Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):"

Transkriptio

1 CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 10/017 Lisätietoja s-postilla tai vastaanotto huoneessa E409 Kemiallinen tasapaino Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä): C6H6 + C3H6 C6H5CH(CH3) Laske bentseenin tasapainokonversio 400 C lämpötilassa, kun syöttö on stoikiometrinen ja paine on 1 bar. Pohdi, miten tasapainokonversio muuttuu, jos a) syöttö on stoikiometrinen ja 10 bar paine b) kolminkertainen propeeniylimäärä ja 1 bar paine c) lähtöaineiden moolisuhde stoikiometrinen, kolmasosa syötöstä inerttiä ja 1 bar paine Kirjallisuudesta: YHDISTE C6H6 C3H6 C6H5CH(CH3) ΧfG o (T) [J/mol] (T/K) (T/K) (T/K) Vinkit Laske Gibbsin energia reaktiolle annetuista komponenttien Gibbsin energioista, ΧrG = (tuotteet) (lähtöaineet). Muista myös stoikiometriset kertoimet! Gibbsin energian ja tasapainovakion välinen yhteys on ΧrG = -RT ln(ka). Tee stoikiometriataulukko tasapainotilanteesta, jonka avulla määrität yhtälön Ka:lle Ratkaisu Gibbsin energia komponenttien muodostumiselle on annettu. Näistä saadaan Gibbsin energia reaktiolle (ΧrG) tyylillä tuotteet miinus lähtöaineet stoikiometria huomioiden. Δ () = / Δ () = = (673)

2 Δ (673 ) = 1815 / Nyt tasapainovakion ja Gibbsin energian välillä on riippuvuus: Δ = ( ) = Δ = 1815 = 1, Tehdään stoikiometriataulukko systeemille, jossa esitetään alkutila sekä tasapainotila. Taulukossa kunkin komponentin määrät ilmoitetaan mooleina, jolloin ei tarvitse ottaa huomioon tilavuuden muutosta reaktion aikana. Ptot = 1 bar C6H6 + C3H6 C6H5CH(CH3) Ρn alussa tp-tila 1-x 1-x x -x Huomaa, että nyt kulunut lähtöaineen määrä on x moolia, jolloin tällä merkinnällä tasapainokonversion suuruus on x. Yhtälö tasapainovakiolle, joka esitetään ainemäärien funktiona, on: = () Σ Stoikiometriasta: Ρµ = = -1 K φ = fugasiteettikerrointasapainovakio ideaalikaasuille 1 =1 1 (1 ) x,38 4,76 1,38 = 0 = 0,35 a) Ptot = 10 bar = () = ( ) = 1,38 (1 ) = 1,38 josta saadaan = 0,74

3 b) Syöttösuhde 1:3 Ptot = 1 bar C6H6 + C3H6 C6H5CH(CH3) Ρn alussa tp-tila 1-x 3-x x 4-x = = 0,50 (1 )(3 ) 1 4 x = 1,38 c) Ptot = 1 bar C6H6 + C3H6 C6H5CH(CH3) inertti Ρn alussa tp-tila 1-x 1-x x 1 3-x = = 0,7 1 (1 ) 3 x = 1,38 Tehtävä. Tasapainovakio van t Hoffin yhtälöllä, reaktorin mitoitus tasapainoreaktiolle A ja B reagoivat kaasufaasireaktiossa ideaalisesti toimivassa sekoitussäiliöreaktorissa paineessa 1 bar. Syöttövirrassa on A:ta ja B:tä stoikiometrisessa suhteessa ja kokonaissyöttö reaktoriin on 00 mol/h. Lämpötilassa 00 C tapahtuu oheinen alkeisreaktio + + A:n kulumisen reaktionopeusvakio reaktiolämpötilassa 00 C:ssa on k1 = 0,05 h -1 ja reaktion tasapainovakion arvo lämpötilassa 5 C on,0. Kuinka suuri reaktori tarvitaan, jotta saavutetaan 30 % konversio, jos reaktioentalpia ΧrH on a) -10 kj/mol b) 10 kj/mol Mitä huomaat kyseisten tasapainovakioiden lämpötilariippuvuuksista?

4 Vinkit Laske tasapainovakiot kummallekin tapaukselle lämpötilassa 00 C van t Hoffin yhtälön avulla = 1 1 Kun sijoitat CSTR:n mitoitusyhtälöön reaktionopeuden lauseketta, muista myös käänteisreaktio! Tasapainovakio Ka = k1/k-1 Ratkaisu: Ratkaistaan van t Hoffin yhtälöstä tasapainovakiot 00 C:ssa = 1 1 ( ) = ( ) 1 1 Kun reaktioentalpia ΧrH=-10 kj/mol (eksoterminen reaktio) 10 ( ) = () 1 (5 + 73) 1 ( ) = 0,80 = 0,45 Kun reaktioentalpia ΧrH=10 kj/mol (endoterminen reaktio) 10 ( ) = () 1 (5 + 73) 1 ( ) =,18 = 8,90 Huomataan, että eksotermisen reaktion tasapainovakio pienenee lämpötilan kasvaessa, ja endotermisen reaktion tasapainovakio kasvaa lämpötilan kasvaessa, aivan kuten termodynamiikan mukaan kuuluukin tapahtua. Reaktionopeuslausekkeessa otetaan huomioon nyt myös käänteisreaktio, jossa A:ta syntyy. Tasapainovakio Ka on reaktionopeusvakioiden k1 ja k-1 suhde eli ra on muotoa = = Kyseessä on kaasufaasireaktio, jossa syötössä ca0 = cb0 jossa moolimäärä ei muutu (δ=0), joten konsentraatiot ovat = = 1 1+ = (1 )

5 = = + 1+ = jossa θc on C:n moolinen syöttosuhde verrattuna A:han (nyt nolla, syötössä ei C:tä) ja a ja c stoikiometriset kertoimet reaktioyhtälöstä (molemmat ykkösiä). Sijoitetaan sekoitussäiliöreaktorin mitoitusyhtälöön = ( ) = ( 0) = (1 ) Lasketaan A:n konsentraatio syötössä ideaalikaasulain avulla. Koska syöttö on stoikiometrinen, sekä A:n että B:n mooliosuus syötössä on 0,5 = =0, = 1,7 ( ) Sijoitetaan arvot mitoitusyhtälöön. Huomaa, että kokonaissyötöstä puolet on A:ta eli A:n moolivirta reaktoriin on 100 mol/h. Eksotermiselle reaktiolle saadaan = 100 /h 0,3 0,05 h 1,7 1,7 (1 0,3) 0,3 0,45 = 1,8 Ja endotermiselle reaktiolle = 100 /h 0,3 0,05 h 1,7 1,7 (1 0,3) 0,3 8,90 = 7,7 Huomaa, että 5 C:ssa molempien reaktioiden vaatima reaktoritilavuus olisi sama, sillä tuossa lämpötilassa molempien tasapainovakion arvo on yhtä suuri ja reaktionopeusyhtälö siis samanlainen.

6 Tehtävä 3. Tasapainokonversion laskenta Alkeisreaktiota A (g) B (g) ajetaan sekoitussäiliöreaktorissa. Reaktiolämpötila on 00 C. Reaktoriin syötetään A:ta 00 mol/h ja A:n konsentraatio syötössä on 0 mol/m 3. Tutkituissa reaktioolosuhteissa reaktionopeusvakion arvo on 0 h -1. Kuinka suuri reaktori tarvitaan, jos tavoitteena on 80% tasapainokonversiosta? Tasapainovakio noudattaa kokeellista korrelaatiota (HUOM: lämpötila Kelvineinä) log = ,510 log + 1,871 Vinkit: Laske ensin tasapainovakio annetusta korrelaatiosta ja laske sen avulla tasapainokonversio määrittämällä yhtälö tasapainovakiolle konversion funktiona. CSTR:n mitoitusyhtälöön sijoitetaan reaktionopeusyhtälö tasapainoreaktiolle, muista myös käänteisreaktio ja tasapainovakion sisällyttäminen reaktionopeusyhtälöön! Tasapainovakio Ka = k1/k-1 Ratkaisu: Lasketaan annetusta korrelaatiosta tasapainovakion arvo reaktiolämpötilassa 473 K log = 790 K + 1,510 log = 0,0115 K=1,03 Lausutaan tasapainovakio pitoisuuksien avulla K + 1,871 = 790 K 473 K 473 K + 1,510 log K + 1,871 A B ni syöttö 1 0 tasapaino 1-x x 1 = = 1 1 = 1 Ratkaistaan edellisestä yhtälöstä tasapainokonversio xe = +1 = 1,03 1, = 0,507 Nyt halutaan operoida konversiotasolla, joka on 80 % tasapainokonversiosta, eli haluttu konversio on 0,405. Reaktorin mitoitusta varten tarvitaan reaktionopeusyhtälö -ra. Reaktionopeuslausekkeessa otetaan huomioon nyt myös käänteisreaktio, jossa A:ta syntyy. Tasapainovakio Ka on reaktionopeusvakioiden k1 ja k-1 suhde eli ra on muotoa

7 = = = (1 ) Sijoitetaan reaktorin mitoitusyhtälöön = ( ) = = 1,0 (1 ) = 00 h 0,405 0 h 0 0,405 (1 0,405) 1,03 Tehtävä 4: Onko seos termodynaamisessa tasapainossa Isoamyleenien tasapainoa tutkitaan isomeroimalla -metyyli-1-buteenia (M1B) -metyyli-- buteeniksi (MB). Seoksen koostumus 100 C:ssa on 0 mol-% M1B:tä, 30 mol-% MB:tä ja loput on inerttiä hiilivetyä. Laske reaktioseoksen tasapainovakion arvo ja päättele onko reaktioseos saavuttanut termodynaamisen tasapainotilan. Komponentti ΔGf (kj/mol) -metyyli-1-buteeni 65,6 -metyyli--buteeni 59,7 Vinkit: Laske tasapainovakiolle arvo kahdella tavalla: 1. annetusta koostumuksesta. annetuista termodynaamisista arvoista, ΧrG = -RT ln(ka). Vertaa saamiasi tuloksia toisiinsa Ratkaisu: Tasapainovakio termodynaamisista arvoista: Lasketaan ensin Gibbsin energia reaktiolle annetuista komponenttien Gibbsin energioista stoikiometria huomioiden, ΧrG = ΧGf 0 (MB) - ΧGf 0 (M1B) = 59,7 kj/mol 65,6 kj/mol = -5,9 kj/mol Gibbsin energian ja tasapainovakion välinen yhteys on ΧrG = -RT ln(ka) eli ln = = 5900 = 1,90 ( ) 373 Ka = 6,70

8 Sijoitetaan reaktioseoksen koostumus tasapainovakion lausekkeeseen, jolloin saadaan arvo, jota voidaan verrata termodynaamisista arvoista laskettuun termodynaamisen tasapainovakion Ka arvoon. Reaktiossa ei tapahdu moolimäärän muutosta, joten tasapainovakion lauseke supistuu komponenttien suhteeksi = = 1 = = 0,3 0, = 1,5 Huomataan, että termodynaaminen tasapainovakio (6,70) on melko kaukana kokeellisesta koostumuksesta laskettua (1,5). Termodynaamisessa tasapainotilassa olisi siis suurempi osuus MB:tä, joten reaktio ei ole vielä saavuttanut termodynaamista tasapainotilaa. Tehtävä 5. Mekanismi tasapainoreaktiolle Fosgeenin muodostumisreaktiolle on ehdotettu seuraavaa mekanismia: Cl Cl (1) Cl + Cl Cl3 () Cl3 + CO COCl + Cl (3) Johda ehdotetun mekanismin pohjalta nopeusyhtälö fosgeenin muodostumiselle. Reaktiot (1) ja () voidaan olettaa molempiin suuntiin erittäin nopeiksi suhteessa reaktioon (3). Vinkit Muodosta reaktionopeuslauseke fosgeenin (COCl) muodostumiselle. Reaktiot 1 ja ovat erittäin nopeita eli niiden voi olettaa olevan likimäärin tasapainossa. Radikaalien konsentraatiot voidaan lausua reaktioiden 1 ja tasapainovakioiden avulla. Ratkaisu Aiemmin tämän kurssin aikana tasapainoreaktiot on kirjotettu kahdeksi erilliseksi reaktioksi, jotka etenevät vastakkaisiin suuntiin. Tämän tehtävän pystyy ratkaisemaan myös aiemmin esitetyllä tavalla. Nyt käsitellään kutakin reaktiota reversiibelinä, ja otetaan lisäksi käyttöön tasapainovakiot reaktiolle. Tehtävänannon mukaan reversiibelit reaktiot (1) ja () ovat nopeita, joten oletetaan niiden olevan likimäärin tasapainossa. Tällöin radikaalikonsentraatioiden lausekkeet saadaan ratkaistua tasapainovakion lausekkeiden avulla: K K 1 k < k k < k 1, 1 < < Ζ Ζ Cl Cl ΖCl3 ΖCl ΖCl,. () (1)

9 Yhtälöiden (1) ja () perusteella: ΖCl < Ζ K 1 Cl ja Cl 3 < K Cl Cl < K K1 Cl Ζ Ζ Ζ Ζ 3 / (3) (4) Muodostetaan lauseke fosgeenin muodostumiselle: ΖCl Ζ CO, k ΖCOCl Ζ rcocl < k 3 3, 3 Cl (5) johon sijoitetaan yhtälöt (3) ja (4): ΖCl 3/ ΖCO, k K ΖCOCl ΖCl rcocl < k3k K 1, 3 eli vakiotermit yhdistämällä nopeusyhtälö saadaan muotoon COCl ΖCl 3/ ΖCO k' ΖCOCl ΖCl r < k, 1 (6) (7)

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin

Lisätiedot

Luento 9 Kemiallinen tasapaino CHEM-A1250

Luento 9 Kemiallinen tasapaino CHEM-A1250 Luento 9 Kemiallinen tasapaino CHEM-A1250 Kemiallinen tasapaino Kaksisuuntainen reaktio Eteenpäin menevän reaktion reaktionopeus = käänteisen reaktion reaktionopeus Näennäisesti muuttumaton lopputilanne=>

Lisätiedot

Luku 2. Kemiallisen reaktion tasapaino

Luku 2. Kemiallisen reaktion tasapaino Luku 2 Kemiallisen reaktion tasapaino 1 2 Keskeisiä käsitteitä 3 Tasapainotilan syntyminen, etenevä reaktio 4 Tasapainotilan syntyminen 5 Tasapainotilan syntyminen, palautuva reaktio 6 Kemiallisen tasapainotilan

Lisätiedot

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7 KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A

Lisätiedot

Tasapainotilaan vaikuttavia tekijöitä

Tasapainotilaan vaikuttavia tekijöitä REAKTIOT JA TASAPAINO, KE5 Tasapainotilaan vaikuttavia tekijöitä Fritz Haber huomasi ammoniakkisynteesiä kehitellessään, että olosuhteet vaikuttavat ammoniakin määrään tasapainoseoksessa. Hän huomasi,

Lisätiedot

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio.

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio. REAKTIOT JA TASAPAINO, KE5 REAKTIOTASAPAINO Johdantoa: Usein kemialliset reaktiot tapahtuvat vain yhteen suuntaan eli lähtöaineet reagoivat keskenään täydellisesti reaktiotuotteiksi, esimerkiksi palaminen

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

Luku 8. Reaktiokinetiikka

Luku 8. Reaktiokinetiikka Luku 8 Reaktiokinetiikka 234 8.1 Reaktion nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista

Lisätiedot

KE Prosessien perusteet

KE Prosessien perusteet KE-40.2500 Prosessien perusteet Tentiss2i saa kiiyttia1 materiaalina vain fysikaalisen kemian taulukoita kirjaa sek?i kemian laitetekniikan taulukoita ja piinoksia kirjaa' TENTT 10.3.20088-13. 1. Selit8

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

SISÄLLYSLUETTELO SYMBOLILUETTELO 4

SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 KEMIALLISESTI REAGOIVA TERMODYNAAMINEN SYSTEEMI 6 11 Yleistä 6 12 Standarditila ja referenssitila 7 13 Entalpia- ja entropia-asteikko 11 2 ENTALPIA JA OMINAISLÄMPÖ

Lisätiedot

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015 Lukion kemia 3, Reaktiot ja energia Leena Piiroinen Luento 2 2015 Reaktioyhtälöön liittyviä laskuja 1. Reaktioyhtälön kertoimet ja tuotteiden määrä 2. Lähtöaineiden riittävyys 3. Reaktiosarjat 4. Seoslaskut

Lisätiedot

Luku 21. Kemiallisten reaktioiden nopeus

Luku 21. Kemiallisten reaktioiden nopeus Luku 21. Kemiallisten reaktioiden nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista tasapainoreaktiota:

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot

Teddy 2. välikoe kevät 2008

Teddy 2. välikoe kevät 2008 Teddy 2. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli

Lisätiedot

Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia)

Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia) Luento 4: Entroia orstai 12.11. klo 14-16 47741A - ermodynaamiset tasaainot (Syksy 215) htt://www.oulu.fi/yomet/47741a/ ermodynaamisten tilansuureiden käytöstä Lämökaasiteetti/ominaislämö - kuvaa aineiden

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin?

kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin? Esimerkki: Mihin suuntaan etenee reaktio CO (g) + H 2 O (g) CO 2 (g) + H 2 (g), K = 0,64, kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin? 1 Le Châtelier'n

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Reaktiosarjat

Reaktiosarjat Reaktiosarjat Usein haluttua tuotetta ei saada syntymään yhden kemiallisen reaktion lopputuotteena, vaan monen peräkkäisten reaktioiden kautta Tällöin edellisen reaktion lopputuote on seuraavan lähtöaine

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

Reaktiotekniikka. Prosessi- ja ympäristötekniikan perusta Teema 4 Kaisa Lamminpää

Reaktiotekniikka. Prosessi- ja ympäristötekniikan perusta Teema 4 Kaisa Lamminpää Reaktiotekniikka Prosessi- ja ympäristötekniikan perusta Teema 4 Kaisa Lamminpää Luennon sisältö Johdanto ja termejä Reaktiotekniikka Kemiallinen prosessitekniikka Kemialliset reaktiot Reaktioiden jaottelu

Lisätiedot

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä.

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä. Lääketieteellisten alojen valintakokeen 009 esimerkkitehtäviä Tehtävä 4 8 pistettä Aineistossa mainitussa tutkimuksessa mukana olleilla suomalaisilla aikuisilla sydämen keskimääräinen minuuttitilavuus

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

Teddy 10. harjoituksen malliratkaisu syksy 2011

Teddy 10. harjoituksen malliratkaisu syksy 2011 Teddy. harjoituksen malliratkaisu syksy 2. Tarkastellaan reaktioketjua k O 3 O2 +O () O 2 +O k O 3 (2) O 3 +O k 2 O 2 +O 2 (3) Vakiotilaolettamuksen mukaan välituotteen konsentraatio pysyy vakiona lyhyen

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT 1 a) Vaihtoehto B on oikein. Elektronit sijoittuvat atomiorbitaaleille kasvavan

Lisätiedot

7 Termodynaamiset potentiaalit

7 Termodynaamiset potentiaalit 82 7 ermodynaamiset potentiaalit 7-1 Clausiuksen epäyhtälö Kappaleessa 4 tarkasteltiin Clausiuksen entropiaperiaatetta, joka määrää eristetyssä systeemissä (E, ja N vakioita) tapahtuvien prosessien suunnan.

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

1.1 Homogeeninen kemiallinen tasapaino

1.1 Homogeeninen kemiallinen tasapaino 1.1 Homogeeninen kemiallinen tasapaino 1. a) Mitä tarkoittaa käsite kemiallinen tasapaino? b) Miten kemiallinen tasapaino ilmaistaan reaktioyhtälössä? c) Mistä tekijöistä tasapainossa olevan reaktioseoksen

Lisätiedot

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa 766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

LUKU 16 KEMIALLINEN JA FAASITASAPAINO

LUKU 16 KEMIALLINEN JA FAASITASAPAINO Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 16 KEMIALLINEN JA FAASITASAPAINO Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

Erilaisia entalpian muutoksia

Erilaisia entalpian muutoksia Erilaisia entalpian muutoksia REAKTIOT JA ENERGIA, KE3 Erilaisille kemiallisten reaktioiden entalpiamuutoksille on omat terminsä. Monesti entalpia-sanalle käytetään synonyymiä lämpö. Reaktiolämmöllä eli

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä Luento 2: Lämpökemiaa, osa 1 Keskiviikko 13.9. klo 8-10 477401A - ermodynaamiset tasapainot (Syksy 2017) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa

Lisätiedot

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on:

Ratkaisu. Tarkastellaan aluksi Fe 3+ - ja Fe 2+ -ionien välistä tasapainoa: Nernstin yhtälö tälle reaktiolle on: Esimerkki Pourbaix-piirroksen laatimisesta Laadi Pourbaix-piirros, jossa on esitetty metallisen ja ionisen raudan sekä raudan oksidien stabiilisuusalueet vesiliuoksessa 5 C:een lämpötilassa. Ratkaisu Tarkastellaan

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT JA PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei

Lisätiedot

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.

Lisätiedot

Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä.

Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. FAASIDIAGRAMMIT Määritelmiä Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. Esimerkkejä: (a) suolaliuos (P=1),

Lisätiedot

Yhdisteiden nimeäminen

Yhdisteiden nimeäminen Yhdisteiden nimeäminen Binääriyhdisteiden nimeäminen 1. Ioniyhdisteet 2. Epämetallien väliset yhdisteet Kompleksiyhdisteiden nimeäminen Kemiallinen reaktio 1. Reaktioyhtälö 2. Määrälliset laskut 3. Reaktionopeuteen

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2 FYSIKAALINEN KEMIA KEMA22) Laskuharjoitus 2, 28..2009. van der Waalsin tilanyhtälö: p = RT V m b a Vm V 2 m pv m = RT V m b = RT = RT a ) V m RT a b/v m V m RT ) [ b/v m ) a V m RT Soveltamalla sarjakehitelmää

Lisätiedot

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe Kemian koe kurssi KE5 Reaktiot ja tasapaino koe 1.4.017 Tee kuusi tehtävää. 1. Tämä tehtävä koostuu kuudesta monivalintaosiosta, joista jokaiseen on yksi oikea vastausvaihtoehto. Kirjaa vastaukseksi numero-kirjainyhdistelmä

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkealämpötilakemia Ellingham-diagrammit To 9.11.2017 klo 8-10 SÄ114 Tavoite Oppia tulkitsemaan (ja laatimaan) vapaaenergiapiirroksia eli Ellinghamdiagrammeja 1 Sisältö Mikä on Ellinghamin diagrammi?

Lisätiedot

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä Termodynamiikan peruskäsitteitä The Laws of thermodynamics: (1) You can t win (2) You can t break even (3) You can t get out of the game. - Ginsberg s theorem - Masamune Shirow: Ghost in the shell Systeemillä

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Ainemäärien suhteista laskujen kautta aineiden määriin

Ainemäärien suhteista laskujen kautta aineiden määriin REAKTIOT JA ENERGIA, KE3 Ainemäärien suhteista laskujen kautta aineiden määriin Mitä on kemia? Kemia on reaktioyhtälöitä, ja niiden tulkitsemista. Ollaan havaittu, että reaktioyhtälöt kertovat kemiallisen

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Kemian koe, Ke3 Reaktiot ja energia RATKAISUT Perjantai VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

Kemian koe, Ke3 Reaktiot ja energia RATKAISUT Perjantai VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN Kemian koe, Ke3 Reaktiot ja energia RATKAISUT Kannaksen lukio Perjantai 26.9.2014 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN 1. A. Selitä käsitteet ja määritelmät (lyhyesti), lisää tarvittaessa kemiallinen merkintätapa:

Lisätiedot

Lämpö- eli termokemiaa

Lämpö- eli termokemiaa Lämpö- eli termokemiaa Endoterminen reaktio sitoo ympäristöstä lämpöenergiaa. Eksoterminen reaktio vapauttaa lämpöenergiaa ympäristöön. Entalpia H kuvaa systeemin sisäenergiaa vakiopaineessa. Entalpiamuutos

Lisätiedot

Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia CHEM-A1250

Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia CHEM-A1250 Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia 9.2.2017 CHEM-A1250 Tasapaino ja tasapainovakio Kaksisuuntainen reaktio a A+ b B p P + r R Eteenpäin menevän reaktion nopeus: rr 1

Lisätiedot

Bensiiniä voidaan pitää hiilivetynä C8H18, jonka tiheys (NTP) on 0,703 g/ml ja palamislämpö H = kj/mol

Bensiiniä voidaan pitää hiilivetynä C8H18, jonka tiheys (NTP) on 0,703 g/ml ja palamislämpö H = kj/mol Kertaustehtäviä KE3-kurssista Tehtävä 1 Maakaasu on melkein puhdasta metaania. Kuinka suuri tilavuus metaania paloi, kun täydelliseen palamiseen kuluu 3 m 3 ilmaa, jonka lämpötila on 50 C ja paine on 11kPa?

Lisätiedot

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7.

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7. HEM-A0 Kemiallinen reaktio Kevät 07 Laskuharjoitus 7.. Metalli-ioni M + muodostaa ligandin L - kanssa : kompleksin ML +, jonka pysyvyysvakio on K ML + =,00. 0 3. Mitkä ovat kompleksitasapainon vapaan metalli-ionin

Lisätiedot

ja piirrä sitä vastaavat kaksi käyrää ja tarkista ratkaisusi kuvastasi.

ja piirrä sitä vastaavat kaksi käyrää ja tarkista ratkaisusi kuvastasi. Harjoituksia yhtälöryhmistä ja matriiseista 1. Ratkaise yhtälöpari (F 1 ja F 2 ovat tuntemattomia) cos( ) F 1 + cos( ) F 2 = 0 sin( ) F 1 + sin( ) F 2 = -1730, kun = -50 ja = -145. 2. Ratkaise yhtälöpari

Lisätiedot

Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen

Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen KEMA221 2009 YKSINKERTAISET SEOKSET ATKINS LUKU 5 1 YKSINKERTAISET SEOKSET Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen Seoksia voidaan tarkastella osittaisten moolisuureitten

Lisätiedot

c) Tasapainota seuraava happamassa liuoksessa tapahtuva hapetus-pelkistysreaktio:

c) Tasapainota seuraava happamassa liuoksessa tapahtuva hapetus-pelkistysreaktio: HTKK, TTY, LTY, OY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 26.05.2004 1. a) Kun natriumfosfaatin (Na 3 PO 4 ) ja kalsiumkloridin (CaCl 2 ) vesiliuokset sekoitetaan keske- nään, muodostuu

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

Törmäysteoria. Törmäysteorian mukaan kemiallinen reaktio tapahtuu, jos reagoivat hiukkaset törmäävät toisiinsa

Törmäysteoria. Törmäysteorian mukaan kemiallinen reaktio tapahtuu, jos reagoivat hiukkaset törmäävät toisiinsa Törmäysteoria Törmäysteorian mukaan kemiallinen reaktio tapahtuu, jos reagoivat hiukkaset törmäävät toisiinsa tarpeeksi suurella voimalla ja oikeasta suunnasta. 1 Eksotermisen reaktion energiakaavio E

Lisätiedot

KOTITEKOINEN PALOSAMMUTIN (OSA 1)

KOTITEKOINEN PALOSAMMUTIN (OSA 1) KOTITEKOINEN PALOSAMMUTIN (OSA 1) Johdanto Monet palosammuttimet, kuten kuvassa esitetty käsisammutin, käyttävät hiilidioksidia. Jotta hiilidioksidisammutin olisi tehokas, sen täytyy vapauttaa hiilidioksidia

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208 IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.

Lisätiedot

PROSESSISUUNNITTELUN SEMINAARI. Luento 5.3.2012 3. vaihe

PROSESSISUUNNITTELUN SEMINAARI. Luento 5.3.2012 3. vaihe PROSESSISUUNNITTELUN SEMINAARI Luento 5.3.2012 3. vaihe 1 3. Vaihe Sanallinen prosessikuvaus Taselaskenta Lopullinen virtauskaavio 2 Sanallinen prosessikuvaus Prosessikuvaus on kirjallinen kuvaus prosessin

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä

Lisätiedot

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10 Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko 25.10 klo 8-10 Jokaisesta oikein ratkaistusta tehtävästä voi saada yhden lisäpisteen. Tehtävä, joilla voi korottaa kotitehtävän

Lisätiedot

Luento 2: Lämpökemiaa, osa 1 Torstai klo Termodynamiikan käsitteitä

Luento 2: Lämpökemiaa, osa 1 Torstai klo Termodynamiikan käsitteitä Luento 2: Lämpökemiaa, osa 1 orstai 11.10. klo 14-16 477401A - ermodynaamiset tasapainot (Syksy 2012) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen Faasi

Lisätiedot

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj

Integroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

Ellinghamin diagrammit

Ellinghamin diagrammit Ellinghamin diagrammit Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 1 - Luento 2 Tavoite Oppia tulkitsemaan (ja laatimaan) vapaaenergiapiirroksia eli Ellinghamdiagrammeja 1 Tasapainopiirrokset

Lisätiedot

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen

Lisätiedot

KE03. Kurssikalvot. Tuomas Hentunen. Kevät Tuomas Hentunen KE03 Kevät / 26

KE03. Kurssikalvot. Tuomas Hentunen. Kevät Tuomas Hentunen KE03 Kevät / 26 KE03 Kurssikalvot Tuomas Hentunen Kevät 2016 Tuomas Hentunen KE03 Kevät 2016 1 / 26 Reaktioyhtälöt ja niiden tasapainottaminen Kemiallista reaktiota kuvataan reaktioyhtälöllä reaktioyhtälöstä selviää:

Lisätiedot

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Molekyylibiotieteet/Bioteknologia Etunimet valintakoe Tehtävä 3 Pisteet / 30

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Molekyylibiotieteet/Bioteknologia Etunimet valintakoe Tehtävä 3 Pisteet / 30 Helsingin yliopisto/tampereen yliopisto Henkilötunnus - hakukohde Sukunimi Molekyylibiotieteet/Bioteknologia Etunimet valintakoe 20.5.2013 Tehtävä 3 Pisteet / 30 3. Osa I: Stereokemia a) Piirrä kaikki

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

KEMIA HYVÄN VASTAUKSEN PIIRTEET

KEMIA HYVÄN VASTAUKSEN PIIRTEET BILÄÄKETIETEEN enkilötunnus: - KULUTUSJELMA Sukunimi: 20.5.2015 Etunimet: Nimikirjoitus: KEMIA Kuulustelu klo 9.00-13.00 YVÄN VASTAUKSEN PIIRTEET Tehtävämonisteen tehtäviin vastataan erilliselle vastausmonisteelle.

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

mak37135 MAK-37.135 Materiaalien ja prosessien termodynaamis-kineettiset perusteet Tentti 22.2.2001 Vastaa 7:ään kysymykseen 1. Sinun olisi arvioitava hiilettyykö teräs, jonka hiilipitoisuus on 0.35% vai

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla

Konventionaalisessa lämpövoimaprosessissa muunnetaan polttoaineeseen sitoutunut kemiallinen energia lämpö/sähköenergiaksi höyryprosessin avulla Termodynamiikkaa Energiatekniikan automaatio TKK 2007 Yrjö Majanne, TTY/ACI Martti Välisuo, Fortum Nuclear Services Automaatio- ja säätötekniikan laitos Termodynamiikan perusteita Konventionaalisessa lämpövoimaprosessissa

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Oppikirjan tehtävien ratkaisut

Oppikirjan tehtävien ratkaisut Oppikirjan tehtävien ratkaisut Liukoisuustulon käyttö 10. a) Selitä, mitä eroa on käsitteillä liukoisuus ja liukoisuustulo. b) Lyijy(II)bromidin PbBr liukoisuus on 1,0 10 mol/dm. Laske lyijy(ii)bromidin

Lisätiedot

Sähkökemialliset tarkastelut HSC:llä

Sähkökemialliset tarkastelut HSC:llä Sähkökemialliset tarkastelut HSC:llä Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 4 - Luento 5 Tavoite Oppia hyödyntämään HSC-ohjelmistoa sähkökemiallisissa tarkasteluissa 1 Sisältö Sähkökemiallisiin

Lisätiedot

V T p pv T pv T. V p V p p V p p. V p p V p

V T p pv T pv T. V p V p p V p p. V p p V p S-45, Fysiikka III (ES välikoe 004, RAKAISU Laske ideaalikaasun tilavuuden lämötilakerroin ( / ( ja isoterminen kokoonuristuvuus ( / ( Ideaalikaasun tilanyhtälö on = ν R Kysytyt suureet ovat: ilavuuden

Lisätiedot

Valitse seuraavista joko tehtävä 1 tai 2

Valitse seuraavista joko tehtävä 1 tai 2 PHYS-A0120 Termodynamiikka, syksy 2016 Kotitentti Vastaa tehtäviin 1/2, 3, 4/5, 6/7, 8 ja 9 (yhteensä kuusi vastausta). Tehtävissä 1 ja 2 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla

Lisätiedot

CHEM-A1250 Luento

CHEM-A1250 Luento CHEM-A1250 Luento 5 Tasapainot 1: Olomuodot ja seokset Johdanto Kemialliseen tasapainoon Olomuodon määräytyminen Kuinka voimakkaat vuorovaikutukset ilmenevät Vetovoimat lähentävät, lämpöliike liikuttaa

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena

Lisätiedot

KOTITEKOINEN PALOSAMMUTIN (OSA II)

KOTITEKOINEN PALOSAMMUTIN (OSA II) Johdanto KOTITEKOINEN PALOSAMMUTIN (OSA II) Monet palosammuttimet, kuten kuvassa esitetty käsisammutin, käyttävät hiilidioksidia. Jotta hiilidioksidisammutin olisi tehokas, sen täytyy vapauttaa hiilidioksidia

Lisätiedot