Luku 21. Kemiallisten reaktioiden nopeus

Save this PDF as:

Koko: px
Aloita esitys sivulta:

Download "Luku 21. Kemiallisten reaktioiden nopeus"

Transkriptio

1 Luku 21. Kemiallisten reaktioiden nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista tasapainoreaktiota: 2HI (g) H 2 (g) + I 2 (g) jos on havaittu esim. että [HI (g)] pienenee 0.5 M ajassa t = 100 s HI:n hajoamisnopeus = H 2 :n muodostumisnopeus = 0.5 mol l /100s = 5x10 3 mol ls 2.5x10 3 mol ls 1

2 2

3 Kemiallisen reaktion nopeus ei ole vakio (1. poikkeus) ts. v = v(t) tämä johtuu konsentraatioiden muuttumisesta reaktion aikana Alkunopeus on suurin v 0 = v(t = 0) Hetkellinen nopeus (millä tahan ajanhetkellä) voidaan laskea reaktion nopeuslain avulla [ ] A + B C v A = d A ;häviämisnopeus v B = d [ B ] ;häviämisnopeus v C = d [ C ] ;muodostumisnopeus Koska ainetta ei häviä eikä synny: d [ A ] = d [ B ] = d C [ ] 3

4 A + 2B 3C + D d [ D] = 1 3 d [ C] = d [ A ] = 1 2 d [ B] Reaktionopeus yleisesti komponentille J: v = 1 d[ J] ν J ν J = J:n stoikio- metrinen kerroin reaktiossa Reaktionopeus riippuu reaktioon osallistuvien aineiden konsentraatioista, ts. v = f ([A],[B],...) Tätä riippuvuutta kuvataan reaktion kertaluvulla useimmille reaktioille on havaittu riippuvuus: v = k[ A] a [ B] b... k = reaktionopeusvakio a = reaktion kertaluku aineen A suhteen b= reaktion kertaluku aineen B suhteen a+b+... on reaktion kokonaiskertaluku 4

5 Huom! Reaktion kertaluku on kokeellisesti määritettävä suure eikä sitä voi päätellä reaktion stoikiometriasta!! Seuraavassa tarkastelemme erilaisten reaktioiden nopeuslakeja. Yksinkertaisin niistä on unimolekulaarinen reaktio: A B v = d [ A ] = d [ B ] Jos tälle reaktiolle on havaittu, että nopeus riippuu lineaarisesti [A]:sta v = d [ A ] = d [ B ] = k[ A] 5

6 Tarkastellaan lähtöaineen A häviämistä: [ ] [ A] = k d A [ ] [ A] d A " ln$ # = k [ A] % A ' = kt & [ ] 0 [A] t ln [A] = -k t [A] 0 0 [ A] = [ A] 0 e kt 1. kertaluvun reaktion nopeuslain integroitu muoto [A] pienenee eksponentiaalisesti. Eksponenttifunktion jyrkkyyden määrää reaktionopeusvakio k 6

7 7

8 Miten tuoteen B konsentraatio kasvaa 1. kertaluvun reaktiossa? Kaikilla ajanhetkillä t pätee: [B] = [A] 0 - [A] eli [A] = [A] 0 - [B] sijoitetaan: [ A] 0 [ B] = [ A] 0 e kt [ B] = [ A] 0 ( 1 e kt ) [B] Huomaa, että 1. kertaluvun reaktion nopeusvakion k yksikkö = 1/s eikä siinä esiinny konsentraatiota [A] t 1.kertaluvun reaktion kinetiikkaa voidaan seurata minkä tahansa tahansa konsentraatiosta riippuvan suureen (ph, johtokyky, absorbanssi jne) avulla eikä absoluuttista konsentraatiota tarvita nopeusvakion ratkaisemiseksi 8

9 Määrittelemme reaktion puoliajan t 1/2 ajaksi mikä kuluu reaktion edettyä puoleen (lähtöaineen konsentraatio pienenee puoleen). 1. kertaluvun reaktiolle tämä saadaan yksinkertaisesti sijoittamalla: [ A] = 1 A 2 [ ] 0 = [ A] 0 e kt 1/2 t 1/ 2 = ln2 k 1 k 1. kertalavun reaktion puoliaika on vakio! ts. riippumaton konsentraatioista 1. Kertaluvun reaktion puoliaika on käytännöllinen suure ja sen avulla voidaan määrittää mm. reaktionopeusvakion arvo 9

10 Reaktionopeusvakion arvon määrittäminen 1. kertaluvulle: Tarkastellaan esimerkkireaktiota CH 3 N 2 CH 3 (g) CH 3 CH 3 (g) + N 2 (g) Tämän 1. kertaluvun reaktion edistymistä on seurattu mittaamalla atsometanin osapaine ajan funktiona t/s p/10-2 Torr Koska 1. kertaluvun reaktiolle pätee: muodostamme pisteparit ln(p/p 0 ),t " ln$ # [ A] % A ' = kt & [ ] 0 t/s ln(p/p 0 ) ln(p/p0) y = x R= 1 kulmakertoimesta saamme reaktionopeusvakion arvon k = 3.6 x /s t 10

11 Tarkastellaan reaktiota: A + B C Jos reaktionopeus noudattaa konsentraatioriippuvuutta: v = d [ A ] = d [ B ] on kyseessä 2. kertaluvun reaktio = d [ C ] = k[ A] [ B] Jos em. reaktio suoritetaan olosuhteissa jossa toista reagenssia (esim. B) on ylimäärin, ts. [B] [B] 0 = vakio v = k ' [ A];k'= k B [ ] 0 Tässä tapauksessa ko. reaktion on pseudo 1. kertaluvun reaktio Monesti olosuhteita valitsemalla reaktion kertalukua voidaan laskea, jolloin kinetiikan käsittely yksinkertaistuu Menetelmää kutsutaan isolaatiomenetelmäksi 11

12 Reaktion kertaluku voidaan määrittää monella tavalla. Yksi näistä perustuu alkukonsentraatioiden varioimiseen ja alkunopeuden mittaamiseen alkunopeus: a v 0 = k[ A] 0 [ ] 0 logv 0 = log k + alog A mitataan v 0 eri [A] 0 arvoilla ja piirretään suora leikkauspiste = log k kulmakerroin = a log v 0 log [A] 0 12

13 Tarkastellaan esimerkkireaktiota 2I (g) + Ar (g) I 2 (g) + Ar (g) Reaktion alkunopeus on mitattu useilla alkukonsentraatioilla: [ I ] 0 /10-5 mol L v 0 /mol L -1 s -1 a) 8.70 x x x x10-2 b) 4.35x x x x10-1 c)8.69x x x x10-1 a)-c) liittyvät argonin alkukonsentraatioon: a) [Ar] 0 = 1.0 mmol L -1 b) [Ar] 0 = 5.0 mmol L-1 c) [Ar] 0 = 10.0 mmol L -1 Kertaluvut jodin ja argonin suhteen saadaan esittämällä log v 0 vs. log [I] 0 kullekin Ar konsentraatiolle ja log v 0 vs. log [Ar] 0 kullekin I konsentraatiolle 13

14 Suorien kulmakertoimet ovat 2 ja 1 v 0 = k I 2 [ ] 0 [ Ar] 0 14

15 Toisen kertaluvun reaktio Esimerkiksi: d[ A] [ A] = k 2 2A B d[ A] [ A] [ A] 0 = k[ A] 2 t d[ A] [ A] = k [ A] 1 = kt [ A] 0 [ A] = [ A] 0 1+ A [ ] 0 kt huomaa k:n yksikkö = dm 3 mol -1 s -1 15

16 Ratkaistaan puoliaika t 1/2 : t 1/ 2 = 1 A [ ] 0 k [ A] = 1 A 2 [ ] 0 = Toinen tyyppi 2. kertaluvun reaktiosta: A + B tuotteet [ A] 0 1+ A [ ] 0 kt 1/ 2 vakio (vrt. 1. kertaluku) d[ A] = k[ A] [ B] alkukonsentraatiot [A] 0 ja [B] 0, muutos = x [A]=[A] 0 - x [B]=[B] 0 - x d[ A] ([ ] 0 x) = d A = dx = k ([ A ] 0 x) B ([ ] 0 x) Integroinnin yksityiskohdat on esitetty opppikirjassa 16

17 tulokseksi saadaan: kt = 1 [ B] 0 A # [ ln A ] 0 [ B] [ ] % 0 [ B] 0 [ A] $ & ( ' Kuvassa on verrattu 1. ja 2. kertaluvun reaktioiden edistymistä siten, että vertailtavilla reaktioilla on sama alkunopeus toisen kertaluvun reaktio hidastuu nopeammin 17

18 Tarkastellaan esimerkkinä di-isopropyyliformiaatin (dipf) metanolyysireaktion kinetiikkaa oheisen mittausaineiston puitteissa. Määritämme kertaluvun ja nopeusvakion suuruuden t/min [dipf] menetelmänä on kokeilla miten hyvin tämä mittausdata sopii 1. ja 2. kertaluvun kinetiikkaan Aloitetaan 1. kertaluvusta, jolloin ln[dipf] vs aika tulisi olla suora. Muodostetaan pisteparit: t/min ln[dipf] ,

19 ln [] y = e-05x R= Havaitsemme, että pisteparit muodostavat hyvän suoran. Reaktio on 1. kertalukua ja sen nopeusvakio saadaan kulmakertoimesta: 1 k=4.55x10-5 s t (s) 19

20 Voimme vielä tarkistaa miten hyvin mittauspisteet sopisivat 2. kertaluvun kinetiikkaan: 1 [ A] 1 = kt [ A] 0 muodostamme pisteparit 1/[dipf],t t/min /[dipf] y = e-05x R= /[dipf] paljon huonompi sovitus, joten reaktio ei ole toista kertalukua t (s) 20

21 Useimpien kemiallisten reaktioiden nopeus riippuu lämpötilasta. Lähes kaikissa tapauksissa reaktionopeus kasvaa lämpötilan kasvaessa Kokeellisesti on havaittu, että reaktionopeusvakion lämpötilariippuvuus noudattaa varsin hyvin Arrheniuksen yhtälöä: lnk = ln A E a RT A = ns. pre-eksponentiaalitekijä (frekvenssitekijä) E a = reaktion aktivointienergia Arrheniuksen yhtälö pätee sekä eksotermisille että endotermisille reaktioille. Aktivoitumisenergia voidaan määrittää mittaamalla reaktionopeusvakion arvo useassa eri lämpötilassa 21

22 aktivoitu kompleksi 22

23 Asetaldehydin hajoamista (2. kertaluvun reaktio) on seurattu lämpötilan funktiona: T/K k/ L mol -1 s -1 muodostetaan pisteparit 1/T,lnk ja sijoitetaan ne koordinaatistoon: suoran kulmakerroin = -2,27x10 4 =E a /R leikkauspiste = 27.7 = lna E a = 189 kj mol -1 A = e 27.7 L mol -1 s -1 = 1.1x10 12 L mol -1 s -1 23

24 Tasapainoreaktiot A B B A v = k [A] v = k [B] d[a] = k[a] + k'[b] Jos alussa on vain A:ta läsnä [A] 0 = [A] + [B] d[a] = k[a] + k' [A] 0 [A] +k')t k'+ke (k Diff. yhtälön ratkaisuna saadaan: [ A] = [A] 0 k + k' Pitkän ajan kuluttua (t ) [ A] = k' k + k' [A] 0 [ B] = [A] 0 [A] = ( ) = (k + k')[a] + k'[a] 0 e (k +k')t 0 k k + k' [A] 0 tasapainokonsentraatiot 24

25 Määrittelemme tasapainovakion K: K = B A [ ] = k [ ] k' Tärkeä tulos, joka yhdistää kinetiikan termodynamiikkaan vrt. ΔG 0 = RT lnk 25

26 Nesteiden sekoittuminen on varsin hidas prosessi (10-3 s) Voidaanko nopeaa kinetiikkaa tutkia liuoksissa? esim. H + + OH - H 2 O t 1/2 = 10-6 s Relaksaatiomenetelmissä kemiallista tasapainoa häiritäään esim. nopealla lämpötilamuutoksella, ja mitataan aika joka kuluu uuteen tasapainoon asettumiseen. Tätä aikaa kutsutaan relaksaatioajaksi. Relaksaatioajalla on yhteys nopeusvakioihin. Menetelmä soveltuu nopeiden reaktioiden tutkimiseen. k a Tarkastellaan tasapainoreaktiota A B k b d[a] (1) tasapainossa = 0 k a '[A]' eq = k b '[B]' eq Lämpötila muutetaan nopeasti T 1 T 2 nopeusvakiot muuttuvat välittömästi k a k a ; k b k b T = T 1 Lämpötilahyppy- kokeessa tarkastellaan muutosta näiden tasa- painojen välillä (2) uusi tasapaino k a [A] eq = k b [B] eq 26

27 (1) (2) k a '[A]' eq = k b '[B]' eq T = T 2 k a ; k b k a [A] eq = k b [B] eq [A] = x + [A] eq [B] = [B] eq x T = T 1 T = T 2 (x = poikkeama) Relaksaation aikana: d[a] = k a ( x + [A] eq ) + k b ( x + [B] eq ) sijoittamalla yhtäsuuruus d[a] x x 0 = (k a + k b )x = dx dx x = (k + k ) a b k a [A] eq = k b [B] eq t " ln x % $ ' = k a + k b # x 0 & 0 (poikkeaman muutosnopeus) ( )t x = x 0 e t(k a +k b ) = x 0 e t /τ 27

28 Systeemi relaksoituu eksponentiaalissti uuteen tasapainoon. Suuretta ( ) kutsutaan relaksaatioajaksi. τ =1/ k a + k b Huom! Relaksaatioajan lauseke riippuu kertaluvusta. Em. esimerkissä oletimme 1. kertaluvun molempiin suuntiin k a '[A]' eq = k b '[B]' eq x 0 x = x 0 e k a [A] eq = k b [B] eq t=0 t=τ mittaamalla τ saadaan k a + k b tasapainovakiosta K = k a /k b 28

29 Esimerkki H 2 O (l) k 1 k 2 H + (aq) + OH - (aq) τ = 37 µs k 1 = 1. kertalukua k 2 = 2. kertalukua pk w = d[h 2 O] = k 1 [H 2 O] + k 2 [H + ][OH ] relaksaatioajalle voidaan johtaa lauseke: tasapainotilanteessa k 1 [H 2 O] = k 2 [H + ][OH ] k 1 = [H + ][OH ] = K W k 2 [H 2 O] [H 2 O] = K 1 τ = k 1 + k 2 [H + ] + [OH ] ( ) [H 2 O]=56 mol/dm 3 K W = sijoittamalla saamme K = 1.8 x k 1 :n k 2 :n ja K:n relaatio: k 1 = k 2 K 29

30 1 τ = k K mol 2 dm + k [H ( ] + [OH ]) ( ) mol = k 2 K + K W 1/ 2 + K W 1/ 2 k 2 = 1 τ mol dm 3 k 1 = k 2 K mol dm 3 = s 1 dm = 2.0 mol k 2 dm 3 = dm 3 mol s 30

31 Alkeisreaktiot (elementary reactions) 1. Tapahtuvat suoraan yhdessä vaiheessa siten, että välituotteita ei havaita 2. Lähes kaikki reaktiot koostuvat joukosta peräkkäisiä alkeisreaktioita 3. Alkeisreaktion molekulaarisuus tarkoittaa ko. alkeisreaktioon osallistuvien molekyylien lukumäärää unimolekulaarinen alkeisreaktio H 2 + Br 2 HBr + Br bimolekulaarinen alkeisreaktio 31

32 Reaktion kertaluku on aina kokeellisesti määritettävä ominaisuus. Molekulaarisuus viittaa aina alkeisreaktion mekanismiin. Alkeisreaktion nopeuslaki voidaan päätellä suoraan reaktioyhtälöstä: A tuoteet A + B tuoteet d[a] d[a] = k[a] = k[a][b] Se, että jokin reaktio noudattaa 2. kertaluvun kinetiikkaa ei välttämättä tarkoita sitä, että kyseessä on A + B tuoteet tyypin alkeisreaktio 32

33 Tarkastellaan seuraavaksi peräkkäisiä alkeisreaktioita: A k a " " I k " b P d[a] = k a [A] d[i] = k a [A] k b [I] d[p] = k b [I] Jos oletamme, että alussa (t=0) on vain A:ta ([A] 0 ): [A] = [A] 0 e k a t kinetiikkaa kuvaavat diff. yhtälöt d[i] [I] = = k a [A] 0 e k a t k b [I] jos [I] 0 = 0 niin tämä ratkeaa: k a k b k a e k t a e k b t ( )[A] 0 33

34 Reunaehdosta [A] + [I] + [P] = [A] 0 [P] = [A] 0 - [A] - [I] # = 1+ k ae k b t k b e k a t $ % k b k a & ' ( [A] 0 34

35 Tapauksessa jossa k b >> k a, jokainen syntynyt I molekyyli muuttuu välittömästi P:ksi. nyt e k b t << e k a t ja k b k a k b [P] 1 e k a t ( ) A [ ] 0 Näissä olosuhteissa tuotteen muodostumisnopeus riippuu nopeudesta, jolla välituote I muodostuu. Tämä jälkimmäistä vaihetta hitaampi prosessi on reaktio- nopeuden määräävä vaihe. Peräkkäisten reaktioiden käsittelyä voidaan olennaisesti yksinkertaistaa, jos voidaan olettaa vältuotteiden häviävän likimain samalla nopeudella kun niitä muodostuu. Tätä oletusta kutsutaan steady state (vakiotila) approksimaatioksi 35

36 d[i] A = k a [A] k b [B] = 0 [I] = k a [A] k b k a " I k " b P Nyt tuotteen muodostumisnopeus saa yksinkertaisen muodon: d[p] = k b [I] = k a [A] = k a [A] 0 e k a t [P ] 0 d[p] = t 0 [P] = -[A] 0 k a [A] 0 e k a t 0 t ( ) e k a t = [A] 0 1 e k a t 36

37 Konsentraatioiden käyttäytyminen steady-state tilanteessa 37

38 Etutasapaino Tarkastellaan seuraavia peräkkäisiä reaktioita: A + B k a k a I k b P hidas vaihe nopea vaihe k a >>k b Tasapainotilanteessa K = Tuotteen muodostumiselle: merkitään k = k b K d[p] [I] [A][B] = k a k a ' d[p] = k b [I] = k b K[A][B] = k[a][b] havaitaan siis toisen kertaluvun kinetiikkaa 38

39 Termiset unimolekulaariset reaktiot Unimolekulaaristen reaktioiden kinetiikka silsältää useita mielenkiintoisia kysymyksiä, joihin ei aina ole ollut vastausta: 1. Miten molekyyli saa energian, jolla ylittää aktivoitumisenergia? - aluksi uskottiin ns. säteilyhypoteesiin 2. Jos molekyyli saa energiansa kahden molekyylin törmäyksessä, niin miten on mahdollista, että reaktio noudattaa 1. kertaluvun kinetiikkaa? 3. Mistä johtuu, että reaktion kertaluku riippuu konsentraatiosta? Lindemann ja Hinschelwood esittivät toimivan mekanismin 1921: Mallissa reaktio jaetaan aktivoitumiseen, sammumiseen ja reaktioon 39

40 Unimolekulaarinen reaktio A tuotteet aktivoituminen: A + A A* + A d[a*] = k a [A] 2 aktivoituminen sammuminen sammuminen: A + A* A + A d[a*] = k a '[A][A*] reaktio reaktio: A* P (tuotteet) d[a*] = k b [A*] Jos oletamme, että steady state tilanteen energisoidulle molekyylille A*: d[a*] = k a [A] 2 k a '[A][A*] k b [A*] = 0 40

41 Nyt voimme kirjoittaa A*:n steady state konsentraation: [A*] = k a [A] 2 k b + k a '[A] d[p] = k b [A*] = k a k b [A]2 k b + k a '[A] Tarkastellaa tuotteen muodotumista eri olosuhteissa kaasutilaisessa reaktiossa: 1. A:n paine on alhainen - alhaisessa paineessa on todennäköistä, että aktivoinut molekyyli A* reagoi ennen kuin se törmää uudelleen ja sammuu, ts. k b >>k a [A] d[p] k a [A] 2 reaktionopeuden määrää aktivoituminen (2. kertaluku) 2. A:n paine on korkea - törmäystaajuus on korkea, joten on todennäköistä, että A* sammuu ennen reaktiota, ts. k a [A] >> k b d[p] k k a b [A] = k[a] 41 k a ' (1. kertaluku)

42 Johdimme tuotteen muodostumiselle: d[p] = k[a] missä k = k a k b [A] k b + k a '[A] k:n lauseke voidaan muovata muotoon: 1 k = k ' a + k a k b 1 k a [A] Sitä noudattaako tutkittava reaktio L-H mekanismia voidan testata jos esitetään 1/k (mitattu nopeusvakio) 1/[A]:n (tai 1/p A :n) funtiona, jolloin L-H mekanismin mukaan pitäisi muodostua suora 42

43 L-H mallin ennuste esimerkkinä CHD=CHD:n isomerisoituminen 43

44 Tarkastellaan lopuksi aktivoitumisenergiaa reaktiolle, jossa esiintyy ns. etutasapaino (kuten esim. Lindemann-Hinschelwood mekanismi): A + A k a k a A* +A k b P Tilanteessa, jossa virittyneen molekyylin A* sammuminen on nopeampaa kuin itse reaktio kirjoitimme: d[p] k ak b k a ' [A] = k[a] sovelletaan Arrheniuksen yhtälöä nopeusvakioille: k = k a k b k a ' ( ) A b e E a (b)/ RT ( ) = A a e E a (a )/ RT ( A' a e E a ' (a )/ RT ) = A a A b A a ' e {E a (a )+E a (b ) E a ' (a )} / RT ' E a = E a (a) + E a (b) E a (a) 44

45 E a (a) + E a (b) > E a ' (a) positiivinen aktivoitumisenergia; reaktionopeus kasvaa lämpötilan kasvaessa E a (a) + E a (b) < E a ' (a) negatiivinen aktivoitumisenergia; reaktio hidastuu lämpötilan kasvaessa E a > 0 E a < 0 45

Luku 8. Reaktiokinetiikka

Luku 8. Reaktiokinetiikka Luku 8 Reaktiokinetiikka 234 8.1 Reaktion nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista

Lisätiedot

Teddy 10. harjoituksen malliratkaisu syksy 2011

Teddy 10. harjoituksen malliratkaisu syksy 2011 Teddy. harjoituksen malliratkaisu syksy 2. Tarkastellaan reaktioketjua k O 3 O2 +O () O 2 +O k O 3 (2) O 3 +O k 2 O 2 +O 2 (3) Vakiotilaolettamuksen mukaan välituotteen konsentraatio pysyy vakiona lyhyen

Lisätiedot

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin

Lisätiedot

Luku 2. Kemiallisen reaktion tasapaino

Luku 2. Kemiallisen reaktion tasapaino Luku 2 Kemiallisen reaktion tasapaino 1 2 Keskeisiä käsitteitä 3 Tasapainotilan syntyminen, etenevä reaktio 4 Tasapainotilan syntyminen 5 Tasapainotilan syntyminen, palautuva reaktio 6 Kemiallisen tasapainotilan

Lisätiedot

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä): CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 10/017 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa E409 Kemiallinen tasapaino Tehtävä 1. Tasapainokonversion

Lisätiedot

Tasapainotilaan vaikuttavia tekijöitä

Tasapainotilaan vaikuttavia tekijöitä REAKTIOT JA TASAPAINO, KE5 Tasapainotilaan vaikuttavia tekijöitä Fritz Haber huomasi ammoniakkisynteesiä kehitellessään, että olosuhteet vaikuttavat ammoniakin määrään tasapainoseoksessa. Hän huomasi,

Lisätiedot

Teddy 2. välikoe kevät 2008

Teddy 2. välikoe kevät 2008 Teddy 2. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7 KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A

Lisätiedot

Luento 9 Kemiallinen tasapaino CHEM-A1250

Luento 9 Kemiallinen tasapaino CHEM-A1250 Luento 9 Kemiallinen tasapaino CHEM-A1250 Kemiallinen tasapaino Kaksisuuntainen reaktio Eteenpäin menevän reaktion reaktionopeus = käänteisen reaktion reaktionopeus Näennäisesti muuttumaton lopputilanne=>

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2

f (28) L(28) = f (27) + f (27)(28 27) = = (28 27) 2 = 1 2 f (x) = x 2 BMA581 - Differentiaalilaskenta ja sovellukset Harjoitus 4, Syksy 15 1. (a) Olisiko virhe likimain.5, ja arvio antaa siis liian suuren arvon. (b) Esim (1,1.5) tai (,.5). Funktion toinen derivaatta saa

Lisätiedot

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio.

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio. REAKTIOT JA TASAPAINO, KE5 REAKTIOTASAPAINO Johdantoa: Usein kemialliset reaktiot tapahtuvat vain yhteen suuntaan eli lähtöaineet reagoivat keskenään täydellisesti reaktiotuotteiksi, esimerkiksi palaminen

Lisätiedot

kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin?

kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin? Esimerkki: Mihin suuntaan etenee reaktio CO (g) + H 2 O (g) CO 2 (g) + H 2 (g), K = 0,64, kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin? 1 Le Châtelier'n

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre. 2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutkintolautakunta S tudentexamensnämnden KEMIAN KOE 22.3.2013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua.

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Veden ionitulo ja autoprotolyysi TASAPAINO, KE5

Veden ionitulo ja autoprotolyysi TASAPAINO, KE5 REAKTIOT JA Veden ionitulo ja autoprotolyysi TASAPAINO, KE5 Kun hapot ja emäkset protolysoituvat, vesiliuokseen muodostuu joko oksoniumioneja tai hydroksidi-ioneja. Määritelmä: Oksoniumionit H 3 O + aiheuttavat

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot

Eksponenttifunktio ja Logaritmit, L3b

Eksponenttifunktio ja Logaritmit, L3b ja Logaritmit, L3b eksponentti-funktio Eksponentti-funktio Linkkejä kurssi8, / Etälukio (edu.) kurssi8, logaritmifunktio / Etälukio (edu.) Potenssifunktio y = f (x) = 2 Vakiofunktion y = a kuvaaja on vaakasuora

Lisätiedot

Luku 5: Diffuusio kiinteissä aineissa

Luku 5: Diffuusio kiinteissä aineissa Luku 5: Diffuusio kiinteissä aineissa Käsiteltävät aiheet... Mitä on diffuusio? Miksi sillä on tärkeä merkitys erilaisissa käsittelyissä? Miten diffuusionopeutta voidaan ennustaa? Miten diffuusio riippuu

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje CHEM-C2230 Pintakemia Tö 2: Etikkahapon orptio aktiivihiileen Töohje 1 Johdanto Kaasun ja kiinteän aineen rajapinnalla tapahtuu leensä kaasun orptiota. Mös liuoksissa tapahtuu usein liuenneen aineen orptiota

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

KOTITEKOINEN PALOSAMMUTIN (OSA 1)

KOTITEKOINEN PALOSAMMUTIN (OSA 1) KOTITEKOINEN PALOSAMMUTIN (OSA 1) Johdanto Monet palosammuttimet, kuten kuvassa esitetty käsisammutin, käyttävät hiilidioksidia. Jotta hiilidioksidisammutin olisi tehokas, sen täytyy vapauttaa hiilidioksidia

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

Hiilen ja vedyn reaktioita (1)

Hiilen ja vedyn reaktioita (1) Hiilen ja vedyn reaktioita (1) Hiilivetyjen tuotanto alkaa joko säteilevällä yhdistymisellä tai protoninvaihtoreaktiolla C + + H 2 CH + 2 + hν C + H + 3 CH+ + H 2 Huom. Reaktio C + + H 2 CH + + H on endoterminen,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) = BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT 1 a) Vaihtoehto B on oikein. Elektronit sijoittuvat atomiorbitaaleille kasvavan

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit

Lisätiedot

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13

Luoki?elua: tavallinen vs osi?ais. Osa 11. Differen0aaliyhtälöt. Luoki?elua: kertaluku. Luoki?elua: lineaarisuus 4/13/13 4/3/3 Osa. Differen0aaliyhtälöt Differen0aaliyhtälö = yhtälö jossa esiintyy jonkin funk0on derivaa?a. Esim: dx = x2 f x + f xy 2 2m d 2 ψ = Eψ dx 2 Luoki?elua: tavallinen vs osi?ais Differen0aaliyhtälöt

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Integrointialgoritmit molekyylidynamiikassa

Integrointialgoritmit molekyylidynamiikassa Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT JA PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei

Lisätiedot

REAKTIOT JA TASAPAINO, KE5 Vahvat&heikot protolyytit (vesiliuoksissa) ja protolyysireaktiot

REAKTIOT JA TASAPAINO, KE5 Vahvat&heikot protolyytit (vesiliuoksissa) ja protolyysireaktiot REAKTIOT JA TASAPAINO, KE5 Vahvat&heikot protolyytit (vesiliuoksissa) ja protolyysireaktiot Kertausta: Alun perin hapot luokiteltiin aineiksi, jotka maistuvat happamilta. Toisaalta karvaalta maistuvat

Lisätiedot

SAIPPUALIUOKSEN SÄHKÖKEMIA 09-2009 JOHDANTO

SAIPPUALIUOKSEN SÄHKÖKEMIA 09-2009 JOHDANTO SAIPPUALIUOKSEN SÄHKÖKEMIA 09-009 JOHDANTO 1 lainaus ja kuvat lähteestä: Työssä tutkitaan johtokyky- ja ph-mittauksilla tavallisen palasaippuan kemiallista koostumusta ja misellien ja aggregaattien muodostumista

Lisätiedot

Lisä,etopake3 2: ra,onaalifunk,on integroin,

Lisä,etopake3 2: ra,onaalifunk,on integroin, 9/20/ Lisä,etopake 2: ra,onaalifunk,on integroin, Ra,onaalifunk,o: kahden polynomin P(x) ja Q(x) osamäärä. Esim. x 2 x + 2 tai x5 +6x x- Ra,onaalifunk,o voidaan aina integroida, ja tähän löytyy kajava

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.

(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit. Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)

Lisätiedot

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006 TKK, TTY, LTY, Y, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 1.5.006 1. Uraanimetallin valmistus puhdistetusta uraanidioksidimalmista koostuu seuraavista reaktiovaiheista: (1) U (s)

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut

Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut Astrokemia Kevät 2011 Harjoitus 1, Massavaikutuksen laki, Ratkaisut 1 a Kaasuseoksen komponentin i vapaa energia voidaan kirjoittaa F i (N,T,V = ln Z i (T,V missä on ko hiukkasten lukumäärä tilavuudessa

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

Määritelmät. Happo = luovuttaa protonin H + Emäs = vastaanottaa protonin

Määritelmät. Happo = luovuttaa protonin H + Emäs = vastaanottaa protonin Hapot ja emäkset Määritelmät Happo = luovuttaa protonin H + Emäs = vastaanottaa protonin Happo-emäsreaktioita kutsutaan tästä johtuen protoninsiirto eli protolyysi reaktioiksi Protolyysi Happo Emäs Emäs

Lisätiedot

f(x) f(y) x y f f(x) f(y) (x) = lim

f(x) f(y) x y f f(x) f(y) (x) = lim Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,

Lisätiedot

KEMIA HYVÄN VASTAUKSEN PIIRTEET

KEMIA HYVÄN VASTAUKSEN PIIRTEET BILÄÄKETIETEEN enkilötunnus: - KULUTUSJELMA Sukunimi: 20.5.2015 Etunimet: Nimikirjoitus: KEMIA Kuulustelu klo 9.00-13.00 YVÄN VASTAUKSEN PIIRTEET Tehtävämonisteen tehtäviin vastataan erilliselle vastausmonisteelle.

Lisätiedot

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe Kemian koe kurssi KE5 Reaktiot ja tasapaino koe 1.4.017 Tee kuusi tehtävää. 1. Tämä tehtävä koostuu kuudesta monivalintaosiosta, joista jokaiseen on yksi oikea vastausvaihtoehto. Kirjaa vastaukseksi numero-kirjainyhdistelmä

Lisätiedot

2.2.1 Ratkaiseminen arvausta sovittamalla

2.2.1 Ratkaiseminen arvausta sovittamalla 2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi

Fysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)

Lisätiedot

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.

2. kl:n DY:t. Lause. Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2. 2. kl:n DY:t Yleisesti yhtälöllä ẍ = f(ẋ, x, t) on (sopivin oletuksin) aina olemassa 1-käs. ratkaisu. (ẋ dx/dt, ẍ d 2 x/dt 2.) Lause Olkoon f(x 2, x 1, t) funktio, ja oletetaan, että f, f/ x 1 ja f/ x

Lisätiedot

Osa 11. Differen-aaliyhtälöt

Osa 11. Differen-aaliyhtälöt Osa 11. Differen-aaliyhtälöt Differen-aaliyhtälö = yhtälö jossa esiintyy jonkin funk-on derivaa

Lisätiedot

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7.

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7. HEM-A0 Kemiallinen reaktio Kevät 07 Laskuharjoitus 7.. Metalli-ioni M + muodostaa ligandin L - kanssa : kompleksin ML +, jonka pysyvyysvakio on K ML + =,00. 0 3. Mitkä ovat kompleksitasapainon vapaan metalli-ionin

Lisätiedot

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä 0 5 Nauris 10 15 20 MIKROTALOUSTIEDE A31C00100 Kevät 2017 HARJOITUKSET II Palautus 24.1.2017 klo 16:15 mennessä suoraan luennoitsijalle (esim. harjoitusten alussa) tai sähköpostitse (riku.buri@aalto.fi).

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0: 8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv

Lisätiedot

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä Matematiikkaa kemisteille, kevät 2013 Ylimääräisiä laskuharjoituksia Tällä laskuharjoituksella voi korottaa laskuharjoituspisteitään, mikäli niitä ei ole riittävästi kurssin läpäisemiseen, tai vaihtoehtoisesti

Lisätiedot

joka voidaan määrittää esim. värinmuutosta seuraamalla tai lukemalla

joka voidaan määrittää esim. värinmuutosta seuraamalla tai lukemalla REAKTIOT JA TASAPAINO, KE5 Happo-emästitraukset Määritelmä, titraus: Titraus on menetelmä, jossa tutkittavan liuoksen sisältämä ainemäärä määritetään lisäämällä siihen tarkkaan mitattu tilavuus titrausliuosta,

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Ongelmanratkaisu ja Tekstikoe HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto

Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennolla Funktion Derivaatta f (x) kuvaa funktion

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

MEI Kontinuumimekaniikka

MEI Kontinuumimekaniikka MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto

Lisätiedot

= 9 = 3 2 = 2( ) = = 2

= 9 = 3 2 = 2( ) = = 2 Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100

Lisätiedot

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM) MS-A17 Differentiaali- ja integraalilaskenta 1 CHEM) Laskuharjoitus 4lv, kevät 16 1. Tehtävä: Laske cos x dx a) osittaisintegroinnilla, b) soveltamalla sopivaa trigonometrian kaavaa. Ratkaisu: a) Osittaisintegroinnin

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten

Lisätiedot

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:

Lisätiedot

1.1 Homogeeninen kemiallinen tasapaino

1.1 Homogeeninen kemiallinen tasapaino 1.1 Homogeeninen kemiallinen tasapaino 1. a) Mitä tarkoittaa käsite kemiallinen tasapaino? b) Miten kemiallinen tasapaino ilmaistaan reaktioyhtälössä? c) Mistä tekijöistä tasapainossa olevan reaktioseoksen

Lisätiedot

KE Prosessien perusteet

KE Prosessien perusteet KE-40.2500 Prosessien perusteet Tentiss2i saa kiiyttia1 materiaalina vain fysikaalisen kemian taulukoita kirjaa sek?i kemian laitetekniikan taulukoita ja piinoksia kirjaa' TENTT 10.3.20088-13. 1. Selit8

Lisätiedot