Molekulaarisuus = reagoivien molekyylien lkm Stoikiometria = tasapainotetun reaktioyhtälön lkm (ainetase)

Koko: px
Aloita esitys sivulta:

Download "Molekulaarisuus = reagoivien molekyylien lkm Stoikiometria = tasapainotetun reaktioyhtälön lkm (ainetase)"

Transkriptio

1 1. Yleistä a) Tasapainoreation yleinen muoto: a + bb f r cc + dd K c C D B èq a b, jossa d f r [X] = yhdisteen X onsentraatio a,b,c,d = yhdisteen stöiömetria (ainetaseesta) f = reationopeus eteenpäin r = äänteisen reation reationopeus K eq = tasapainovaio b) Termodynamiia G H TS RT ln K c) Moleulaarisuus vs. stoiiometria eq Moleulaarisuus = reagoivien moleyylien lm Stoiiometria = tasapainotetun reatioyhtälön lm (ainetase) Moleulaarisuus stoiiometria (1) C 1 C (2) + + * + C 2 C d) Vesi Tavallisesti veden (onsentraatio)vaiutusta ei tarvitse huomioida, jos se on liuottimena (n. 55 M, ei muutu olellisesti reation aiana), mutta - uivat reatiot? - ph:n vaiutus H + tai HO - atalysoiduissa reatioissa, erityisesti jos veden onsentraatio muuttuu reation uluessa. 2. Reation ertaluu a) Yleinen reationopeusyhtälö

2 d B na n b = muutosnopeus aiaysiössä = ainemäärä / aia = ( ) mol/s [X] n x = nopeusvaio = onsentaatio = reation ertaluu X:n suhteen b) Kertaluvun määritelmiä d B na nb Koonaisertaluu = esponenttien summa = n ni Spesifinen ertaluu ei välttämättä ole stoiiometristen ertoimien summa! Saadaan paremminin sovittamalla äyrä mittauspisteisiin! Esimerireatiossa i n + n B B Kertaluu :n suhteen on n Kertaluu B:n suhteen on n B Koonaisertaluu on n + n B Reatiolle C Koonaisertaluu = 1 Reatiolle + + C Koonaisertaluu = 2 Reation ertaluu voi olla murtoluu monimutainen reatiomeanismi Reation ertaluu voi olla = - :n muutos reation uluessa meritysetön - Esim. Lääeaine suspensiossa - Ei todellinen stoiiometria Pseudoertaluvut (desimaaliluvut, tyypillisesti) meanismi tuntematon; äyrän sovitus!

3 c) Merintääytännöt nopeusvaioille inetase (tasapainotettu reatioyhtälö) + 2 B 3 C inemäärän muutos ( moolia) d db B 2 B 2 B 2 B dc B 2 C 3 C d db dc Tarista aina, miten nopeusvaio on määritetty! ENSIMMÄISEN KERTLUVUN IRREVERSIIBELI REKTIO B d Integroidaan: 1 ln Tai d ln t t e Nopeusvaio saadaan uvaajasta ln [] vs t. ENSIMMÄISEN KERTLUVUN REVERSIIBELI REKTIO f r B

4 lutilanteessa t =, [] = [], [B] =, tällöin ullain ajanhetellä t B Nopeusyhtälö d f r B f r r Integroimalla saadaan: f f r r ln f rt (.1) Tasapainotilanteessa f r r e r ; tai e f f e r e e Sijoitetaan tämä yhtälöön (1.1), jolloin saadaan

5 ln e f f f e e f f e f f f e e e f e f f e e e f e f r e ln f rt ln f rt ln f rt f f e e ln f rt e t ( f + r ) voidaan määrittää viimeisestä yhtälöstä ja f ja r yhtälöstä (1.1). TOISEN KERTLUVUN IRREVERSIIBELI REKTIO (esim. dimeroituminen) 2 B d 2 2 Teijä 2 usein jätetään pois (eli yhdistetään nopeusvaioon ), mutta tämä voi helposti johtaa epäselvyysiin, etenin un dimeroituminen on osa suurempaa reatiooonaisuutta. Säilytämme sen siis jatossa esplisiittisesti. Integrointi antaa t Toisen ertaluvun irreversiibelille reatiolle, joa on ensimmäistä ertaluua ummanin reagenssin suhteen: + B C BB d d B B d B

6 Integrointi antaa B 1 ln t B B Jos toisen lähtöaineen (B) aluonsentraatio on suuri ([B] >>[] ), on myös aina [B] >> [], jolloin yhtälö ysinertaistuu lähes ensimmäisen ertaluvun muotoon (ns. pseudo-ensimmäisen ertaluvun reatio): B 1 ln t STTIONÄÄRITIL Tarastellaan reatiota tyyppiä 1 B -1 2 C Jos -1 >> 1 tai 2 >> 1, voidaan inettistä analyysiä ysinertaistaa db merittävästi olettamalla. Tämä selittyy sillä, että näissä olosuhteissa B:n onsentraation muutos on meritysetön verrattuna :n tai C:n onsentraatioiden muutoseen. ([B]:n suhteellinen tai prosentuaalinen muutos saattaa olla suuriin, mutta absoluuttinen onsentraatiomuutos aiaysiöä ohti on pieni.) Stationääritlaoletusen jäleen nopeuslaisi saadaan: d Tämän approsimaation taruus voidaan havainnollistaa seuraavalla esimerillä. Oletetaan [] = 1; [B] = [C] = ja 1 = 1-5 sec -1 ; -1 = 2x1-5 sec -1 ja 2 = 2x1-4 sec -1. []:n muutos voidaan nyt lasea ajan funtiona ja verrata sitä oeelliseen dataan. t (sec) [] obs [] SS % virhe

7 Exp fitting y =,9977e -9E-6x R² = 1 1,2 1,,8,6,4,2, t Stationääritilaoletusta voidaan soveltaa reatiohin, joiden moleuläärisyys on miä hyvänsä. Kun välituotteet reagoivat ei-ysimoleuläärisissä reatioissa, nopeuslaiin tulee nimittäjään onsentraatioteijä välituotteelle. Eli, un äseisessä reatiossa nopeusyhtälö oli: d Jos nyt reatio B:stä D:hen etenee bimoleuläärisesti C:n anssa: 1-1 B 2 [C] D Nopeusyhtälöin muuttuu analogisesti muotoon: 1 2 C d C 1 2 NOPEUSYHTÄLÖIDEN MEKNISTINEN TULKINT Reation meanismi määrää ysiselitteisesti nopeusyhtälön reatiolle, vaia sen matemaattisen esitysmuodon määritys saattaa olla hyvinin vaieata. Ei uitenaan voida sanoa ääntäen, että tiettyä noeusyhtälöä vastaisi ysiselitteinen meanismi! Joitain päätelmiä meanismin yleispiirteistä voidaan uitenin tehdä havaitun nopeusyhtälön perusteella. a) ysivaiheisen reation a b... nopeus B Kertoo, että siirtymätila muodostuu a + bb +

8 Siirtymätilateorian muaan reatiossa a + bb +... TS Reagenssit, B, ovat tasapainossa siirtymätilaomplesin TS anssa. Tasapainovaion määritelmästä voidaan johtaa siirtymätilan onsentraatio: TS K a b B... a TS K B b... Jolloin reationopeus on: nopeus c TS a b nopeus ck B... b) Kilpailevat reatiot Jos oeellinen nopeusyhtälö on muotoa nopeus B ' B C (.2) Reatiolla on rinnaaisia (ilpailevia) vaihtoehtoja, jota johtava siirtymätiloihin +B ja +B+C. Huomaa, että jos siirtymätilojen (moleuläärinen) oostumus on sama, ei nopeusyhtälö ole summa-muotoinen. Täten yhtälö (1.2) edellyttää, että oonaisreatiossa on ainain asi ilpailevaa reatiota, joissa seä että B reagoivat. c) Monimutaisemmat reatiot Summalausee nopeusyhtälön osoittajassa ilmentää, että reatiossa on ainain ysi välivaihe, joa syntyy reversiibelisti. Välivaiheeseen ja siitä edelleen johtavien siirtymätilojen oostumus voidaan määrittää miettimällä nimittäjän osateijöiden meritystä eriseen. Esimerisi reatiolle + 2B C Nopeusyhtälö 2 B nopeus 1 ' Meritsee, että reatiossa on ainain asi perääistä vaihetta, jossa toisen siirtymnätilassa on oostumus 2B ja toisen + 2B. Tämän perusteella voidaan seuraavista vaihtoehdoista:

9 B + B B 2 + B 2 + B B + B C B C Kasi ensimmäistä sopivat ineettiseen malliin, asi jälimmäistä eivät. SOLVOLYYSI Hughes, E.D.; Ingold, C.K.; Patel, C.S. J. Chem. Soc. 1933, 526. S N 1 ja S N 2-reatioiden määritelmät. S N 1 Nu: R-X R + + X - R-Nu + X - hidas nopea d RX RX (.3) S N 2 R-X + Nu: R-Nu + X - d RX RX Nu (.4) Solvolyysissä Nu on myös liuotin, jolloin sen onsentraatio ei oleellisesti muutu. S N 2-reation nopeusyhtälö muuttuu muodoltaan vastaamaan S N 1-reatiota! d RX RX liuotin RX ' Liuotin on yleensä huono nuleofiili, jolloin X - ilpailee arboationivälivaiheesta S N 1-reatiossa.

10 S N 1 1 R-X R + + X - R-OR' + X - -1 R'OH 2 + H + d RX 1 RX 1 R X (.5) Stationääritilassa arboationivälivaiheen onsentraatio on vaio, d R RX R X R RX R X R 1 RX X 1 2 (.6) Sijoitetaan tämä (1.5):een: d RX 1 RX 1RX 1 X 1X RX X 12 RX 11 RX X 1X RX 1X 2 (.7) 2 on pseudo-ensimmäisen ertaluvun nopeusvaio R OH ' 2 2 ' Yhtälöstä (1.7) voidaan päätellä, että 1) X - syntyy reatiossa, jolloin uvaajan RX ln RX vs. t pitäisi aareutua alaspäin eiä olla lineaarinen (eli reatio hidastuu ajan funtiona) 2) Lisätyn X - :n pitäsi hidastaa reatiota (Yhteisen ionin hidastava vaiutus). Tapaus 1:

11 Huomaa: Pelä RCl: ensimmäisen uvaajan äyrä aareutuu alaspäin, eli ajan uluessa reatio hidastuu! RCl + LiCl ulmaerroin pienenee, mutta uvaaja on lineaarinen (ln onstentraation suhteen) ja olmannessa tapausessa, johon palaamme, RCl + LiBr, ulmaerroin asvaa ja uvaaja aareutuu ylöspäin, jolloin reatio nopeutuu. Näitä on esitetty alla olevissa uvaajissa ysityisohtaisemmin. -lnc/c vs t -ln(c/c) t RCl + LiBr RCl RCl + LiCl

12 C vs t C 1,2 1,8,6,4,2 RCl + LiBr RCl RCl + LiCl t Product vs t product 1,2 1,8,6,4,2 RCl + LiBr RCl RCl + LiCl t Tapausessa 2 hentshydryyliloridin solvolyysissä LiCl nopeuttaa reatiota.

13 Kolmannessa tapausessa, t-butyylibromidin solvolyysissä havaitsemme saman vaiutusen.

14 LiBr:n lisäys ensimmäisessä tapausessa nopeuttaa reatiota alussa, mutta alentaa ajan nopeutta ajan funtiona. lussa suolaefetin vuosi liuosen ionivahvuus asvaa, jona seurausena dissosiaatio tulee suosittumasi, osa syntyvien ionien atiivisuusertoimet pienenevät. Yhteisen ionin (Li + ) suolan lisäysellä on siis asi vastaaista vaiutusta: 1) Yhteisen ionin hidastava vaiutus (Cl - asvaa) 2) Suolaefetin nopeuttava vaiutus (ionivahvuus) Tapausessa 1 1) on dominoiva, tapausessa 3 2) ja tapausessa 2 siltä väliltä. Tavallisessa suolaefetissä dissosiaatioreation nopeusvaio riippuu lineaarisesti ionien onsentraatiosta b X (.8) Sijoitetaan tämä yhtälöön (1.7), jolloin saadaan 1 b X 1 2 RX d RX X 1 2 (.9) Jos nyt -1 [X - ] >> 2, d RX brx 1 X (.1) X - onsentraation asvaessa reatio hidastuu ajan funtiona (1, 1). Jos -1 [X - ] << 2, d RX 1 1 b X RX (.11) Eli havaitaan suolaefetin nopeuttava vaiutus. Jos -1 [X - ] >> 2, silloin myös -1 [X - ] >> 2 [R OH]. Kosa solvolyysissä [R OH] >> [RX], täytyy myös olla -1 >> 2. Toisaalta, jos -1 [X - ] << 2, silloin Näin täytyy olla sisi, että -1 [X - ] << 2 [R OH]; [R OH] >> [X - ]; R OH on neutraali, un taas X- varautunut ja siten parempi nuleofiili joa tapausessa. Misi joillein arbonium-ioneille -1 2, un taas joillein -1 [X - ] >> 2? Hammondin postulaatin muaan reation siirtymätilan raenne muistuttaa sen välivaihee raennetta, jota lähempänä se on energialtaan. Tässä tapausessa (Nu additio R + :aan) siirtymätila on lähellä R +, jos reatio on voimaaasti esoterminen, mutta esotermisyyden vähentyessä muistuttaa enemmän R-Nu + :aa.

15 Reatiivisuudet arboniumioneille: t Bu + > Ph 2 CH + > (MeC 6 H 4 )CH +. 1) Nuleofiilin additio reatiiviseen arboniumioniin on aina voimaaasti esoterminen reatio, jolloin siirtymätilan raenne ei riipu nuleofiilin raenteesta. Solvolyysissä siis -1 2, eli -1 [X - ] << 2. Nopeutuva, suolaefeti. 2) Nuleofiilin additiossa ei-reatiiviseen arboniumioniin siirtymätila on enemmän tuotteen altainen ja siten herempi nuleofiilin raenteelle. Eli -1 >> 2, joten -1 [X - ] >> 2 ; hidastuva, yhteisen ionin hidastava vaiutus. KERTLUVUN MÄÄRITYS 1) Derivaattamenetelmä Reatioyhtälö: d n Piirrä onsentraatio vs aia ja sovita siihen äyrä. Kulmaerroin on d/. Määritä ulmaerroin useammassa pisteessä. d ln ln nln

16 Esimeri. Mittausdata: time amount (fml) ln d/ ln(-d/) Sovitetaan polynomi (2. asteen antaa hyvän orrelaation) Step 1 y =,53x 2-1,321x + 11,82 R² =, amount Poly. (amount) t Saadaan yhtälö, jolla voidaan LSKE (fml) ja edelleen d/. Lopulta saadaan uvaaja:,2,15 slope determination y =,7216x - 3,594 R² =,9992 ln(-d/),1,5 -,5 -,1 -,15 4 4,5 4,1 4,15 4,2 4,25 4,3 4,35 4,4 4,45 4,5 4,55 ln Kulmaerroin n =.72, eli reatio on 1. ertaluvun reatio :n suhteen.

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

Kaupunkisuunnittelu 17.8.2015

Kaupunkisuunnittelu 17.8.2015 VANTAAN KAUPUNKI MIEIPITEIDEN KOONTI Kaupunisuunnittelu..0 MR :N MUKAISEEN KUUEMISKIRJEESEEN..0 VASTAUKSENA SAADUT MIEIPITEET JA KANNANOTOT ASEMAKAAVAN MUUTOKSESTA NRO 009, MARTINAAKSO YHTEENSÄ KANNANOTTOJA

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Luku 8. Reaktiokinetiikka

Luku 8. Reaktiokinetiikka Luku 8 Reaktiokinetiikka 234 8.1 Reaktion nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

Kun annettu differenssiyhtälö z-muunnetaan puolittain, saadaan: 1 1 z Y z zy z z/4 4

Kun annettu differenssiyhtälö z-muunnetaan puolittain, saadaan: 1 1 z Y z zy z z/4 4 DEE- Lineaariset järjestelmät Harjoits 8, rataisehdotset Tämän harjoitsen ideana on opetella -mnnosen ättöä differenssihtälöiden rataisemisessa. Lisäsi ätetään -mnnosen ehäpä hödllisintä ominaistta, eli

Lisätiedot

Työ TD7. Reaktiokinetiikan tietokoneharjoitus

Työ TD7. Reaktiokinetiikan tietokoneharjoitus Työ TD7 huhtiuu 3, 8 Reatioinetiian tietooneharjoitus 1. JOHDANTO Tässä työssä lasetaan tietooneella vanttimeaniiaan, tilastolliseen termodynamiiaan ja siirtymätilateoriaan perustuen emiallisen reation

Lisätiedot

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen

Lisätiedot

SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN

SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN Miten modulaation P S P B? 536A Tietoliienneteniia II Osa 4 Kari Käräinen Sysy 05 SEP VS. BEP D-SIGNAALIAVARUUDESSA Kullein modulaatiolle johdetaan

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, evät 05 / ORMS00 Matemaattinen Analyysi 6. harjoitus. Approsimoi toisen asteen polynomilla P(x) = b 0 +b x+b x oheisen tauluon muaisia havaintoja. (Teorian löydät opetusmonisteen sivuilta

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia

Lisätiedot

Joulukuun vaativammat valmennustehtävät ratkaisut

Joulukuun vaativammat valmennustehtävät ratkaisut Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4

Lisätiedot

Luku 21. Kemiallisten reaktioiden nopeus

Luku 21. Kemiallisten reaktioiden nopeus Luku 21. Kemiallisten reaktioiden nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista tasapainoreaktiota:

Lisätiedot

Talousmatematiikan verkkokurssi. Koronkorkolaskut

Talousmatematiikan verkkokurssi. Koronkorkolaskut Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:

Lisätiedot

Luku kahden alkuluvun summana

Luku kahden alkuluvun summana Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun

Lisätiedot

järjestelmät Diskreettiaikaiset järjestelmät aikatason analyysi DEE Lineaariset järjestelmät Risto Mikkonen

järjestelmät Diskreettiaikaiset järjestelmät aikatason analyysi DEE Lineaariset järjestelmät Risto Mikkonen DEE- Lineaariset järjestelmät Disreettiaiaiset järjestelmät aiatason analsi DEE- Lineaariset järjestelmät Risto Mionen Disreettiaiaiset järjestelmät 7 3 5 Lineaaristen, vaioertoimisten differenssihtälöiden

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017

KJR-C2002 Kontinuumimekaniikan perusteet, viikko 45/2017 KJR-C00 Kontinuumimeaniian perusteet viio 45/017 1. Oloon f t ) alojen onsentraatio [ f ] < g/m ) joessa joa riippuu siis seä paiasta että ajasta. Havaitsija on veneessä ja mittaa onsentraatiota suoraan

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

järjestelmät Luku 2 Diskreettiaikaiset järjestelmät - aikataso DEE Lineaariset järjestelmät Risto Mikkonen

järjestelmät Luku 2 Diskreettiaikaiset järjestelmät - aikataso DEE Lineaariset järjestelmät Risto Mikkonen DEE- Lineaariset järjestelmät Luu 2 Disreettiaiaiset järjestelmät - aiataso DEE- Lineaariset järjestelmät Risto Mionen 6.9.26 Diseettiaiainen vs jatuva-aiainen Jatuvan signaalin u(t) nätteistäminen disreetisi

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen / ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai

Lisätiedot

Teddy 10. harjoituksen malliratkaisu syksy 2011

Teddy 10. harjoituksen malliratkaisu syksy 2011 Teddy. harjoituksen malliratkaisu syksy 2. Tarkastellaan reaktioketjua k O 3 O2 +O () O 2 +O k O 3 (2) O 3 +O k 2 O 2 +O 2 (3) Vakiotilaolettamuksen mukaan välituotteen konsentraatio pysyy vakiona lyhyen

Lisätiedot

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä): CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 10/017 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa E409 Kemiallinen tasapaino Tehtävä 1. Tasapainokonversion

Lisätiedot

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x , III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat

Lisätiedot

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2) . Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.

Lisätiedot

ESIM. ESIM.

ESIM. ESIM. 1 Vierintäita f r lasetaan samannäöisellä aavalla uin liuuitain: Ihmisunnan erästä suurimmista esinnöistä eli pyörää äytetään sen taia, että vierintäitaerroin µ r on paljon pienempi uin liuuitaerroin:

Lisätiedot

Runkomelu. Tampereen kaupunki Juha Jaakola PL Tampere

Runkomelu. Tampereen kaupunki Juha Jaakola PL Tampere Tampereen aupuni Juha Jaaola PL 487 33101 Tampere LAUSUNTO RAIDELIIKENTEEN NOPEUDEN KASVATTAMISESTA RANTA- TAMPELLAN ALUEEN RUNKOMELU- JA TÄRINÄRISKIIN Ranta-Tampellan alueen tärinää on arvioitu selvitysessä

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. Ryhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. Ryhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

Riemannin sarjateoreema

Riemannin sarjateoreema Riemannin sarjateoreema LuK-tutielma Sami Määttä 2368326 Matemaattisten tieteiden laitos Oulun yliopisto Sysy 206 Sisältö Johdanto 2 Luujonot 3 2 Sarjat 4 2. Vuorottelevat sarjat........................

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

3. Markovin prosessit ja vahva Markovin ominaisuus

3. Markovin prosessit ja vahva Markovin ominaisuus 30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström Näyäalueanalyysi Jouhaisselä Tuore Kulvaoselä tuulipuisto 29032012 Annua Engströ Näyäalueanalyysin uodostainen Näeäalueanalyysilla saadaan yleisuva siitä, ihin tuulivoialat äytettyjen lähtötietojen perusteella

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. yhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. yhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

HARMONINEN VÄRÄHTELIJÄ

HARMONINEN VÄRÄHTELIJÄ Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt 1 1 HARMONINEN VÄRÄHELIJÄ 1. yön tavoitteet 1.1 Mittausten taroitus ässä työssä tutustut jasolliseen, määrätyin aiavälein toistuvaan liieeseen,

Lisätiedot

Ainemäärien suhteista laskujen kautta aineiden määriin

Ainemäärien suhteista laskujen kautta aineiden määriin REAKTIOT JA ENERGIA, KE3 Ainemäärien suhteista laskujen kautta aineiden määriin Mitä on kemia? Kemia on reaktioyhtälöitä, ja niiden tulkitsemista. Ollaan havaittu, että reaktioyhtälöt kertovat kemiallisen

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24 Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään

Lisätiedot

S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk

S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk S-.35, Fysiia III (ES) entti 8..3 entti / välioeuusinta I älioeen alue. Neljän tunnistettavissa olevan hiuasen miroanonisen jouon mahdolliset energiatasot ovat, ε, ε, 3ε, ε,, jota aii ovat degeneroitumattomia.

Lisätiedot

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 Sisältö 1 KERTOMAT, BINOMIKERTOIMET 2 1.0.1 Kertoma/Factorial......................

Lisätiedot

BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011

BLY. Paalulaattojen suunnittelu kuitubetonista. Petri Manninen 24.1.2011 BLY Paalulaattojen suunnittelu uitubetonista Petri Manninen BY 56 Paalulaatta - Yleistä Käytetään tyypillisesti peheillä, noraali- tai lievästi ylionsolidoituneilla savioilla ja uilla peheiöillä Mitoitustietojen

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

6 Lineaarisen ennustuksen sovelluksia

6 Lineaarisen ennustuksen sovelluksia 6 Lineaarisen ennustusen sovellusia Lineaarisella ennustusella on hyvin täreä asema monessa puheenäsittelyn sovellusessa. Seuraavassa on esitetty esimerejä siitä miten lineaarista ennustusta voidaan hyödyntää.

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

Jäykistävän seinän kestävyys

Jäykistävän seinän kestävyys Esimeri Jäyistävän seinän estävyys 1.0 Kuormitus Jäyistävän seinän ominaisuormat on esitetty alla olevassa uvassa. Laselman ysinertaistamisesi tarastellaan seinästä vain iuna-auon vasemman puoleista osaa,

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13 4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

VALON DIFFRAKTIO JA POLARISAATIO

VALON DIFFRAKTIO JA POLARISAATIO Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt 1 1 1. Työn tavoitteet 1.1 Mittausten taroitus Tässä työssä tutit valoa aaltoliieenä. Ensimmäisessä osassa tutustut valon taipumiseen eli

Lisätiedot

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.

Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n. Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k

Lisätiedot

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV Suomen Atuaariyhdistysen vuosioousesitelmä 27.2.2006 2 Sisällysluettelo: sivu 1. Tasoitusvastuujärjestelmän uvaus

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

VALIKOITUJA KOHTIA LUKUTEORIASTA

VALIKOITUJA KOHTIA LUKUTEORIASTA VALIKOITUJA KOHTIA LUKUTEORIASTA ARI LEHTONEN 1. Laajennettu Euleideen algoritmi 1.1. Jaoyhtälö. Oloot r 0, r 1 Z, r 0 r 1 > 0. Tällöin on olemassa ysiäsitteiset luvut q 1 ja r 2 Z siten, että r 0 = q

Lisätiedot

Eksponenttifunktio. Johdanto. Määritelmä. Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopisto

Eksponenttifunktio. Johdanto. Määritelmä. Pekka Alestalo Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Solmu 3/08 3 Esponenttifuntio Pea Alestalo Matematiian ja systeemianalyysin laitos Aalto-yliopisto Jodanto Esponenttifuntio e x on eräs täreimmistä matematiiassa ja varsinin sen sovellusissa esiintyvistä

Lisätiedot

BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 11 Kari Kärkkäinen Syksy 2015

BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS A Tietoliikennetekniikka II Osa 11 Kari Kärkkäinen Syksy 2015 BINÄÄRISET TIEDONSIIRTOMENETELMÄT TÄRKEIMPIEN ASIOIDEN KERTAUS 536A Tietoliienneteniia II Osa Kari Käräinen Sysy 5 Kantataajuusjärjestelmä lähettää ±A -tasoisia symboleita T:n välein. Optimaalinen vastaanotin

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

Neutraloituminen = suolan muodostus

Neutraloituminen = suolan muodostus REAKTIOT JA TASAPAINO, KE5 Neutraloituminen = suolan muodostus Taustaa: Tähän asti ollaan tarkasteltu happojen ja emästen vesiliuoksia erikseen, mutta nyt tarkastellaan mitä tapahtuu, kun happo ja emäs

Lisätiedot

joka voidaan määrittää esim. värinmuutosta seuraamalla tai lukemalla

joka voidaan määrittää esim. värinmuutosta seuraamalla tai lukemalla REAKTIOT JA TASAPAINO, KE5 Happo-emästitraukset Määritelmä, titraus: Titraus on menetelmä, jossa tutkittavan liuoksen sisältämä ainemäärä määritetään lisäämällä siihen tarkkaan mitattu tilavuus titrausliuosta,

Lisätiedot

Naulalevylausunto Kartro PTN naulalevylle

Naulalevylausunto Kartro PTN naulalevylle LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL

Lisätiedot

Osa 11. Differen-aaliyhtälöt

Osa 11. Differen-aaliyhtälöt Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 p% = b

Lisätiedot

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

Luento 9 Kemiallinen tasapaino CHEM-A1250

Luento 9 Kemiallinen tasapaino CHEM-A1250 Luento 9 Kemiallinen tasapaino CHEM-A1250 Kemiallinen tasapaino Kaksisuuntainen reaktio Eteenpäin menevän reaktion reaktionopeus = käänteisen reaktion reaktionopeus Näennäisesti muuttumaton lopputilanne=>

Lisätiedot

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?

Lisätiedot

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors LAPPEENRANNAN TEKNILLINEN YLIOPISTO Tenillinen tiedeunta Ympäristöteniian oulutusohelma BH10A0300 Ympäristöteniian andidaatintyö a seminaari SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89.

5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. 85. 86. 87. 88. 89. 5. Potenssisarjat 5.1. Määritelmä ja suppeneminen 84. Määritä seuraavien potenssisarjojen suppenemisympyrät: a) ( ) z + 3, b) 2 [ z 2 + ( 1) ], c) a) Koo omplesitaso; b) z =, R = 1; c) z = i, R = 4. 85.

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-3259-12 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 151 Lahti 27.4.212 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 11, 244 VTT Puh. 2 722 5566, Fax. 2 722 73

Lisätiedot

3 x ja 4. A2. Mikä on sen ympyräsektorin säde, jonka ympärysmitta on 12 ja pinta-ala mahdollisimman

3 x ja 4. A2. Mikä on sen ympyräsektorin säde, jonka ympärysmitta on 12 ja pinta-ala mahdollisimman HTKK, TTKK, LTKK, OY, ÅA/Insinööriosastot alintauulustelujen matematiian oe 900 Sarja A A Lase äyrien y, (Tara vastaus) y, ja rajaaman äärellisen alueen inta-ala A Miä on sen ymyräsetorin säde, jona ymärysmitta

Lisätiedot

1 Di erentiaaliyhtälöt

1 Di erentiaaliyhtälöt Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot