Epätäydelliset sopimukset

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Epätäydelliset sopimukset"

Transkriptio

1 Eätäydellset somukset Matt Rantanen ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

2 Estelmän ssältö Eätäydellset somukset ja omstusokeus alanén ostaja-myyjä mall Esmerkk: täydellset somukset Uudelleenneuvottelu ja eätäydellset somukset Esmerkk: myyjä omstaa okeudet Esmerkk: ostaja omstaa okeudet Esmerkk: yhtesomstus Yhdentekevyysteoreemat Yhteenveto ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

3 Eätäydellset somukset ja omstusokeus omukset vovat olla eätäydellsä koska tuomostun ta kolmas osauol vo olla kykenemätön todentamaan somusrkkomuksen. omukset vovat olla eätäydellsä koska taahtuu jotan odottamatonta. Grossman-Hart (1986: omstusokeus ratkasee tällasssa tlantessa. Omstusokeudella e ole merktystä kun eätäydellsten somusten maalmassa. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

4 alané: ostaja-myyjä mall 1/4 Tarkastelemme ostaja-myyjä malla jossa: Ostaja ( ja myyjä ( yhdessä oerovat tuotantohyödykettä. Tuotantohyödyke tuottaa myyjälle kustannuksella c. Tuotannon arvo ostajalle on v. Kukn tomja vo nvestoda yhteseen tuotantohyödykkeeseen tehostaen omaa tomntaansa. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

5 alané: ostaja-myyjä mall /4 Ostaja nvesto ja myyjä nvesto. Kustannus c( on laskeva konveks funkto. Arvo v( on kasvava konkaav funkto. Oletetaan että v = v( 0 c = c(0, jollon osauolten on ana kannattavaa tehdä kauaa. Jos kauan hnta on, osauolten hyödyt ovat c( myyjälle ja v( ostajalle. Oletetaan täydellnen nformaato, el ostaja ja myyjä havatsevat tostensa nvestonnt. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

6 alané: ostaja-myyjä mall 3/4 Jos osauolet evät ääse somukseen hnnasta, jatko ruu stä kuka omstaa hyödykkeen. e joka omstaa, vo vedä hyödykkeen klalevalle C markknalle ja tuottaa sellä hntaan. Koska nvestonnella e ole arvoa tällä markknalla on tuotteen arvo v (0 ja kustannukset c(0. Ehtona on kutenkn, että klaleva markkna on tuottava, el c( 0 C v(0. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

7 alané: ostaja-myyjä mall 4/4 Jos ostaja ja myyjä äätyvät tekemään yhtestyötä, hedän yhtenen yljäämänsä on: v( c(. Osauolten frst best ratkasu nvestonten suhteen on: c' ( * = 1 ja v' ( * = 1. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

8 Esmerkk: täydellset somukset 1/ E eävarmuutta, e asymmetraa nformaatossa (osauolet havatsevat tostensa nvestonnt. Yksnkertanen somus: c v. Annettuna ohenen somus, osauolet valtsevat tehokkaat nvestonnt: * c ( * + c v v( * * Osauolet nän ollen valtsevat frst-best nvestonnt, joten somusteknsest rttää soa van kauahnnasta. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

9 Esmerkk: täydellset somukset / Täydellsten somusten maalmassa omstusokeudet evät vakuta nvestonnn tehokkuuteen. Omstukset vakuttavat van kauahntaan. Jos esm. ostaja omstaa hyödykkeen, hnta äätyy lähemmäks c :tä kun v :tä. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

10 Uudelleenneuvottelu eätäydellsssä somuksssa Esmerkk: oletetaan, että ostaja ja myyjä havatsevat nvestonnt ja mutta tuomostun e vo ntä todentaa. Uudelleenneuvottelussa ostajan ja myyjän ajatellaan jakavan tasan kokonasyljäämä. Hnta määräytyy tässä mahdollsten menetysten kautta (onts of threat. Menetykset määrää uolestaan omstusokeus. Kysymys: ovatko eätäydellset somukset tehokkata? ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

11 Esmerkk: myyjä omstaa okeudet 1/ Jos uudelleenneuvottelu e tuota tulosta, myyjä vo C myydä tuotteensa klalevalla markknalla hntaan. Jos nän taahtuu, ostaja menettää nvestontnsa. Jos uudelleenneuvottelu tuottaa tulosta ja osauolet sovat hnnasta, myyjän hyötyy C C ( c( ( c( = Vastaavast ostajan hyötyy ( v( (0 0 = v( ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

12 Esmerkk: myyjä omstaa okeudet / Nash neuvottelussa osauolet jakavat yljäämän tasan, jollon hnnaks tulee = v( + Myyjän ex ost hyöty: Ostajan ex ost hyöty: Jollon tehokkaat nvestonnt: v' ( = ja c' ( = 1, el ostaja al-nvesto. ysteemanalyysn Laboratoro Teknllnen korkeakoulu C v( C c( = c( = v( v( + Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 C

13 Esmerkk: ostaja omstaa okeudet 1/ Vastaavast jos uudelleenneuvottelu e tuota tulosta, ostaja vo yytää tosta myyjää käyttämään C tuotantohyödykettään hntaan. Alkueränen myyjä menettää nvestontnsa. omukseen äästessään ostaja hyötyy ( v( C ( v( = Vastaavast myyjä hyötyy ( c( (0 0 = c( C ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

14 Esmerkk: ostaja omstaa okeudet / Nash neuvotteluhnta: Ostajan ex ost hyöty: = C + c ( C + c( v( Myyjän ex ost hyöty: C c( Tehokkaat nvestonnt: v' ( = 1 ja c' ( =, el myyjä al-nvesto. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

15 Esmerkk: yhtesomstus 1/ Jos osauolet evät ääse yhtesymmärrykseen, tonen e vo käyttää hyödykettä lman tosen luaa ja molemmat menettävät nvestontnsa. omukseen äästessään myyjä hyötyy ( c( (0 0 = c( Vastaavast ostaja hyötyy ( v( (0 0 = v( ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

16 Esmerkk: yhtesomstus / Nash neuvotteluhnta: Myyjän ex ost hyöty: Ostajan ex ost hyöty: = v( v( v + c( ( s c( c( Tehokkaat nvestonnt: v' ( = ja c' ( =, el kummatkn al-nvestovat. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

17 Yhdentekevyysteoreemat* Edellsten esmerkken omstusjärjestelyt tuottvat tehottomuutta nvestonnessa. Monmutkasemmlla omstusjärjestelyllä vodaan saavuttaa tehokkaat nvestonnt. Esm. Maskn-Trole (1999 on ehdottanut myyntotosomusta, joka antaa frst-best ratkasun yhtesomstuksessa. *Irrelevance Theorems ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

18 Maskn-Trole myyntoto 1/4 Yhtesomstus (hyödykettä käytetään yhtesymmärryksessä. Osauolet havatsevat tostensa nvestonnt. Kun kumkn osauol on tehnyt nvestontnsa, hetetään kolkkoa. Jos myyjä vottaa, on hänellä okeus myydä osuutensa ostajalle hntaan v( * c =, jollon ostaja maksaa t:n hyväntekeväsyyteen. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

19 Maskn-Trole myyntoto /4 Jos uolestaan ostaja vottaa, hän vo myydä v c( * osuutensa hntaan = ja myyjä maksaa t:n hyväntekeväsyyteen. Oletetaan, että ostaja al-nvesto, el < *. Oletetaan, että myyjä saa oton myydä omstusookeutensa. Jos myyjä e käytä okeuttaan myydä omstusokeuttaan, yhtesomstuksen esmerkstä myyjän ex ost hyöty on v( c( ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

20 Maskn-Trole myyntoto 3/4 Jos myyjä äättää myydä omstusokeutensa ostajalle, ostaja äätyy tekemään yhtestyötä edelleen, koska: Kokonasyljäämä kun ostaja alaa tekemään yhtestyötä myyjän kanssa: c c( Myyjän osuus yljäämästä Nash neuvottelussa: c c( ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

21 ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 Maskn-Trole myyntoto 4/4 Myyjä saa, joka on suurem kun hyöty jonka myyjä sas jättäessään oton käyttämättä. El, Myyjän ss kannattaa käyttää oto. Ostajan uolestaan kannattaa nvestoda tehokkaast kun t on rttävän suur, jollon saavutetaan frst-best ratkasu. * = c v c c = + ( * ( ( c v c v > ( ( ( * (

22 Yhteenveto Eätäydellset somukset syntyvät kun kolmas osauol e kykene ta halua kstattomast todentaa somusrkkomusta. Eätäydellset somukset vovat olla seurausta myös kyvyttömyydestä ottaa kakka tekjötä huomoon ex ante. Omstusokeudet turvaavat nvestonnt eätäydellsssä somuksssa. Yksnkertasssa somuksssa van yksnomstaja nvesto tehokkaast. omusteknsest on kutenkn mahdollsta rakentaa tehokkata eätäydellsä somuksa. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

23 Kottehtävä R. Coase (1937 tulkts työsomuksen eätäydellsenä somuksena, jossa työnantaja varaa tselleen okeuden määrtellä työn ssällön ex ost (jälkeen somuksen. Oletetaan, että kakk yrtykset tuottavat van yhtä tuotetta ja myyvät stä markknolla. eltä mks eätäydellnen somus on työnantajalle tärkeä ja mten tämä lttyy yrtyksen kokoon ja markknahntaan. ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

24 Lähteet Coase, R The Nature of the Frm, Economca, 4, November, Grossman,., and O. Hart The costs and benefts of ownersh: A theory of vertcal and lateral ntegraton. Journal of Poltcal Economy 94: Maskn, E., and J. Trole Two remarks on the roerty rghts lterature. Revew of Economc tudes 66: ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

Moraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä

Moraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä Moraalnen uhkapel: N:n agentn tapaus el moraalnen uhkapel tmessä Mat-2.4142 Optmontopn semnaar Ismo Räsänen 4.3.2008 S ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 11 - Ismo Räsänen Optmontopn

Lisätiedot

Tuotteiden erilaistuminen: hintakilpailu

Tuotteiden erilaistuminen: hintakilpailu Tuotteden erlastumnen: hntaklalu Lass Smlä 19.03.003 Otmonton semnaar - Kevät 003 / 1 Johdanto Yrtykset evät yleensä halua tuottaa saman tuoteavaruuden tlan täyttävä tuotteta (syynä Bertrandn aradoks)

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä

Lisätiedot

4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino

4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino 4. MARKKINOIDEN TASAPAINOTTUMINEN 4.. Tasapanoperaate 4... Yrtysten ja kuluttajen välnen tasapano Näkymätön käs muodostuu kahdesta vakutuksesta: ) Yrtysten voton maksmont johtaa ne tuottamaan ntä hyödykketä,

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaslukuotmont Robust dskreett otmont ysteemanalyysn Laboratoro Teknllnen korkeakoulu Ar-Pekka Perkkö ovelletun matematkan tutkasemnaar Kevät 28 sältö Robustn lneaarsen kokonasluku- sekä sekalukuotmontongelman

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

Sisältö. Päätöksenteon heuristiikat ja harhat. Heuristiset harhat. Intuitio ja tiedon saatavuus. Heuristiset harhat

Sisältö. Päätöksenteon heuristiikat ja harhat. Heuristiset harhat. Intuitio ja tiedon saatavuus. Heuristiset harhat Ssältö Päätöksenteon heurstkat ja harhat Samuel Aulanko 3.2.2010 Heurstset harhat Intuto ja tedon saatavuus Estystapojen vakutus (Prospektteora) Attrbuutten vahto Intuton korjaamnen Prototyyppheurstkat

Lisätiedot

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä

Lisätiedot

Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Yrtyksen teora Lar Hämälänen.1.003 Yrtys Organsaato, joka muuttaa tuotantopanokset tuotteks ja tom tehokkaammn kun sen osat erllään Yrtys tenaa rahaa myynthnnan sekä ostohnnan ja aheutuneden kustannuksen

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp. PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA

REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA TAMPEREEN YLIOPISTO Talousteteden latos REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA Kansantaloustede Pro gradu -tutkelma Marraskuu 2009 Ohaaat: Snkka Hämälänen Matt Tuomala Lsa Ekman TIIVISTELMÄ Tampereen

Lisätiedot

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely) Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana

Lisätiedot

Soile Kulmala. Yksikkökohtaiset kalastuskiintiöt Selkämeren silakan kalastuksessa: bioekonominen analyysi

Soile Kulmala. Yksikkökohtaiset kalastuskiintiöt Selkämeren silakan kalastuksessa: bioekonominen analyysi Sole Kulmala Ykskkökohtaset kalastuskntöt Selkämeren slakan kalastuksessa: boekonomnen analyys Helsngn Ylopsto Talousteteen latos Selvtyksä nro 29 Ympärstöekonoma Helsnk 2005 Ssällys 1 Johdanto... 1 1.1

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Moderni portfolioteoria

Moderni portfolioteoria Modern portfoloteora Helsngn Ylopsto Kansantalousteteen Kanddaatntutkelma 4.12.2006 Juho Kostanen (013297143) juho.kostanen@helsnk.f 2 1. Johdanto... 3 2. Sjotusmarkknat... 4 2.1. Osakemarkknat... 4 2.2.

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: empiirinen tutkimus kotimaisista pitkän koron rahastoista vuosilta 2001 2005.

JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: empiirinen tutkimus kotimaisista pitkän koron rahastoista vuosilta 2001 2005. TAMPEREEN YLIOPISTO Talousteteden latos JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: emprnen tutkmus kotmassta ptkän koron rahastosta vuoslta 2001 2005. Kansantaloustede Pro gradu

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi

Sähkön- ja lämmöntuotannon kustannussimulointi ja herkkyysanalyysi Sähkön- ja lämmöntuotannon kustannussmulont ja herkkyysanalyys Pekka Nettaanmäk Osmo Schroderus Jyväskylän ylopsto Tetoteknkan latos 2010 1 2 Tvstelmä Raportn tarkotuksena on esttää pelkstetyn matemaattsen

Lisätiedot

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry

TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ. Suomen Ammattiin Opiskelevien Liitto - SAKKI ry TULEVAISUUDEN KILPAILUKYKY VAATII OSAAVAT TEKIJÄNSÄ Suomen Ammattn Opskeleven Ltto - SAKKI ry AMMATILLINEN KOULUTUS MUUTOKSEN KOURISSA Suomalasen ammatllsen koulutuksen vahvuus on sen laaja-alasuudessa

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi TEKNILLINEN KORKEAKOULU Teknllsen fyskan koulutusohjelma ERIKOISTYÖ MAT-2.108 Sovelletun matematkan erkostyöt 22.4.2003 Paperkoneden tuotannonohjauksen optmont ja tuotefokusont Jyrk Maaranen 38012p 1 Ssällysluettelo

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

OPASTESUUNNITELMA. Euroopan unioni Euroopan aluekehitysrahasto maaseuturahasto

OPASTESUUNNITELMA. Euroopan unioni Euroopan aluekehitysrahasto maaseuturahasto OPASTESUUNNITELMA Euroopan unon Euroopan aluekehtysrahasto maaseuturahasto opasteohjesto Pääopasteet Tenvarsopasteen mall Yleset peraatteet Opasteden värenä käytetään mahdollsuuksen mukaan graafsen ohjeston

Lisätiedot

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta

JYVÄSKYLÄN YLIOPISTO Taloustieteiden tiedekunta JYVÄSKYLÄN YLIOPISTO Talousteteden tedekunta AIKA- IKÄ- JA KOHORTTIVAIKUTUKSET KOTITALOUKSIEN RAHOITUSVARALLISUUDEN RAKENTEISIIN SUOMESSA VUOSINA 1994 2004 Kansantaloustede Pro gradu -tutkelma Maalskuu

Lisätiedot

FDS-OHJELMAN UUSIA OMINAISUUKSIA

FDS-OHJELMAN UUSIA OMINAISUUKSIA FDS-OHJELMAN UUSIA OMINAISUUKSIA Smo Hostkka VTT PL 1000, 02044 VTT Tvstelmä Fre Dynamcs Smulator (FDS) ohjelman vdes verso tuo mukanaan joukon muutoksa, jotka vakuttavat ohjelman käyttöön ja käytettävyyteen.

Lisätiedot

Ratkaisut epätäydelliset sopimukset

Ratkaisut epätäydelliset sopimukset Ratkaisut epätäydelliset sopimukset Matti Rantanen Ratkaisut annettu 22.4.2008 Yrityksen kasvu ja hintamekanismi Yksi syy yrityksen koon rajoittumiselle ovat nousevat marginaalikustannukset. Coase (1937,

Lisätiedot

VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS. Tarmo Räty* Jussi Kivistö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA

VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS. Tarmo Räty* Jussi Kivistö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA VATT-TUTKIMUKSIA 124 VATT RESEARCH REPORTS Tarmo Räty* Juss Kvstö** MITATTAVISSA OLEVA TUOTTAVUUS SUOMEN YLIOPISTOISSA Valton taloudellnen tutkmuskeskus Government Insttute for Economc Research Helsnk

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 22..2007 Luento 0 Ssäpstemenetelmät ja kokonaslukuoptmont (krja 0.-0.4) Ssäpstemenetelmät luvut 8 ja 9, e tarvtse lukea Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Sananen

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike Suom USER GUIDE YLEISKATSAUS LATAAMINEN KIINNITTÄMINEN KÄYTÖN ALOITTAMINEN TIETOJEN SYNKRONOINTI NÄYTTÖTILAT AKTIIVISUUSMITTARI UNITILA TAVOITTEET MUISTUTUKSET TEKNISET TIEDOT 6 8 10 12 16 18 20 21 22

Lisätiedot

Suomen metsäkeskus. Zonation ja luonnonhoidon alueellinen suunnittelu yksityismetsissä

Suomen metsäkeskus. Zonation ja luonnonhoidon alueellinen suunnittelu yksityismetsissä Suomen metsäkeskus Zonton j luonnonhodon lueellnen suunnttelu ykstysmetsssä Johtv luonnonhodon sntuntj Mtt Seppälä METSO j Zonton semnr Ksvu j vkuttvuutt METSO luonnonhotoon 2014-2016 Zonton kehttämsen

Lisätiedot

TUTKIMUKSEN VAIKUTTAVUUDEN MITTAAMINEN MAANMITTAUSTIETEISSÄ. Juha Hyyppä, Anna Salonen

TUTKIMUKSEN VAIKUTTAVUUDEN MITTAAMINEN MAANMITTAUSTIETEISSÄ. Juha Hyyppä, Anna Salonen The Photogrammetrc Journal of Fnland, Vol. 22, No. 3, 2011 TUTKIMUKSEN VAIKUTTAVUUDEN MITTAAMINEN MAANMITTAUSTIETEISSÄ Juha Hyyppä, Anna Salonen Geodeettnen latos, Kaukokartotuksen ja fotogrammetran osasto

Lisätiedot

Eräs Vaikutuskaavioiden ratkaisumenetelmä

Eräs Vaikutuskaavioiden ratkaisumenetelmä Mat-2.142 Optmontopn semnaar, s-99 28.9. 1999 Semnaarestelmän referaatt Joun Ikonen Lähde: Ross D. Schachter: Evaluatng nfluence dagrams, Operatons Research, Vol 34, No 6, 1986 Eräs Vakutuskaavoden ratkasumenetelmä

Lisätiedot

AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN

AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN AMMATTIMAISTA KIINTEISTÖPALVELUA JO 50 VUODEN AJAN VUO-KIINTEISTÖPALVELUT 50 VUOTTA Vuosaarelaset asunto-osakeyhtöt perustvat vuonna 1965 Vuosaaren Isännötsjätomsto Oy:n, joka tuott omstajlleen kohtuuhntasa

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

Tietoa työnantajille 2010

Tietoa työnantajille 2010 Tetoa työnantajlle 2010 Ssältö Alkusanat 5 Sanasto 6 Maahanmuuttajan kotouttamnen 8 Faktat 9 Oleskeluluvat 10 Akusten maahanmuuttajen koulutusmahdollsuudet Kanuussa 11 Maahanmuuttaja työntekjänä 12 Maahanmuuttajen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

Harjoituksen pituus: 90min 3.10 klo 10 12

Harjoituksen pituus: 90min 3.10 klo 10 12 Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle

Lisätiedot

Suurivaltaisin, Armollisin Keisari ja Suuriruhtinas!

Suurivaltaisin, Armollisin Keisari ja Suuriruhtinas! 1907. Edusk. Krj. Suomen Pankn vuosrahasääntö. Suomen Eduskunnan alamanen krjelmä uudesta Suomen Pankn vuosrahasäännöstä. Suurvaltasn, Armollsn Kesar ja Suurruhtnas! Suomen Eduskunnan pankkvaltuusmehet

Lisätiedot

menetelmän laskennalliset tekniikat Epäkäyvän kantaratkaisun parantaminen

menetelmän laskennalliset tekniikat Epäkäyvän kantaratkaisun parantaminen Smpex-menetemän menetemän askennaset teknkat 8. ento: Prmaa-smpex S ysteemanayysn Laboratoro Teknnen korkeako Matemaattsten agortmen ohemont Kevät 8 / Epäkäyvän kantaratkasn parantamnen. vaheen yenen smpex-menetemä

Lisätiedot

porsche design mobile navigation ß9611

porsche design mobile navigation ß9611 porsche desgn moble navgaton ß9611 [ FIN ] Ssällysluettelo 1 Johdanto ------------------------------------------------------------------------------------------------ 07 1.1 Tästä käskrjasta ---------------------------------------------------------------------------------------------

Lisätiedot

Aukin vaalilehti 2015

Aukin vaalilehti 2015 Aukn vaalleht 2015 Petter Tahvananen 1 39 Jon Orava 1 34 Rtva Väyrynen 1 40 Kasa Korhonen 1 31 Mtä meltä olet keskuspankk rahotuksesta? Se on anoa mahdollsuus. Krouvs pressan vaalen akaan. Valton velka?

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat

Lisätiedot

Betoniteollisuus ry 18.2.2010 1 (43)

Betoniteollisuus ry 18.2.2010 1 (43) Betonteollsuus r 18.2.2010 1 (43) 2 Jäkstsjärjestelmät... 2 2.1 Rakennuksen jäkstssuunnttelun tehtävät... 4 Alustava jäkstssuunnttelu... 4 Jäkstksen mtotus murtorajatlassa... 6 Jäkstksen mtotus kättörajatlassa...

Lisätiedot

Uuden opettajan opas

Uuden opettajan opas Uuden opettajan opas Ssällys 1 Opettajan työn hakemnen 4 1.1 Kuka vo saada vaknasen opettajan pakan? 5 1.2 Ulkomalla suortetun tutknnon tunnustamnen 6 1.3 Kunka hakemus tehdään? 7 1.4 Ansoluettelo el currculum

Lisätiedot

Hakemikaoen on liitettävä asiakirja. Jolla valitsijayhdistys on

Hakemikaoen on liitettävä asiakirja. Jolla valitsijayhdistys on 5 bdokaelbtojen Ttedstalallt tl Valt8lJ«yhdlstyks«a MlMdehon ta tmnmn valtuuttankma vaalltoo ManahM tul««hak««ohdokaalstan ottaaata ehdokaslstojan ybdatelayn va«8t«mn MlJHkyMntM (40) pävmm «nnen ennl MlntM

Lisätiedot

Norjanmeri Norska havet. Suomi i Finland. Ruotsi Sverige. Norja Norge. Tanska Danmark. Itämeri Österjön. Liettua Litauen VENÄJÄ RYSSLAND.

Norjanmeri Norska havet. Suomi i Finland. Ruotsi Sverige. Norja Norge. Tanska Danmark. Itämeri Österjön. Liettua Litauen VENÄJÄ RYSSLAND. Barentsnmer Barents hav Islant Island Norjanmer Norska havet Euroopan unonn jäsenmaat ja lttymsvuodet Europeska unonens medlemsstater och anslutnngsår Atlantt Atlanten Portugal Portugal 1986 Espanja Spanen

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI n 2/2012 fo INMICSIN ASIAKASLEHTI 6-7 Dgtova kynä ja Joun Mutka: DgProfITn sovellukset pyörvät Inmcsn konesalssa. 4-5 HL-Rakentajen työmalle on vedettävä verkko 8-9 InHelp palvelee ana kun apu on tarpeen

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

Työllistääkö aktivointi?

Työllistääkö aktivointi? Jyväskylän ylopsto Matemaatts-luonnonteteellnen tedekunta Työllstääkö aktvont? Vakuttavuusanalyys havannovassa tutkmuksessa Elna Kokkonen tlastoteteen pro gradu tutkelma 31. elokuuta 2007 Tlastoteteen

Lisätiedot

VERKKO-OPPIMATERIAALIN LAATUKRITEERIT

VERKKO-OPPIMATERIAALIN LAATUKRITEERIT VERKKO-OPPIMATERIAALIN LAATUKRITEERIT Työryhmän raportt 16.12.2005 Monste 1/2006 Opetushalltus ja tekjät Tm Eja Högman ISBN 952-13-2718-9 (nd.) ISBN 952-13-2719-7 ISSN 1237-6590 Edta Prma Oy, Helsnk 2006

Lisätiedot

AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607

AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607 046.01.00 Rev.0607 D GB NL FIN Bedenungsanletung Operatng nstructons Gebruksaanwjzng Käyttöohje 3-10 11-18 19-26 27-34 120 Automaattnen pyörvä laser kallstustomnnolla: Itsetasaus vaakasuorassa tasossa

Lisätiedot

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta.

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta. VUOKRSOPMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALM Hallan Sauna Oy (y-tunnus: 18765087) CO Tl-Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde Hallan

Lisätiedot

3D-mallintaminen konvergenttikuvilta

3D-mallintaminen konvergenttikuvilta Maa-57.270, Fotogammetan, kuvatulknnan ja kaukokatotuksen semnaa 3D-mallntamnen konvegenttkuvlta nna Evng, 58394J 2005 1 Ssällysluettelo Ssällysluettelo...2 1. Johdanto...3 2. Elasa tapoja kuvata kohdetta...3

Lisätiedot

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä.

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä. VUOKRASOPIMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALMI Hallan Sauna Oy (y-tunnus: 18765087) CIO Tl- Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde

Lisätiedot

Täydelliset ja yksityiskohtaiset tiedot evästeistä

Täydelliset ja yksityiskohtaiset tiedot evästeistä Dgtal Control Room Lmted Apex Plaza, Forbury Road, Readng, RG1 1AX Unted Kngdom t: +44 20 7129 8113 www.dgtalcontorlroom.com Täydellset ja ykstyskohtaset tedot evästestä Verkkosvusto tarkastettu: Pävämäärä:

Lisätiedot

Maanhintojen vikasietoisesta mallintamisesta

Maanhintojen vikasietoisesta mallintamisesta Maanmttaus 8:-2 (2006) 5 Maanmttaus 8:-2 (2006) Saapunut 0.8.2005 ja tarkstettuna.4.2006 Hyväksytty 30.6.2006 Maanhntojen vkasetosesta mallntamsesta Marko Hannonen Teknllnen korkeakoulu, Kntestöopn laboratoro

Lisätiedot

Kraft Drift. Valkeat laivat ja Yhteisliikennevarustamo. Tre rederier blir De samseglande 1918. s. 20 23. Suomen Konepäällystöliiton julkaisu 2/2016

Kraft Drift. Valkeat laivat ja Yhteisliikennevarustamo. Tre rederier blir De samseglande 1918. s. 20 23. Suomen Konepäällystöliiton julkaisu 2/2016 Voma & Käyttö Kraft Drft Suomen Konepäällystölton julkasu 2/2016 Suomalasten te länteen II Valkeat lavat ja Yhteslkennevarustamo Fnländarnas väg västerut II Tre rederer blr De samseglande 1918 s. 20 23

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin

Reaaliarvoinen funktio f : on differentioituva pisteessä x, jos f:lle on siinä voimassa kehitelmä. h h. eli. Silloin MAT-3440 LAAJA MATEMATIIKKA 4 Tampereen teknllnen ylopsto Rsto Slvennonen Kevät 00 4. Vektorfunkton dervaatta. Ketjusääntö.. Reaalarvosen funkton dervaatta Tässä luvussa estetään dervaattakäste ensn reaalarvoselle

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

Pyörimisliike. Haarto & Karhunen.

Pyörimisliike. Haarto & Karhunen. Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat

Lisätiedot

Automaattinen 3D - mallinnus kalibroimattomilta kuvasekvensseiltä

Automaattinen 3D - mallinnus kalibroimattomilta kuvasekvensseiltä Maa-57.270 Fotogrammetran, kuvatulknnan ja kaukokartotuksen semnaar Automaattnen 3D - mallnnus kalbromattomlta kuvasekvensseltä Terh Ahola 2005 Ssällysluettelo 1 Johdanto...2 2 Perusteoraa...2 2.1 Kohteen

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

Sähkömarkkinoiden ennusteita

Sähkömarkkinoiden ennusteita RAPORTTI NRO 15/99 Sähkömarkknoden ennusteta Stefan Jakobsson, Juha Forsström, Göran oreneff TESLA-raportt nro 15/99 Sähkömarkknoden ennusteta Stefan Jakobsson VTT Automaato PL 1301, 02044 VTT puh. (09)

Lisätiedot