Työ TD7. Reaktiokinetiikan tietokoneharjoitus

Koko: px
Aloita esitys sivulta:

Download "Työ TD7. Reaktiokinetiikan tietokoneharjoitus"

Transkriptio

1 Työ TD7 huhtiuu 3, 8 Reatioinetiian tietooneharjoitus 1. JOHDANTO Tässä työssä lasetaan tietooneella vanttimeaniiaan, tilastolliseen termodynamiiaan ja siirtymätilateoriaan perustuen emiallisen reation HD + H H + D (1) ativoitumisenergia, nopeusvaio ja reationopeuden lämpötilariippuvuus. Kvanttimeaniiaan perustuvalla ab initio menetelmällä lasetaan alusi reation potentiaalienergiapinta ja siirtymätilan raenne. Tämän lisäsi lasetaan siirtymätilan värähdysspetri, jota äytetään tilastollisten jaaumafuntioiden lasemiseen. Yhdistämällä nämä tuloset siirtymätilateorian Eyringin yhtälöön voidaan lasea reation nopeusvaio täysin teoreettisesti, äyttäen apuna vain lasennallisia tulosia.. TEORIA Siirtymätilateoria H. Eyring, M. G. Evans ja M. Polanyi loivat 193-luvulla siirtymätilateorian, jona avulla voidaan lasea monien emiallisten reatioiden nopeudet. Tämän teorian muaan lähtöaineet muodostavat ns. siirtymätilaomplesin, joa hajoaa tuotteisi. Reation etenemistä voidaan uvata ns. reatiooordinaatin avulla. Tuotteita voi syntyä niistä lähtöaineista, joilla on tarpeesi energiaa ylittää reation potentiaalivalli, eli muodostaa siirtymätilaompleseja, jota hajoavat tuotteisi. (uva 1). Siirtymätilateoriassa oletetaan myös että siirtymätilasta syntyneet tuotteet eivät muodosta lähtöaineita. Lisäsi oletetaan että lähtöaineet noudattavat Maxwell-Boltzmann -jaaumalaia, ja että reation eteneminen riippuu vain reatiooordinaatin suuntaisesta liieestä, ei siirtymätilaomplesin muista liieistä. Lisäsi usein myös oletetaan että liie reatiooordinaatin suhteen on lassista, eli vanttimeaanista tunneloitumista ei tarvitse ottaa huomioon. 1

2 Siirtymätilan värähdysperustila E Lähtöaineiden värähdysperustila E cb Lähtöaineiden eletroninen potentiaalienergia reatiooordinaatti Kuva 1: Kemiallisen reation potentiaalienergiapinta reatiooordinaatin suunnassa ja eri tavoin lasettuja ativoitumisenergioita. Ativoitumisenergia Ativoitumisenergia (E a, E ) on eseinen äsite emiallisen reation termodynamiiaa ja inetiiaa tarasteltaessa. Se on siirtymätilan eli ativoidun omplesin ja lähtöaineiden välinen energiaero. Kuva 1 esittää erilaisia tapoja määritellä ativoitumisenergia. Ysinertaisimmillaan se voidaan lasea siirtymätilan ja lähtöaineiden eletronisen potentiaalienergian erotusina, E cb. Suure E cb on lassinen potentiaaliero, eli siinä ei oteta huomioon vanttimeaniiasta aiheutuvia ilmiöitä, uten nollapiste-energiaa. E on värähtelyn nollapiste-energialla orjattu energiaerotus, joa on samalla todellinen ativoitumisenergia, jos lämpötila olisi absoluuttisessa nollapisteessä. Jaaumafuntiot Jaaumafuntiot uvaavat ison, tilastollisesti äyttäytyvän hiuasjouon jaautumista eri energiatasoille, ja oonaisjaaumafuntio voidaan jaaa eri energialajien muaisesti etenemis(translaatio)-, värähdys(vibraatio)-, pyörimis(rotaatio)- ja eletroniseen jaaumafuntioon = ( tr) ( vib) ( rot) ( el ), ()

3 jossa indesit viittaavat eri energiamuotoihin. Jaaumafuntioiden lasemiseen voidaan äyttää seuraavia aavoja, jota on esitetty myös Atinsin luvussa 17.. Eletroninen jaaumafuntio on missä ( ) = g j e #E j $ (3) el g j on j:nnen eletronisen tilan degeneraatio, ja j ( tr ) ( m T) Pyörimisjaaumafuntio lineaariselle moleyylille on ( rot) = 1/ T. Etenemisjaaumafuntio on 3 B B = (4) 3 h 8 I = (5) h s missä I on moleyylin hitausmomentti moleyylin symmetria-aselia vastaan ohtisuorassa suunnassa ja moleyylin symmetrialuu σ s on aiien niiden identtisten onfiguraatioiden luumäärä, jota saadaan pyörittämällä moleyyliä. Toisin sanoen σ s on identtisten atomien parillisten permutaatioiden luumäärä. Värähdysjaaumafuntio on vastaavasti missä ) ( ) # = 1 exp hc v &, i / + % (. * $ B T '- vib i v ~ i on i:nnen värähdysen aaltoluu. Jaaumafuntion luuarvo ertoo sen, uina suuri osuus moleyyleistä on perustilaa oreammilla energiatiloilla, s. Atins, uva Jaaumafuntion arvo 1 vastaa tilannetta, jossa aii moleyylit ovat perustilassa. 1 (6) Etenemisjaaumafuntion ysiö on m -3, muut jaaumafuntiot ovat ysiöttömiä luuja. Eyringin yhtälö Eyringin yhtälö on siirtymätilateoriaan perustuvan reationopeuden määrittämisen perusyhtälö, joa ilmaisee reation nopeusvaion lähtöaineiden ja siirtymätilan ominaisuusien ja ativoitumisenergian avulla. Nyt K c HD + H HDH H # TS + D (8) missä HDH on siirtymätila, K c on lähtöaineiden ja siirtymätilan välillä vallitsevan tasapainotilan onsentraatiotasapainovaio (onsentraatiotasapainovaion äyttäminen atiivisuusien sijasta on 3

4 riittävän tara approsimaatio tässä yhteydessä) ja ν TS taajuus, jolla siirtymätilassa olevat moleyyli tai omplesi hajoaa tuotteisi. Reationopeudelle voidaan irjoittaa Eyringin yhtälö missä & # = E $ ' ( reatio)exp (9) h % RT ( reatio) (1) ( H ) ( HD) on reation jaaumafuntio, = on siirtymätilan jaaumafuntio (yläviivalla ( tr) ( vib) (rot) ( el) taroitetaan, että värähdysjaaumafuntiosta on jätetty reatioon johtavaa oordinaattia vastaava alhaisen taajuuden värähdys huomiotta), ja (H ) ja (HD) ovat lähtöaineiden jaaumafuntioita, ( tr ) ( vib) ( rot) ( el) esim. ( HD) = ( HD) ( HD) ( HD) ( HD). Eyringin yhtälön johto Reationopeuden lausee voidaan johtaa usealla tavalla (atso Atins, sivu 88). Tässä työssä äytetään aluperäistä Eyringin äyttämää lähestymistapaa. Ativoituneen siirtymätilan ja lähtöaineiden välille voidaan muodollisesti irjoittaa tasapainovaio: ja nyt reationopeuserroin on [ HDH ] K c = [ H][ HD] c (11) = TS K (1) Yllä on äytetty onsentraatioita atiivisuusien sijasta, miä on yleensä hyvä approsimaatio aasufaasissa tapahtuville reatioille. Sijoittamalla tähän tilastollisen termodynamiian jaaumafuntiot saadaan seuraava muoto: & E # = ( reatio)exp$ ' (13) % RT K c Tässä esponenttitermi seuraa Boltzmannin jaaumalaista ja uvaa niiden moleyylien osuutta, joilla terminen energia on suurempi uin ativoitumisenergia E. Värähdysvapausasteita on 3N-6 epälineaariselle ja 3N-5 lineaariselle moleyylille (N on atomien luumäärä). Ysi näistä (taajuutta ν vastaava) on erityisessä asemassa, sillä se liittyy liieeseen siirtymätilan yli lähtöaineista tuotteisiin. Tämä värähdys ei uitenaan palaa tasapainoasemaansa siitä poiettuaan, osa siirtymätila on potentiaalipinnan masimi eiä minimi, reatiooordinaatin 4

5 suunnassa. Tästä syystä yseisen värähdysen taajuus on hyvin alhainen ( B T >> h ) tai jopa imaginaarinen, joten 1 1 T lim ) = (14) + ' h $ ' h $ 1 ( exp % ( 1 ( 1 % ( & # & # B * h Siirtymätilan värähdysjaaumafuntio voidaan nyt irjoittaa seuraavaan muotoon: ( vib) ( vib) ( vib) = (15) h missä yläviivalla taroitetaan, että värähdysjaaumafuntiosta on jätetty reatioon johtava alhaisen taajuuden värähdys huomiotta. Tämä voidaan sijoittaa tasapainovaion lauseeeseen, jolloin saadaan K c [ HDH ] & = = E $ ' exp [ H][ HD] h( ( H ) ( HD) % RT TS jossa esiintyvä. Yhtälö voidaan järjestää uudelleen muotoon missä [ ] TS HDH yhtälö & E # [ HDH ] [ H][ HD] $ ' exp # (16) ( TS = h ( H ) ( HD) % RT (17) on reationopeus v. Toisaalta v = [ H][ HD] & = E $ ' exp h ( H ) ( HD) % RT #, joten nopeusvaiolle saadaan Tämä on Eyringin yhtälö. Tässä muodossa esitetyssä Eyringin yhtälössä nopeusvaion ysiösi tulee m 3 s -1. Tavallisesti emiallisen reation nopeusvaio annetaan dm 3 mol -1 s -1 -ysiöissä, joihin siirryttäessä täytyy ertoa Avogadron vaiolla ja muuttaa uutiometrit uutiodesimetreisi (litroisi). (18) Arrheniusen yhtälö Jo ennen siirtymätilateorian ehittämistä oltiin oeellisesti huomattu että monien emiallisten reatioiden lämpötilariippuvuus noudattaa Arrheniusen yhtälöä Ea ln = ln A (19) RT 5

6 missä on reation nopeusvaio, A on taajuusteijä eli törmäysteijä ja E a Arrheniusen ativoitumisenergia. Arrheniusen yhtälössä oletetaan että A ja E a eivät riipu lämpötilasta T. Miäli reatio noudattaa Arrheniusen yhtälöä, on ln:n uvaaja suora, un 1/T on muuttuja. Tällöin -E a /R on yseisen suoran ulmaerroin. Arrheniusen yhtälö ei päde aiille reatioille, jolloin ln:n uvaajasta 1/T:n funtiona ei tule suoraa. Yleisin syy tähän on se, että vanttimeaniian muainen tunneloituminen näyttelee merittävää osaa reationopeudessa. Tämä tulee esille erityisesti matalan lämpötilan reatioissa. Tunneloituminen taroittaa sitä, että lähtöaineiden energia ei riitä ylittämään siirtymätilan muodostamaa potentiaalienergiavallia, mutta siitä huolimatta jollain todennäöisyydellä hiuanen voi mennä yseisen vallin läpi. Tunneloituminen on merittävintä reatioissa, joissa eletronit ja protonit liiuvat. Deuteriumille ( H) tunneloituminen ei enää ole ovin merittävä ja sitä rasaammat atomit eivät tunneloidu äytännössä lainaan. Sellaisenaan Eyringin yhtälö ei ota tunneloitumista huomioon, mutta ysinertaisena approsimaationa äytetään nopeusvaion orjaamista Wignerin tunneloitumisteijällä κ, missä 1 1 & h' 4 # ( = + $ () % on imaginäärinen värähdystaajuus. Nopeusvaiosi saadaan T h B = K c (1) 3. TYÖHÖN LIITTYVIÄ KÄSITTEITÄ Siirtymätila Ativoitumisenergia Jaaumafuntiot Eyringin yhtälö Arrheniusen yhtälö Tunneloituminen 6

7 4. TYÖN SUORITUS Tietooneen ja Gaussian3 -ohjelmiston avulla lasetaan reation lähtöaineiden, siirtymätilan ja tuotteiden raenteet, energiat ja harmoniset värähdystaajuudet Hartree-Foc menetelmällä äyttäen 3-1G-antafuntiojouoa [HF/3-1G] Lisäsi piirretään olmiulotteinen uvaaja reation potentiaalipinnasta ja tunnistetaan siirtymätilaa vastaava piste potentiaalipinnalta. 5. LASKUT JA TYÖSELOSTUS Gaussian3 -ohjelmiston avulla saatuja Hartree-Foc -energioita (HFE) ja nollapiste-energioita (NPE) äyttämällä lasetaan ensin reation ynnysenergia [ HFE( lähtöaineet) NPE( lähtöainee )] E = HFE( siirtymätila) + NPE( siirtymätila) + t () Sitten lasetaan lähtöaineiden ja siirtymätilan eri tyyppiset jaaumafuntiot ja (tr), (vib), (el) lämpötiloissa K, 98,15 K, 4 K ja 5 K. Ysiöjen muunnosiin on iinnitettävä erityistä huomiota. Sopivan tauluolasenta- tai matemaattisen ohjelmiston äyttö helpottaa huomattavasti lasuja. Eletronisen jaaumafuntion lasemisesi voidaan olettaa, että vain eletroninen perustila on miehittynyt, jolloin ( el) g G (rot), missä g G on eletronisen perustilan degeneraatio. Näistä jaaumafuntioista lasetaan yhtälöä () äyttämällä unin lähtöaineen ja siirtymätilan oonaisjaaumafuntio (siis (H ), (HD) ja ), seä yhtälöä (1) äyttämällä reation jaaumafuntio em. lämpötiloissa. Seuraavasi lasetaan Eyringin yhtälön (9) muaiset nopeusvaiot K, 98,15K, 4K ja 5K. Lisäsi piirretään oordinaatistoon, jona x-aselina on & 1 # & 1 # & 1 # 1/T ja y-aselina ln, pisteet $,ln K, $,ln 98,15K, $,ln 4K % K % 98,15K % 4K & $ % 1 5,ln K 5K #. Arrheniusen parametrit A ja E a [yhtälö (19)] lasetaan sovittamalla suora.o. pistejouoon. Lopusi lasetaan vielä Wignerin tunneloitumisteijä κ, ja arvioidaan tunneloitumisen meritystä reationopeuteen. ja Kirjoita työselostus, joa noudattaa tämän monisteen yleisohjetta. Eri lämpötiloissa lasetut jaaumafuntiot (tr), (vib), (rot) ja (el), nopeusvaiot K,, 15K 98, K 4 ja 5 K, Arrheniusen parametrit A ja E a ja Wignerin tunneloitumisteijä κ esitetään tauluon muodossa. Erityyppisistä lasuista on oltava ysi esimerisijoitus. Arrheniusen suoran sovitus ja uvaaja 7

8 pitää ottaa muaan selostuseen. Saatuja tulosia on verrattava irjallisuusarvoihin. Matemaattista virhetarastelua ei tarvitse suorittaa. Ysityisohtia.. Etenemisjaaumafuntiota lasettaessa aavassa (4) massa on ilmoitettava ilogrammoina. Pyörimisjaaumafuntiossa tarvittava hitausmomentin I aava löytyy esim. Atinsista. Kasiatomiselle moleyylille se on muotoa mamb I = m + m A B AB r (4) Värähdysjaaumafuntioita lasettaessa HF-menetelmällä lasetut harmoniset aaltoluvut ω on saalattava ertomalla teijällä,97 [vaioertoimella orjataan virhe, joa aiheutuu (1) harmonisesta approsimaatiosta ja () HF/3-1 tasolla tehtävästä virheestä eletroniraenteen lasussa] ja muutettava taajuusisi, joiden ysiö on s -1. Gaussian3 antaa siirtymätilalle yhden imaginäärisen värähdystaajuuden, joa on nimenomaan se taajuus, jota ei äytetä :n lasussa, atso uva. Eletronisen perustilan degeneraation voi päätellä tilan symmetrian ja eletronien spinien avulla. Esimerisi vetyatomin samanenergisten atomiorbitaalien luumäärä on vetyatomille n. Toisaalta vetyatomin joaista atomiorbitaalia vastaa asi samanenergistä spin-tilaa. Kosa perustilalle n = 1, seuraa tästä että vetyatomin eletronisen perustilan degeneraatio on siis. Samalla tavalla päättelemällä saadaan vetymoleyylin perustilan degeneraatiosi 1. Tämä johtuu siitä että yhdistämällä ahden vetyatomin alimmat atomiorbitaalit moleyylin eletronitiloisi (moleyyliorbitaaleisi) saadaan asi eri energiassa olevaa tilaa, joista vain alempi on perustilassa miehitetty (asi eletronia miehittää sitä, toinen spin ylös ja toinen alas ). Huomaa että nyt eri spin-ombinaatioilla on eri energia, esim. alimmassa eletronisessa triplettiviritystilassa molemmilla moleyyliorbitaaleilla olisi joo ysi spin ylös -eletroni tai ysi spin alas - eletroni. Siirtymätilan HDH eletroninen degeneraatio on osa yhdistämällä ahden vedyn ja yhden deuteriumin alimmat atomiorbitaalit saadaan 3 eri energiassa olevaa moleyyliorbitaalia. Perustilassa alinta energiaa vastaava orbitaali on asinertaisesti miehitetty (spin ylös ja alas - eletronit). Seuraava orbitaali on miehitetty erran joo ylös tai alas -spinin omaavalla eletronilla. Näillä onfiguraatioilla on sama energia, josta seuraa g j =. 8

9 6. KIRJALLISUUTTA P. W. Atins ja J. de Paula, Atins Physical Chemistry, 8. painos, sivut 56-57, ja K. J. Laidler, Reaction Kinetics 3. painos, sivut ja

10 Kuva : Reation HD+H H +D potentiaalienergiapinta. Katoviiva osoittaa reation minimienergiapolun, joa ylittää siirtymätilan. ν 1 on ysi siirtymätilan yli johtava värähdys, joa vastaa tavallisten moleyylien värähdysiä. ν TS on siirtymätilan yli johtava värähdys, joa ei palaudu tasapainoasemaansa (voimavaio on negatiivinen, osa yseessä ei ole minimi). Tämän taia ν TS jätetään huomiotta siirtymätilan värähdysjaaumafuntiota lasettaessa. 1

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

Molekulaarisuus = reagoivien molekyylien lkm Stoikiometria = tasapainotetun reaktioyhtälön lkm (ainetase)

Molekulaarisuus = reagoivien molekyylien lkm Stoikiometria = tasapainotetun reaktioyhtälön lkm (ainetase) 1. Yleistä a) Tasapainoreation yleinen muoto: a + bb f r cc + dd K c C D B èq a b, jossa d f r [X] = yhdisteen X onsentraatio a,b,c,d = yhdisteen stöiömetria (ainetaseesta) f = reationopeus eteenpäin r

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

HARMONINEN VÄRÄHTELIJÄ

HARMONINEN VÄRÄHTELIJÄ Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt 1 1 HARMONINEN VÄRÄHELIJÄ 1. yön tavoitteet 1.1 Mittausten taroitus ässä työssä tutustut jasolliseen, määrätyin aiavälein toistuvaan liieeseen,

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

Luku kahden alkuluvun summana

Luku kahden alkuluvun summana Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

Naulalevylausunto Kartro PTN naulalevylle

Naulalevylausunto Kartro PTN naulalevylle LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL

Lisätiedot

ESIM. ESIM.

ESIM. ESIM. 1 Vierintäita f r lasetaan samannäöisellä aavalla uin liuuitain: Ihmisunnan erästä suurimmista esinnöistä eli pyörää äytetään sen taia, että vierintäitaerroin µ r on paljon pienempi uin liuuitaerroin:

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,

Lisätiedot

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)

Lisätiedot

Talousmatematiikan verkkokurssi. Koronkorkolaskut

Talousmatematiikan verkkokurssi. Koronkorkolaskut Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-3259-12 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 151 Lahti 27.4.212 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 11, 244 VTT Puh. 2 722 5566, Fax. 2 722 73

Lisätiedot

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

1974 N:o 622. Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. Liite 1.

1974 N:o 622. Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. Liite 1. 1974 N:o 622 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely Vauutuslajiryhmä Vauutusluoat Ensivauutus Laisääteinen tapaturma 1 (laisääteinen) Muu

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia

Lisätiedot

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPEUSTEET Koooma 28.3.2006. Viimeisin perustemuutos on ahistettu 16.1.2003. APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKU-

Lisätiedot

Työ ja energia. Haarto & Karhunen.

Työ ja energia. Haarto & Karhunen. Työ ja energia Haarto & Karhunen Voiman teemä työ Voiman F teemä työ W määritellään voiman F ja uljetun matan s pistetulona. Siis uljetun matan s ja matan suuntaisen voiman omponentin tulona. W = F s =

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. Ryhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. Ryhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

YRITTÄJIEN ELÄKELAIN (YEL) MUKAISEN LISÄELÄKEVAKUUTUKSEN PERUSTEET. Kokooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004.

YRITTÄJIEN ELÄKELAIN (YEL) MUKAISEN LISÄELÄKEVAKUUTUKSEN PERUSTEET. Kokooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004. YITTÄJIN LÄKLAIN (YL) MUKAISN LISÄLÄKVAKUUTUKSN PUSTT Koooma 30.3.2006. Viimeisin perustemuutos vahvistettu 20.12.2004. SISÄLTÖ YITTÄJIN LÄKLAIN (YL) MUKAISN LISÄLÄKVAKUUTUKSN PUSTT 1. PUSTIDN SOVLTAMINN...

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa

Lisätiedot

6 Lineaarisen ennustuksen sovelluksia

6 Lineaarisen ennustuksen sovelluksia 6 Lineaarisen ennustusen sovellusia Lineaarisella ennustusella on hyvin täreä asema monessa puheenäsittelyn sovellusessa. Seuraavassa on esitetty esimerejä siitä miten lineaarista ennustusta voidaan hyödyntää.

Lisätiedot

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2)

1. Harjoituskoe. Harjoituskokeet. 1. a) Valitaan suorilta kaksi pistettä ja määritetään yhtälöt. Suora s: (x 1, y 1 ) = (0, 2) (x 2, y 2 ) = (1, 2) . Harjoitusoe. a) Valitaan suorilta asi pistettä ja määritetään yhtälöt. Suora s: (, y ) = (0, ) (, y ) = (, ) 0 0 0 Suoran yhtälö on y. Suora t: (, y ) = (0, ) (, y ) = (, ) ( ) 0 Suoran yhtälö on y.

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen / ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai

Lisätiedot

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x , III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on

Projekti 5 Systeemifunktiot ja kaksiportit. Kukin ryhmistä tarkastelee piiriä eri taajuuksilla. Ryhmäni taajuus on EPOP Kevät 2012 Projeti 5 Systeemifuntiot ja asiportit Tämä projeti tehdään 3 hengen ryhmissä. yhmääni uuluvat Kuin ryhmistä tarastelee piiriä eri taajuusilla. yhmäni taajuus on Seuraavan projetin aiana

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

VALON DIFFRAKTIO JA POLARISAATIO

VALON DIFFRAKTIO JA POLARISAATIO Oulun yliopisto Fysiian opetuslaboratorio Fysiian laboratoriotyöt 1 1 1. Työn tavoitteet 1.1 Mittausten taroitus Tässä työssä tutit valoa aaltoliieenä. Ensimmäisessä osassa tutustut valon taipumiseen eli

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN

SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN SYMBOLIVIRHETODENNÄKÖISYYDESTÄ BITTIVIRHETODENNÄKÖISYYTEEN Miten modulaation P S P B? 536A Tietoliienneteniia II Osa 4 Kari Käräinen Sysy 05 SEP VS. BEP D-SIGNAALIAVARUUDESSA Kullein modulaatiolle johdetaan

Lisätiedot

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24 Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

Valon diffraktio yhdessä ja kahdessa raossa

Valon diffraktio yhdessä ja kahdessa raossa Jväslän Ammattioreaoulu, IT-instituutti IXPF24 Fsiia, Kevät 2005, 6 ECTS Opettaja Pasi Repo Valon diffratio hdessä ja ahdessa raossa Laatija - Pasi Vähämartti Vuosiurssi - IST4S1 Teopäivä 2005-2-17 Palautuspäivä

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 12: Tasokehän palkkielementti, osa 2. / ELEMENTTIMENETELMÄN PERUSTEET SESSIO : Tasoehän palielementti, osa. NELJÄN VAPAUSASTEEN PALKKIELEMENTTI Kun ahden vapausasteen palielementin solmuihin lisätään loaalin -aselin suuntaiset siirtmämittauset,

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa

Lisätiedot

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET 5 TLOUYRTTÄJÄN ELÄKELN UKEN VKUUTUKEN PERUTEET PERUTEDEN OVELTNEN Näitä perusteita soelletaan..009 lähtien maatalousrittäjän eläelain 80/006 YEL muaisiin auutusiin. VKUUTUKU Vauutusmasu uodelta on maatalousrittäjän

Lisätiedot

Runkomelu. Tampereen kaupunki Juha Jaakola PL Tampere

Runkomelu. Tampereen kaupunki Juha Jaakola PL Tampere Tampereen aupuni Juha Jaaola PL 487 33101 Tampere LAUSUNTO RAIDELIIKENTEEN NOPEUDEN KASVATTAMISESTA RANTA- TAMPELLAN ALUEEN RUNKOMELU- JA TÄRINÄRISKIIN Ranta-Tampellan alueen tärinää on arvioitu selvitysessä

Lisätiedot

Riemannin sarjateoreema

Riemannin sarjateoreema Riemannin sarjateoreema LuK-tutielma Sami Määttä 2368326 Matemaattisten tieteiden laitos Oulun yliopisto Sysy 206 Sisältö Johdanto 2 Luujonot 3 2 Sarjat 4 2. Vuorottelevat sarjat........................

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

3. Markovin prosessit ja vahva Markovin ominaisuus

3. Markovin prosessit ja vahva Markovin ominaisuus 30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin

Lisätiedot

Joulukuun vaativammat valmennustehtävät ratkaisut

Joulukuun vaativammat valmennustehtävät ratkaisut Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

4.3 Erillisten joukkojen yhdisteet

4.3 Erillisten joukkojen yhdisteet 4.3 Erillisten jouojen yhdisteet Ongelmana on pitää yllä ooelmaa S 1,..., S perusjouon X osajouoja, jota voivat muuttua ajan myötä. Rajoitusena on, että miään alio x ei saa uulua useampaan uin yhteen jouoon.

Lisätiedot

Jäykistävän seinän kestävyys

Jäykistävän seinän kestävyys Esimeri Jäyistävän seinän estävyys 1.0 Kuormitus Jäyistävän seinän ominaisuormat on esitetty alla olevassa uvassa. Laselman ysinertaistamisesi tarastellaan seinästä vain iuna-auon vasemman puoleista osaa,

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-02366-17 1 (5) Tilaaja Tilaus Yhteyshenilö Riste Oy Asonatu 11 15110 Lahti 15.3.2017 Kimmo Köntti VTT Expert Services Oy Ari Kevarinmäi PL 1001, 02044 VTT Puh. 020 722 5566 ari.evarinmai@vtt.fi

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, evät 05 / ORMS00 Matemaattinen Analyysi 6. harjoitus. Approsimoi toisen asteen polynomilla P(x) = b 0 +b x+b x oheisen tauluon muaisia havaintoja. (Teorian löydät opetusmonisteen sivuilta

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

5.10. HIUKKANEN POTENTIAALIKUOPASSA

5.10. HIUKKANEN POTENTIAALIKUOPASSA 5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 06: Aksiaalinen sauvaelementti, osa 1.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 06: Aksiaalinen sauvaelementti, osa 1. 6/ ELEMENTTIMENETELMÄN PERSTEET SESSIO 6: Asiaalinen sauvaelementti, osa. ASIAALINEN RAENNE L, A, E L, A, E L, A, E uva. Asiaalinen raenne. Asiaalinen raenne taroittaa tässä yhteydessä raennetta, joa oostuu

Lisätiedot

STOKASTISET DIFFERENTIAALIYHTÄLÖT 7

STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 1. Todennäöisyyslasennasta ja merinnöistä Palautamme seuraavassa lyhyesti mieleen todennäöisyyslasennan äsitteitä ja esittelemme myös muutamia urssilla äytettäviä merintätapoja.

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Naulalevylausunto LL10 naulalevylle

Naulalevylausunto LL10 naulalevylle LAUSUNTO NRO VTT S 09771 08 1 (1) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 FI 15100 Lahti 3.9.2008 Simo Jouainen Ari Kevarinmäi VTT Asiantuntijapalvelut PL 1000 02044 VTT Puh. 020 722 5566,

Lisätiedot

S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk

S , Fysiikka III (ES) Tentti Tentti / välikoeuusinta. Laaditaan taulukko monisteen esimerkin 3.1. tapaan ( nj njk Pk S-.35, Fysiia III (ES) entti 8..3 entti / välioeuusinta I älioeen alue. Neljän tunnistettavissa olevan hiuasen miroanonisen jouon mahdolliset energiatasot ovat, ε, ε, 3ε, ε,, jota aii ovat degeneroitumattomia.

Lisätiedot

VALIKOITUJA KOHTIA LUKUTEORIASTA

VALIKOITUJA KOHTIA LUKUTEORIASTA VALIKOITUJA KOHTIA LUKUTEORIASTA ARI LEHTONEN 1. Laajennettu Euleideen algoritmi 1.1. Jaoyhtälö. Oloot r 0, r 1 Z, r 0 r 1 > 0. Tällöin on olemassa ysiäsitteiset luvut q 1 ja r 2 Z siten, että r 0 = q

Lisätiedot

EPOP Kevät

EPOP Kevät EPOP Kevät 2012 16.1.2012 Projeti 1 Muutosilmiöt Piirianalyysi 1:ssä äsitellyt tasa- ja vaihtovirta-analyysit ovat jatuvan tilan menetelmiä, joissa oletetaan, että piirin herätteet (riippumattomat lähteet)

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Naulalevylausunto LL10 naulalevylle

Naulalevylausunto LL10 naulalevylle 1 (4) Tilaaja Tilaus Yhteyshenilö Riste Oy Kimmo Köntti Teollisuustie 7 1554 Villähde Kimmo Köntti, 5.11.218. Tilausvahvistus nro O-2679-18. Eurofins Expert Services Oy Ari Kevarinmäi Kemistintie 3, Espoo

Lisätiedot

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ).

1. (Jatkoa Harjoitus 5A tehtävään 4). Monisteen esimerkin mukaan momenttimenetelmän. n ne(y i Y (n) ) = 2E(Y 1 Y (n) ). HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 019 Harjoitus 5B Rataisuehdotusia Tehtäväsarja I 1. (Jatoa Harjoitus 5A tehtävää 4). Moistee esimeri 3.3.3. muaa momettimeetelmä

Lisätiedot

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä

ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV. Suomen Aktuaariyhdistyksen vuosikokousesitelmä ONKO SUOMALAINEN VAHINKOVAKUUTUSYHTIÖ TASOITUSVASTUUNSA VANKI? fil. tri Martti Pesonen, SHV Suomen Atuaariyhdistysen vuosioousesitelmä 27.2.2006 2 Sisällysluettelo: sivu 1. Tasoitusvastuujärjestelmän uvaus

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Kaupunkisuunnittelu 17.8.2015

Kaupunkisuunnittelu 17.8.2015 VANTAAN KAUPUNKI MIEIPITEIDEN KOONTI Kaupunisuunnittelu..0 MR :N MUKAISEEN KUUEMISKIRJEESEEN..0 VASTAUKSENA SAADUT MIEIPITEET JA KANNANOTOT ASEMAKAAVAN MUUTOKSESTA NRO 009, MARTINAAKSO YHTEENSÄ KANNANOTTOJA

Lisätiedot

854/2017. Liitteet 1 2. Muutos laskuperusteisiin työntekijän eläkelain mukaista toimintaa harjoittaville eläkesäätiöille

854/2017. Liitteet 1 2. Muutos laskuperusteisiin työntekijän eläkelain mukaista toimintaa harjoittaville eläkesäätiöille Liitteet Muutos lasuperusteisiin työnteijän eläelain muaista toimintaa harjoittaille eläesäätiöille Liite Vauutusteniset suureet Näissä lasuperusteissa esiintyät auutusteniset suureet lasetaan TyEL:n muaisen

Lisätiedot

SISÄLLYS. annetun sosiaali- ja terveysministeriön asetuksen muuttamisesta. N:o 254. Sosiaali- ja terveysministeriön asetus

SISÄLLYS. annetun sosiaali- ja terveysministeriön asetuksen muuttamisesta. N:o 254. Sosiaali- ja terveysministeriön asetus OMEN ÄÄDÖKOKOELMA 2001 Julaistu Helsingissä 23 päiänä maalisuuta 2001 N:o 254 256 IÄLLY N:o iu 254 osiaali- ja tereysministeriön asetus työnteijäin eläelain muaista toimintaa harjoittaan eläesäätiön eläeastuun

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 205 PERUSTEIDEN SOVELTAMINEN 2 IKÄÄN JA PALKKAAN LIITTYVÄT SUUREET 2 2. IKÄLASKU 2 2.2 VAKUUTUSMAKSUN PERUSTEENA OLEVA PALKKA JA SEN ARVIOIMINEN

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors

SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy consumption of sauna and related factors LAPPEENRANNAN TEKNILLINEN YLIOPISTO Tenillinen tiedeunta Ympäristöteniian oulutusohelma BH10A0300 Ympäristöteniian andidaatintyö a seminaari SAUNAN ENERGIANKULUTUS JA SIIHEN VAIKUTTAVAT TEKIJÄT The energy

Lisätiedot

M y. u w r zi. M x. F z. F x. M z. F y

M y. u w r zi. M x. F z. F x. M z. F y 36 5.3 Tuipaalutusen lasenta siitmämenetelmällä 5.3.1 Yleistä Jos paaluvoimia ei voida määittää suoaan tasapainohtälöistä (uten ohdassa 5.), on smsessä staattisesti määäämätön paalutus, jona paaluvoimien

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

RuuviliitoSTEN. Sisällysluettelo

RuuviliitoSTEN. Sisällysluettelo RuuviliitoSTEN MITOITUS Sisällysluettelo 1 Yleistä... 1.1 Kansiruuvit... 1. Itseporautuvat ruuvit... Esiporaus... 3 Materiaalit... 3 4 Kuormitustapa... 4 5 Leiausrasitettu ruuvi... 4 5.1 Itseporautuvat

Lisätiedot

Estimointi Laajennettu Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät Laskuharjoitus 4

Estimointi Laajennettu Kalman-suodin. AS , Automaation signaalinkäsittelymenetelmät Laskuharjoitus 4 Estimointi Laajennettu Kalman-suodin AS-84.2161, Automaation signaalinäsittelymenetelmät Lasuharjoitus 4 Estimointi Systeemin tilaa estimoidaan, un prosessin tilamalli tunnetaan Tilamalli voi olla lineaarinen

Lisätiedot

2 1016/2013. Liitteet 1 2 MUUTOS ELÄKEKASSOJEN LASKUPERUSTEISIIN TYÖNTEKIJÄN ELÄKELAIN MUKAISTA KUSTANNUSTEN JAKOA VARTEN

2 1016/2013. Liitteet 1 2 MUUTOS ELÄKEKASSOJEN LASKUPERUSTEISIIN TYÖNTEKIJÄN ELÄKELAIN MUKAISTA KUSTANNUSTEN JAKOA VARTEN 06/03 Liitteet MUUOS ELÄKEKASSOJEN LASKUPEUSEISIIN YÖNEKIJÄN ELÄKELAIN MUKAISA KUSANNUSEN JAKOA VAEN 06/03 3 Liite VAKUUUSEKNISE SUUEE Näissä perusteissa esiintyät auutusteniset suureet lasetaan yel:n

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT S 07136 07 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 FI 15100 Lahti 7.5.2007 Simo Jouainen Ari Kevarinmäi VTT, Raennejärjestelmät PL 1000 02044 VTT Puh. 020 722 5566,

Lisätiedot