuja kemiassa, esim 3 HCl molekyylin sidoksen voimavakio on k = 518 N m - 1 ja tasapainosidospituus r e = 0,127 nm. Hooken lain mukaan sidospituuden muutosta vastustava voima on F(Δr) = kδr, missä Δr = (r- r e ) on poikkeama tasapainosidospituudesta. Laske Hooken lain mukainen sidospituuden muu3amiseen tarvi3ava työ W(Δr) kun HCl:n sidos venytetään tasapainosta 0,137 nm:aan. W (Δr) = Δr F(Δr)d(Δr) = k Δr d(δr) = 0 Δr 0 Δr kδr2 = 1 2 kδr2 1 2 k02 = 1 2 kδr2 Nyt voidaan sijoi3aa arvot: Δr = 0,137 0,127 nm = 0,1 nm, ja W = 2, J.

33 Integraalilaskuja kemiassa, esim 3 Huom: äsken olisi voitu käy3ää muu3ujana Δr:n sijaan myös r:aa, jolloin olisi integroitu F(r) = k(r- r e ) sijoitusrajoilla r e ja r e + Δr. Lasku olisi ollut hieman pidempi, mu3a merkintä ehkä helpompi ymmärtää: W (r) = r e +Δr F(r)dr = k(r - r e )dr r e r e +Δr r e r e +Δr = k( r dr r e dr) = k( r e = k( (r e + Δr) 2 2 r e +Δr r e = k( r 2 e 2 + 2Δr r e 2 (r e ) 2 2 re+δr r 2 re 2 - re re+δr r r e ) (r e + Δr) r e r e r e ) + Δr2 2 r 2 e 2 r 2 e Δr r e + r 2 e ) = k Δr2 2

34 Integraalilaskuja kemiassa, esim 4 AlkuElanteessa 5,0 m 3 kaasua on normaali- ilmanpaineessa. Kaasua puristetaan adiabaa`sese kymmenesosaan alkuperäisestä Elavuudestaan. Adiabaa`selle prosessille pv γ = k, missä γ = C p /C v = 1,404 ilmalle ja k on vakio. Laske tehty työ W = pdv. Ratkaisu: AlkuElavuus V 1 = 5,0 m 3, loppuelavuus V 2 = 0,5 m 3 p = V -γ k V 2 W = pdv = V -γ k dv = k V -γ dv = k V 1 V2 1 V1 V 2 V 1 γ +1 V γ+1 = k 1 γ (V γ+1 2 V γ+1 1 ) V 2 V 1

35 Äsken johde`in W = k 1 γ (V γ+1 2 V γ+1 1 ) Ennenkuin voidaan sijoi3aa arvot, pitää ratkaista k. Tämä voidaan tehdä esimerkiksi alkuelavuuden V 1 = 5,0 m 3 ja alkupaineen p 1 = 1 atm = Pa avulla. Saadaan k = p 1 V 1γ. Sijoitetaan kaavaan: W = p V γ γ (V γ+1 2 V γ+1 1 ) = Pa (5, 0m 3 ) 1, , 404 = , 5 J =1, J ((0, 5m 3 ) 1,404+1 (5, 0m 3 ) 1,404+1 ) Huom: Pa = N m - 2 ; Pa m 3 = N m = J

36 Integraalilaskuja kemiassa, esim 5 Arrheniuksen yhtälö on k = Ae E a RT a) Osoita e3ä Ratkaisu: d(ln k) dt = E a RT 2 ln k = ln(ae E a RT ) = ln A + ln(e E a RT ) = ln A E a RT d(ln k) dt = d dt (ln A E a RT ) = 0 E a R 1 T 2 = E a RT 2

37 Arrheniuksen yhtälö on b) Jos k 1 on reakeon nopeusvakio lämpöelassa T 1 ja k 2 on nopeusvakio lämpöelassa T 2, osoita e3ä ln( k 2 k 1 ) = E a R (T 2 T 1 T 2 T 1 ) Ratkaisu: Äsken johde`in d(ln k) = E a RT 2 dt k = Ae E a RT d(ln k) dt = E a RT 2. Tästä saadaan Nyt voidaan integroida molemmat puolet. k:n integroinerajat ovat k 1 ja k 2, T:lle vastaavase T 1 ja T 2. k 2 d(ln k) = k 1 T 2 T 1 E a RT 2 dt

38 k 2 d(ln k) = k 1 T 2 T 1 E a RT 2 dt k2 k1 ln k = E T2 a R T 1-1 T ln k 2 ln k 1 = E a R ( 1 T 2 1 T 1 ) ln ( k 2 k 1 ) = E a R ( 1 T 1 1 T 2 ) = E a R ( T 2 T 2 T 1 T 1 T 1 T 2 ) ln ( k 2 k 1 ) = E a R (T 2 -T 1 T 1 T 2 )

39 Integraalilaskuja kemiassa, esim 6 Osoita e3ä ideaalikaasulle kv 1 pdv = nrt ln k V 1 kun T on vakio (isoterminen prosessi) Ratkaisu: pv = nrt è p = nrt/v kv 1 pdv = V 1 kv1 = nrt V1 kv 1 nrtdv = nrt dv V V V 1 kv 1 ln V = nrt (ln kv 1 ln V 1 ) V 1 = nrt ln( kv 1 V 1 ) = nrt ln k

40 Integraalilaskuja kemiassa, esim 7 SiO 2 :lle C - kvartsimuodossa pätee aiemmin esitelty lämpökapasitee`yhtälö C p a + bt + ct - 2 missä a = 46,0 J K - 1 mol - 1, b = 0,00334 J K - 2 mol - 1 ja c = - 8, J K mol - 1 Laske entalpian ja entropian muutokset kun kvartsi lämmitetään lämpöelasta 298 K lämpöelaan 350 K. Entalpian ja entropian differeneaaleille dh ja ds pätee: dh/dt = C p dh = C p dt ds/dt = C p /T ds = (C p /T)dT Ratkaisu: integroidaan yhtälöiden molemmat puolet.

41 ΔH = H 2 1 dh = C p dt = H 1 T 2 T 1 T 2 T 1 (a + bt + ct -2 )dt = T2 T1 (at bt 2 - c T ) = a(t 2 -T 1 )+ 1 2 b(t 22 -T 1 2 )- c( 1 T 2-1 T 1 ) Sijoitetaan T 1 = 298 K, T 2 = 350 K ja annetut a:n, b:n ja c:n arvot, saadaan ΔH = 2,400 kj mol - 1.

42 ΔS = S 2 1 ds = C -2 p T dt = a + bt + ct ( T S 1 T 2 T 1 T 2 T 1 )dt = (at -1 + b + ct -3 )dt = T 2 T 1 T2 T1 (a ln T + bt c T 2 ) = a ln( T 2 T 1 )+ b(t 2 -T 1 )- c 2 ( 1 T T 1 2 ) Sijoitetaan T 1 = 298 K, T 2 = 350 K ja annetut a:n, b:n ja c:n arvot, saadaan ΔS = 7,6 J mol - 1 K - 1.

4. Integraalilaskenta

4. Integraalilaskenta 4. Integraalilaskenta Johda3eleva esimerkki: kun hiukkasen paikka s(t) derivoidaan ajan suhteen, saadaan hiukkasen nopeus: v(t) = s'(t) Kun nopeus derivoidaan ajan suhteen saadaan kiihtyvyys a(t) = v'(t)

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d

Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d Osi$aisintegroin, Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) dx dx dx Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x))dx dx = df(x) dx g(x)dx + f(x)

Lisätiedot

Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö:

Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö: 9//3 Osi+aisintegroin3 Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) = df(x) g(x) + f(x) dg(x) f(x)

Lisätiedot

Osi*aisintegroin2. Osi*aisintegroin2: esimerkkejä. Osi*aisintegroin2tapauksia 1/29/13. f'(x)g(x)dx=f(x)g(x) f(x)g'(x)dx. f'(x)g(x)dx=f(x)g(x)

Osi*aisintegroin2. Osi*aisintegroin2: esimerkkejä. Osi*aisintegroin2tapauksia 1/29/13. f'(x)g(x)dx=f(x)g(x) f(x)g'(x)dx. f'(x)g(x)dx=f(x)g(x) /9/ Osi*aisintegroin Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) df(x) g(x) + f(x) dg(x) f(x) g(x)

Lisätiedot

4. Integraalilaskenta

4. Integraalilaskenta 4. Inegrlilsken Joh8elev esimerkki: kun hiukksen pikk s( erivoin jn suheen, sn hiukksen nopeus: v( = s'( Kun nopeus erivoin jn suheen sn kiihyvyys ( = v'( Kääneinen ongelm: hiukksen kiihyvyys on (. Mikä

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

3. Differen*aalilaskenta

3. Differen*aalilaskenta 3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A > B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on

Lisätiedot

H5 Malliratkaisut - Tehtävä 1

H5 Malliratkaisut - Tehtävä 1 H5 Malliratkaisut - Tehtävä Eelis Mielonen 30. syyskuuta 07 a) 3a (ax + b)3/ + C b) a cos(ax + b) + C a) Tässä tehtävässä päästään harjoittelemaan lukiosta tuttua integrointimenetelmää. Ensimmäisessä kohdassa

Lisätiedot

Osa 11. Differen-aaliyhtälöt

Osa 11. Differen-aaliyhtälöt Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta

Viivaintegraali: Pac- Man - tulkinta Viivaintegraali: "Pac- Man" - tulkinta Otetaan funk6o f(x,y), joka riippuu muu@ujista x ja y. Jokaiselle x,y tason pisteellä funk6olla on siis joku arvo. Tyypillisiä fysikaalis- kemiallisia esimerkkejä

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin

Lisätiedot

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13 4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt

Lisätiedot

Differentiaalilaskennan tehtäviä

Differentiaalilaskennan tehtäviä Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1

Lisätiedot

3. Differen*aalilaskenta

3. Differen*aalilaskenta 3. Differen*aalilaskenta Differen*aali "hyvin pieni muutos" Derivaa9a kuvaa funk*on muutosnopeu9a Esim. 1 kertaluvun kemiallinen reak*o A B Reak*on nopeus on A:n tai B:n konsentraa*on muutosnopeus. Reak*on

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan

Lisätiedot

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x

x n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

Thermodynamics is Two Laws and a Li2le Calculus

Thermodynamics is Two Laws and a Li2le Calculus Thermodynamics is Two Laws and a Li2le Calculus Termodynamiikka on joukko työkaluja, joiden avulla voidaan tarkastella energiaan ja entropiaan lii2yviä ilmiötä kaikissa luonnonilmiöissä ja lai2eissa Voidaan

Lisätiedot

Lisä,etopake3 2: ra,onaalifunk,on integroin,

Lisä,etopake3 2: ra,onaalifunk,on integroin, 9/20/ Lisä,etopake 2: ra,onaalifunk,on integroin, Ra,onaalifunk,o: kahden polynomin P(x) ja Q(x) osamäärä. Esim. x 2 x + 2 tai x5 +6x x- Ra,onaalifunk,o voidaan aina integroida, ja tähän löytyy kajava

Lisätiedot

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1

x (t) = 2t ja y (t) = 3t 2 x (t) + + y (t) Lasketaan pari käyrän arvoa ja hahmotellaan kuvaaja: A 2 A 1 BM2A582 Integraalilaskenta ja sovellukset Harjoitus 6, Kevät 26 Kaikissa tehtävissä tärkeintä ja riittävää on saada oikea lauseke aikaiseksi. Useissa tehtävissä integraalit eivät tosin ole niin vaikeita

Lisätiedot

Differentiaali- ja integraalilaskenta

Differentiaali- ja integraalilaskenta Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona

Lisätiedot

Muuttujan vaihto. Viikon aiheet. Muuttujan vaihto. Muuttujan vaihto. ) pitää muistaa lausua t:n avulla. Integroimisen työkalut: Kun integraali

Muuttujan vaihto. Viikon aiheet. Muuttujan vaihto. Muuttujan vaihto. ) pitää muistaa lausua t:n avulla. Integroimisen työkalut: Kun integraali Viikon aiheet Integroimisen työkalut: Rationaalifunktioiden jako osamurtoihin Rekursio integraaleissa CDH: Luku 4, Prujut206: Luvut 4-4.2.5, Prujut2008: s. 89-6 Kun integraali h(x) ei näytä alkeisfunktioiden

Lisätiedot

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

8. Monen muu*ujan funk/on differen/aalilaskenta

8. Monen muu*ujan funk/on differen/aalilaskenta 8. Monen muu*ujan funk/on differen/aalilaskenta Esim 1. Ideaalikaasun /lanyhtälö p = nrt V Paine riippuu /lavuudesta, ainemäärästä ja lämpö/lasta: p = p(n, T, V) Esim 2. Hiukkasen aaltofunk/o kolmiulo*eisessa

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

MATP153 Approbatur 1B Harjoitus 5 Maanantai

MATP153 Approbatur 1B Harjoitus 5 Maanantai MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

8. Monen muu*ujan funk/on differen/aalilaskenta

8. Monen muu*ujan funk/on differen/aalilaskenta 8. Monen muu*ujan funk/on differen/aalilaskenta Esim 1. Ideaalikaasun /lanyhtälö p = nrt V Paine riippuu /lavuudesta, ainemäärästä ja lämpö/lasta: p = p(n, T, V) Esim 2. Hiukkasen aaltofunk/o kolmiulo*eisessa

Lisätiedot

7. Monen muu/ujan funk4on differen4aalilaskenta

7. Monen muu/ujan funk4on differen4aalilaskenta 7. Monen muu/ujan funk4on differen4aalilaskenta Esim 1. Ideaalikaasun 4lanyhtälö p = nrt V Paine riippuu 4lavuudesta, ainemäärästä ja lämpö4lasta: p = p(n, T, V) Esim 2. Hiukkasen aaltofunk4o kolmiulo/eisessa

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1 Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!

Lisätiedot

π( f (x)) 2 dx π(x 2 + 1) 2 dx π(x 4 + 2x 2 + 1)dx ) = 1016π 15

π( f (x)) 2 dx π(x 2 + 1) 2 dx π(x 4 + 2x 2 + 1)dx ) = 1016π 15 BMA58 Integraalilaskenta ja sovellukset Harjoitus, Kevät 7 Vaikka useissa tehtävissä pyydetään vain lauseketta, ratkaisua tehdessäsi hahmottele aina kuva ja merkitse näkyviin myös lausekkeen osien geometriset

Lisätiedot

Integroimistekniikkaa Integraalifunktio

Integroimistekniikkaa Integraalifunktio . Integroimistekniikkaa.. Integraalifunktio 388. Vertaa funktioiden ln ja ln, b) arctan ja arctan + k k, c) ln( + 2 ja ln( 2, missä a >, derivaattoja toisiinsa. Tutki funktioiden erotusta muuttujan eri

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit

MS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77 Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty.5.07 Kertaus K. a) sin 0 = 0,77 b) cos ( 0 ) = cos 0 = 0,6 c) sin 50 = sin (80 50 ) = sin 0 = 0,77 d) tan 0 = tan (0 80 ) = tan 0 =,9 e)

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

f(x) f(y) x y f f(x) f(y) (x) = lim

f(x) f(y) x y f f(x) f(y) (x) = lim Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,

Lisätiedot

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali integraali 1 Matta-projekti(Aalto yliopisto): Integraali (http://matta.hut.fi/matta2/isom/html/isomli8.html ) Johdatus korkeakoulumatematiikkaan (Tampereen teknillinen korkeakoulu): Integraali (http://matwww.ee.tut.fi/jkkm/integraa/integ01.htm

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila

Lisätiedot

Talousmatematiikan perusteet: Luento 17. Osittaisintegrointi Sijoitusmenettely

Talousmatematiikan perusteet: Luento 17. Osittaisintegrointi Sijoitusmenettely Talousmatematiikan perusteet: Luento 17 Osittaisintegrointi Sijoitusmenettely Motivointi Viime luennolla käsittelimme integroinnin perussääntöjä: Vakiolla kerrotun funktion integrointi: af x dx = a f x

Lisätiedot

Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali

Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali Talousmatematiikan perusteet: Luento 18 Määrätty integraali Epäoleellinen integraali Motivointi Viime luennoilla opimme integrointisääntöjä: Tavalliset funktiotyypit (potenssi-, polynomi- ja eksponenttifunktiot)

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti

Lisätiedot

2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y =

2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y = BM20A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 2, Kevät 207 Päivityksiä: Tehtävän 4b tehtävänanto korjattu ja vastauksia lisätty.. Ratkaise y, kun 2y x = y 2 e x2. Jos y () = 0 niin mikä on ratkaisu

Lisätiedot

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) = BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

Yleisiä integroimissääntöjä

Yleisiä integroimissääntöjä INTEGRAALILASKENTA, MAA9 Yleisiä integroimissääntöjä Integroiminen eli annetun funktion f integraalifunktion F määrittäminen (löytäminen) on yleisesti haastavaa. Joskus joutuu jopa arvata tai kokeilla.

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

3. Reaalifunktioiden määräämätön integraali

3. Reaalifunktioiden määräämätön integraali 50 3. Reaalifunktioiden määräämätön integraali Integraalifunktio Derivoinnin käänteistoimituksena on vastata kysymykseen "Mikä on se funktio, jonka derivaatta on f?" Koska vakion derivaatta 0, havaitaan

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L

Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että:

Mapu I Laskuharjoitus 2, tehtävä 1. Derivoidaan molemmat puolet, aloitetaan vasemmasta puolesta. Muistetaan että: Mapu I Laskuharjoitus 2, tehtävä 1 1. Eräs trigonometrinen ientiteetti on sin2x = 2sinxcosx Derivoimalla yhtälön molemmat puolet x:n suhteen, joha lauseke cos 2x:lle. Ratkaisu: Derivoiaan molemmat puolet,

Lisätiedot

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x

y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen

Lisätiedot

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä

Talousmatematiikan perusteet: Luento 16. Integraalin käsite Integraalifunktio Integrointisääntöjä Talousmatematiikan perusteet: Luento 16 Integraalin käsite Integraalifunktio Integrointisääntöjä Integraalin käsite Tarkastellaan auton nopeusmittarilukemaa v(t) ajan t funktiona aikavälillä klo 12.00-17.00

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja

Lisätiedot

Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3

Differentiaaliyhtälöt I, kevät 2017 Harjoitus 3 Differentiaaliyhtälöt I, kevät 07 Harjoitus 3 Heikki Korpela. helmikuuta 07 Tehtävä. Ratkaise alkuarvo-ongelmat a) y + 4y e x = 0, y0) = 4 3 b) Vastaus: xy + y = x 3, y) =.. a) Valitaan integroivaksi tekijäksi

Lisätiedot

Johdantoa INTEGRAALILASKENTA, MAA9

Johdantoa INTEGRAALILASKENTA, MAA9 Lyhyehkö johdanto integraalilaskentaan. Johdantoa INTEGRAALILASKENTA, MAA9 Integraalilaskennan lähtökohta 1: Laskutoimitukset + ja ovat keskenään käänteisiä, samoin ja ovat käänteisiä, kunhan ei jaeta

Lisätiedot

= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin

= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin BMA7 - Integraalimuunnokset Harjoitus 9. Määritä -jaksollisen funktion f x = coshx, < x < Fourier-sarja. Funktion on parillinen, joten b n = kun n =,,3,... Parillisuudesta johtuen kertoimet a ja a n saadaan

Lisätiedot

Mat Matematiikan peruskurssi K2

Mat Matematiikan peruskurssi K2 Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin: Määrittelyjoukot Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:, 0 ; log, > 0 ;, 0 (parilliset juuret) ; tan, π + nπ Potenssisäännöt Ole tarkkana kantaluvun kanssa 3 3

Lisätiedot

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2) MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle

Lisätiedot

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p) Matematiikan TESTI, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/017 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut 0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z

Lisätiedot

Osa 5. lukujonot ja sarjat.

Osa 5. lukujonot ja sarjat. Osa 5. lukujonot ja sarjat. Summamerkintä Kurssilla on jo tullut vastaan ns. summamerkintä (kreikkalainen iso sigma): n k=1 Indeksin loppuarvo Indeksi jonka suhteen summataan a k =a 1 +a +a 3 +...+a n

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää

Lisätiedot

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 )

Kuva 1: Tehtävä 1a. = 2π. 3 x3 1 ) BMA58 - Integraalilaskenta ja sovellukset Harjoitus 3, Kevät 6 = Kuva : Tehtävä a. a Slinterinkuorelle tässä h = ja r = ja kä läpi välin [,], joka johtaa lausekkeeseen: V = π 6 / 3 d 3 3 3 = 3 Kuva : Tehtävä

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot