Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Taustaa. Sekventiaalinen vaikutuskaavio. Päätöspuista ja vaikutuskaavioista. Esimerkki: Reaktoriongelma. Johdantoa sekventiaalikaavioon"

Transkriptio

1 Taustaa Sekventaalnen vakutuskaavo Sekventaalnen päätöskaavo on 1995 ovalun ja Olven esttämä menetelmä päätösongelmen mallntamseen, fomulontn ja atkasemseen. Päätöspuun omnasuukssta Hyvää: Esttää eksplsttsest kakk päätösongelman skeenaot ja tapahtumen akajäjestyksen. Optmontopn semnaa - Syksy 1999 / 1 Optmontopn semnaa - Syksy 1999 / Päätöspusta ja vakutuskaavosta Huonoa: Muuttujen lukumäään kasvaessa puun koko kasvaa nopeast, se e sovellu jatkuven jakaumen esttämseen, ekä havannollsta ehdollsta ppumattomuutta. Vakutuskaavon omnasuukssta Hyvää: Kompakt estys, havannollstaa ehdollsa ppumattomuuksa, soveltuu sekä dskeettehn että jatkuvn pobleemn, on käytännöllnen mallntamsvaheessa, koska ptovaheessa e ole tapeen tuntea kakka ealsaatota. Optmontopn semnaa - Syksy 1999 / 3 Huonoa: Tapahtumen akajäjestys e selvä kaavosta, ekä paljasta epäsymmetsssä ongelmssa mona ongelman ptetä. Esm. kavosta e käy lm, jos kaks tettyä tapahtumaa evät vo koskaan toteutaua samassa skenaaossa. Vakutuskaavon puutteden kojaamseks tehdään sekventaalkaavo vakutuskaavon nnalle. Sekventaalnen vakutuskaavon unko koostuu uudesta gaafsta sekventaalkaavosta, vakutuskaavosta ja datataulukosta. Optmontopn semnaa - Syksy 1999 / 4 Johdantoa sekventaalkaavoon Sekventaalsen vakutuskaavon omnasuukssta: Sälyttää kompaktsuuden ja vakutuskaavon hyvät omnasuudet, mutta huomo päätösongelman epäsymmetsyydet ja tallentaa päätösongelman datan mahdollsmman tehokkaast. Optmontopn semnaa - Syksy 1999 / 5 Esmekk: Reaktoongelma Ongelmana on tehdä päätös stä akennetaanko uus ydneakto. Päätettäessä akentamsesta myöntesest on lsäks valttava tavallsen eaktotyypn(c) ja edstyksellsen eaktotyypn välllä (a). a:han ltyvät skt ovat suuemmat, mutta vastaavast pojektn onnstumnen tuo suuemman voton. Lsäks a:han lttyvä skejä vodaan tutka (sattumasolmu T), mutta testt maksavat. Tavotteena on maksmoda taloudellnen nettovotto (odotusavo). Ongelma koostuu kahdesta päätössolmusta ja kolmesta sattumasolmusta: D 1 (vahtoehdot: dn = do nothng, nt = not test, t = test), D (c, a), T(e = excellent, g = good, b = bad), (s = success, f = falue) ja (s, m = majo, l = lmted). Optmontopn semnaa - Syksy 1999 / 6 1

2 Sekventaalnen vakutuskaavo gaafsest Sattumasolmut ja kuvaavat valmstuneen eakton tommsta. Pobleemassa on velä asetettu sellanen lsäehto, että testtuloksen ollessa T = bad, eaktoa a e akenneta. Vetalun vuoks päätöspuu (lman dataa). D 1 T D D D D Optmontopn semnaa - Syksy 1999 / 7 Vakutuskaavo: Sekventaalkaavo: D 1 D T V dn a, T b 1 D 1 nt D 3 t c T 5 4 V 6 Optmontopn semnaa - Syksy 1999 / 8 Huomota vakutuskaavosta Mtä vakutuskaavo esmekks ketoo ongelman todellsesta luonteesta ja mtä e? on ppumaton T:n ealsaatosta (Tämä sekka e näy suoaan päätöspuusta). E paljasta, että tapahtumaa T e välttämättä ole, ja sllon D tehdään lman tetoa T:stä. na van tonen tapahtumsta ta toteutuu. Päätös :ta e välttämättä ole ta ppuen T:stä se vo olla degeneotunut. Ongelmat aheutuvat asymmetsyydestä (todellsa tapahtumaskenaaota on van 5 symmetsen edellyttämän 108:n sjasta). Optmontopn semnaa - Syksy 1999 / 9 Sekventaalsen gaafn omnasuuksa Samat muuttujat (solmut) kun vakutuskaavossa Suunnatut kaaet esttävät kakka mahdollsa tapahtumasekvenssejä. Ulostulon haaautumnen johtuu stä, että ealsaatotuloksesta ppuen joudutaan seuaavaks e solmuun. Solmut ndeksodaan 1,,N. Sekventaalkaavo atkasee edellä kuvatut vakutuskaavon epäsymmetsyysongelmat. Vakutuskaavota tavtaan kutenkn nnalla, koska se paljastaa ehdollset ppuvuudet (kaaet sattumasolmujen välllä). Optmontopn semnaa - Syksy 1999 / 10 Johdatusta fomulontn Sekventaalnen vakutuskaavo e ole kutenkaan pelkkä päätösongelman malltusmuoto, ja täsmällseen fomulontn tavtaan jonkn vean uutta ja vanhaa temnologaa (kuten solmun seuaajen, välttömen seuaajen ja edeltäjen kästteet). Mektään H :llä solmuhstoaa el se ketoo kunka solmuun ollaan päädytty H on kaksvnen mats, jonka ensmmäsellä vllä on edellsten solmujen ndekst ja tosella vllä vastaavat ealsaatoavot esm. solmulla 4 vo olla seuaavanlanen hstoa. 1 3 H 4 = t b c Optmontopn semnaa - Syksy 1999 / 11 Fomulonnsta Fomulonnssa kakk hstoat standadodaan, mkä takottaa stä, että kakk solmun edeltäjät lsätään solmuhstoaan, mutta mkäl jossan solmun edeltäjässä e yksttäsessä hstoassa ole käyty kovataan H matsssa tosen vn alko vvalla. Datataulukossa jokaselle solmulle määtetään neljä solmufunktota: solmuavauusfkt, todennäkösyysjakaumafkt, seuaavasolmufkt ja ealsaaton palautusfkt. Optmontopn semnaa - Syksy 1999 / 1

3 Solmuavauusfunkto (node space functon) Mektään Ω :llä, joka on ss H :n funkto. Esm. Ω 1 ={dn, dt, t}. Otetaan käyttöön käste funkton mnmaalnen solmujoukko M(), joka on solmufunkton penn solmujen ndeksjoukko, joka ttää täydellseen fkt:n määttelyyn. Esm. M Ω (3) = {}, koska tosen päätöksen päätösavauus ppuu testn tuloksesta. Tosaalta kun 3 M Ω () =. Todennäkösyysjakaumafunkto Määtellään ehdollnen tn-jakaumafkt sattumasolmulle ja mektään stä f ( H ). ( takottaa ealsaatota solmussa ). Kuten edellä määtellään fuktolle mnmaalnen solmujoukko M f (). Esmekks M f (5) = {} ja M f () =. M f () löydetään vakutuskaavosta sattumasolmun välttömen edeltäjen joukkona. Optmontopn semnaa - Syksy 1999 / 13 Optmontopn semnaa - Syksy 1999 / 14 Seuaavasolmufunkto (next node functon) n (H, ) on sen solmun ndeks, joka ealsotuu solmun jälkeen. Määtellään myös funkton mnmsolmujoukko M n (). Esmekks n 1 (t) =, n 3 (H 3, c) = 4, M n (3) = {}, M n () =, kun 3. Optmontopn semnaa - Syksy 1999 / 15 Realsaatonpalautusfukto ja avofunkton hajotelma Palauttaa päätös-sattumaskenaaon avon ja mektään v (H, ). Hyödyllnen van jos ongelma on luonteeltaan addtvnen, jollon avofunkton avo vodaan hajottaa solmukohtasest kuten eaktoesmekssä, jossa esm. v 3 (H 3, a) = -4 H 3, jolla a on mahdollnen. Mnmaalnen solmujoukko mektään M v (), joka ss esmekssä on. vofunkton hajottamnen säästää tlaa ja nopeuttaa pobleeman laskentaa mekttäväst, mutta tetystkään dekompostota e voda kakssa tapauksssa tehdä. Optmontopn semnaa - Syksy 1999 / 16 Mnmaalnen solmuhstoa Määtelmä: Solmuhstoa solmussa on mnmaalnen (mektään m H ), jos se ssältää seuaavan solmujoukon: D,, M ( ) h h { Ω, n, v) U U M ( ) h h { f, n, v) = N, jos avofunkt o on hajotettu, muuten Pl ( N ), mkä takotta a vakutusk aavon avosolmun välttömä edeltäjä Optmontopn semnaa - Syksy 1999 / 17 Mnmhstoosta Mnmhstoaan keätään van ne standadodut hstoat, jolla on vakutusta solmun solmufunktohn. Takotuksena on päästä eoon degeneaatosta laskennan tehostamseks ja tlan säästämseks. Datataulukkoon tulevat seuaavat kentät: solmun nm, ndeks, tyypp, mnmhstoat, solmuavauusfkt, ealsaatonpalautusfkt, todennäkösyysjakaumafkt ja seuaavasolmufkt. Jokaselle solmulle ja sen mnmhstoolle talletetaan ylläoleva data. Optmontopn semnaa - Syksy 1999 / 18 3

4 Esmekn datataulukko (hajotetun avofunkton tapauksessa) Nod Ind. Type H m Ω (H m) v(h m,) f( H m ) n(h m, ) D1 1 Dec dn nt t T ha b g e D 3 Dec /- c a /g /e /b c ha s f ha /- s l m /g /e V 6 Val 0 0 Optmontopn semnaa - Syksy 1999 / 19 Ratkasun peaatteet Ratkastaan sekventaalkaavo ekusvsest takapen. Otetaan käyttöön notaato hyödyn odotusavolle solmussa ehdolla H, jos solmussa ja stä eteenpän tehdään optmpäätökset: w (H ) E[u H ]. Ratkasun ekusokaava saadaan toseen seuaavsta muodosta ppuen stä onko avofunkto hajotettu: Optmontopn semnaa - Syksy 1999 / 0 Ratkasun ekusokaavat max w n (H, )(H, ), D O (H ) w (H ) = w n (H, )(H, )df ( H ), O (H ) u(g(hn )), = N max {v (H, ) + w (H, )}, D O (H ) n (H, ) w (H ) = [v (H,) + w (H, )]df ( H ), n (H, ) O (H, ) 0, = N Optmontopn semnaa - Syksy 1999 / 1 ekusokaavossa. Rekusokaavosta Huomotavaa kaavossa on se, että kakk standadodut hstoat ols tutkttava. Läpkäytäven hstooden määää haluttaan vähentää. Tämä onnstuu hyödyntämällä datataulukossa oleva mnmaalsa hstoota. Kutenkaan mnmhstoolla e voda suoaan kovata standadotuja hstoota Optmontopn semnaa - Syksy 1999 / Relevantt hstoat Tämä johtuu ss stä, että laskettaessa hyödyn odotusavoa solmussa tehdään ekusokaavassa vttauksa välttömen jälkelästen optmaalsn odotusavohn ja tätä kautta näden mnmhstoohn. Nämä mnmhstoat saatavat ssältää solmuja, jotka kuuluvat :n edeltäjn, mutta evät :n mnmhstoohn. Ratkasualgotm laskeekn datataulukon mnmhstooden ja seuaavasolmujen peusteella ns. elevantt hstoat solmulle, jotka muodostavat penmmän mahdollsen hstoajoukon, joka ttää atkasun määäämseen. Optmontopn semnaa - Syksy 1999 / 3 Relevantten hstooden löytämsestä Relevantt hstoat löydetään käymällä läp sekventaalkaavossa solmut ekusvsest sellasessa jäjestyksessä, että ana otetaan kästtelyyn solmu, jolla e ole seuaaja, ja lsätään sen elevanttehn hstoohn sen välttömen jälkelästen elevantt hstoat. Lopuks kästelty solmu ja shen tulevat kaaet tuhotaan. Optmontopn semnaa - Syksy 1999 / 4 4

5 Yhteenveto Sekventaalsen vakutuskaavon takotus on olla mahdollsmman kompakt ja havannollnen menetelmä (epäsymmetsten) päätösongelmen atkasuun. Se soveltuu (gaafseen) mallntamseen, täsmällseen fomulontn ja fomulonnn jälkeen automaattseen atkasemseen (tetokoneella). Optmontopn semnaa - Syksy 1999 / 5 Kottehtävä Johdatusta: Sekventaalsen vakutuskaavon automaattsen atkasemsen edellytyksenä on fomuloda pobleeman data täsmällseen muotoon. Kästteet standadodut-, mnm- ja elevantt hstoat ovat oleellnen osa fomulonta ja atkasualgotmn tomntaa. Kysymys ) Kakk seuaavan kalvon hstoat lttyvät eaktoesmekn solmuun 3 (avofunkto ajatellaan hajotetuks tässä esmekssä). Mutta mkä joukosta muodostaa solmun 3 standadodut hstoat, mkä mnmhstoat ja mkä elevantt hstoat? Optmontopn semnaa - Syksy 1999 / 6 = {H[ B = {H[ = {H[ Kottehtävä jatkuu e e nt t g t e t b Kysymys ) Kohdassa ) joukot ja B olvat yhtä suua. Mtä vot ylesest sanoa standadotujen-, mnmhstooden- ja elevantten hstooden lukumäääsuhtesta tosnsa nähden (ss onko joku joukosta penn ja joku son jne )? g g b b Optmontopn semnaa - Syksy 1999 / 7 5

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä

Tavoitteet skaalaavan funktion lähestymistapa eli referenssipiste menetelmä Tavotteet skaalaavan funkton lähestymstapa el referensspste menetelmä Optmontopn semnaar - Kevät 2000 / 1 Estelmän ssältö Panotetun metrkan ongelmen havatsemnen Referensspste menetelmän dean esttely Referensspste

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Tchebycheff-menetelmä ja STEM Optmontopn semnaar - Kevät 2000 / 1 1. Johdanto Tchebycheff- ja STEM-menetelmät ovat vuorovakuttesa menetelmä evät perustu arvofunkton käyttämseen pyrkvät shen, että vahtoehdot

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.4 Lneaarnen ohelmont 8..7 Luento 6 Duaaltehtävä (kra 4.-4.4) S ysteemanalyysn Lneaarnen ohelmont - Syksy 7 / Luentorunko Motvont Duaaltehtävä Duaalteoreemat Hekko duaalsuus Vahva duaalsuus Täydentyvyysehdot

Lisätiedot

Eräs Vaikutuskaavioiden ratkaisumenetelmä

Eräs Vaikutuskaavioiden ratkaisumenetelmä Mat-2.142 Optmontopn semnaar, s-99 28.9. 1999 Semnaarestelmän referaatt Joun Ikonen Lähde: Ross D. Schachter: Evaluatng nfluence dagrams, Operatons Research, Vol 34, No 6, 1986 Eräs Vakutuskaavoden ratkasumenetelmä

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Epätäydelliset sopimukset

Epätäydelliset sopimukset Eätäydellset somukset Matt Rantanen 15.4.008 ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 16 Matt Rantanen Otmonton semnaar - Kevät 008 Estelmän ssältö Eätäydellset somukset ja omstusokeus alanén

Lisätiedot

3.5 Generoivat funktiot ja momentit

3.5 Generoivat funktiot ja momentit 3.5. Generovat funktot ja momentt 83 3.5 Generovat funktot ja momentt 3.5.1 Momentt Eräs tapa luonnehta satunnasmuuttujan jakaumaa, on laskea jakauman momentt. Ne määrtellään odotusarvon avulla. Määrtelmä

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä.

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 7: Lagrangen kertojat. Pienimmän neliösumman menetelmä. MS-A0205/MS-A0206 Dfferentaal- ja ntegraallaskenta 2 Luento 7: Lagrangen kertojat. Penmmän nelösumman menetelmä. Jarmo Malnen Matematkan ja systeemanalyysn latos 1 Aalto-ylopsto Kevät 2016 1 Perustuu Antt

Lisätiedot

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut)

Markov-prosessit (Jatkuva-aikaiset Markov-ketjut) J. Vrtamo Lkenneteora a lkenteenhallnta / Markov-prosesst 1 Markov-prosesst (Jatkuva-akaset Markov-ketut) Tarkastellaan (statonaarsa) Markov-prosessea, oden parametravaruus on atkuva (yleensä aka). Srtymät

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

6. Stokastiset prosessit (2)

6. Stokastiset prosessit (2) Ssältö Markov-prosesst Syntymä-kuolema-prosesst luento6.ppt S-38.45 - Lkenneteoran perusteet - Kevät 6 Markov-prosess Esmerkk Tark. atkuva-akasta a dskreetttlasta stokaststa prosessa X(t) oko tla-avaruudella

Lisätiedot

Aamukatsaus 13.02.2002

Aamukatsaus 13.02.2002 Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

AB TEKNILLINEN KORKEAKOULU

AB TEKNILLINEN KORKEAKOULU B TEKNILLINEN KORKEKOULU Tetoverkkolaboratoro luento05.ppt S-38.45 - Lkenneteoran perusteet - Kevät 00 Ssältö eruskästteet Dskreett satunnasmuuttujat Dskreett jakaumat lkm-jakaumat Jatkuvat satunnasmuuttujat

Lisätiedot

SISÄLLYS. N:o 1138. Valtioneuvoston asetus. terveydenhuollon oikeusturvakeskuksesta annetun asetuksen eräiden säännösten kumoamisesta

SISÄLLYS. N:o 1138. Valtioneuvoston asetus. terveydenhuollon oikeusturvakeskuksesta annetun asetuksen eräiden säännösten kumoamisesta SUOMEN SÄÄDÖSKOKOELMA 2000 ulkastu Helsngssä 22 päänä joulukuuta 2000 N:o 1138 1143 SISÄLLYS N:o Su 1138 altoneuoston asetus teeydenhuollon okeustuakeskuksesta annetun asetuksen eäden säännösten kumoamsesta...

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

Yleistä. Teräsrakenteiden liitokset. Liitos ja kiinnitys

Yleistä. Teräsrakenteiden liitokset. Liitos ja kiinnitys Ylestä Teäsakenteden ltokset (EC3-1-8, EC3-1-8-NA) Teäsakenteden lttämsessä tosnsa vodaan käyttää seuaava menetelmä: uuv-, ntt- ja nveltappltokset htsausltokset lmaltokset Ltos ja knntys Ltosta asttavan

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

3 Tilayhtälöiden numeerinen integrointi

3 Tilayhtälöiden numeerinen integrointi 3 Tlayhtälöden numeernen ntegront Alkuarvotehtävässä halutaan ratkasta lopputla xt f ) sten, että tlayhtälöt ẋ = fx,u, t) toteutuvat, kun alkutla x 0 on annettu Tlayhtälöden numeernen ntegront vodaan suorttaa

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paper -harjotukset Tana Lehtnen 8.8.07 Tana I Lehtnen Helsngn ylopsto Etelä-Suomen ja Lapn lään, 400 opettajaa a. Perusjoukon (populaaton) muodostvat kakk Etelä-Suomen ja Lapn läänn peruskoulun opettajat

Lisätiedot

Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Yrityksen teoria. Lari Hämäläinen S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Yrtyksen teora Lar Hämälänen.1.003 Yrtys Organsaato, joka muuttaa tuotantopanokset tuotteks ja tom tehokkaammn kun sen osat erllään Yrtys tenaa rahaa myynthnnan sekä ostohnnan ja aheutuneden kustannuksen

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 3.9.2007 Luento Johdanto (krja.-.4) S ysteemanalyysn Laboratoro eknllnen korkeakoulu Eeva Vlkkumaa Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Hstoraa Lneaarnen optmonttehtävä

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

4. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 4. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7..008 Thomas Hackman 4. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 4. Tähtteteellsten

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15

A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15 A50A000 Fnanss-nvestonnt Hajotukset 4.03.5 ehtävä. akknapotolon keskhajonta on 9 %. Laske alla annettujen osakkeden ja makknapotolon kovaanssen peusteella osakkeden betat. Osake Kovaanss A 40 B 340 C 60

Lisätiedot

1, x < 0 tai x > 2a.

1, x < 0 tai x > 2a. PHYS-C020 Kvanttmekankka Laskuharotus 2, vkko 45 Tarkastellaan ptkn x-aksela lkkuvaa hukkasta, onka tlafunkto on (x, t) Ae x e!t, mssä A, a! ovat reaalsa a postvsa vakota a) Määrtä vako A sten, että tlafunkto

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.340 Lneaarnen ohjelmont 22..2007 Luento 0 Ssäpstemenetelmät ja kokonaslukuoptmont (krja 0.-0.4) Ssäpstemenetelmät luvut 8 ja 9, e tarvtse lukea Lneaarnen ohjelmont - Syksy 2007 / Luentorunko Sananen

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

Tuotteiden erilaistuminen: hintakilpailu

Tuotteiden erilaistuminen: hintakilpailu Tuotteden erlastumnen: hntaklalu Lass Smlä 19.03.003 Otmonton semnaar - Kevät 003 / 1 Johdanto Yrtykset evät yleensä halua tuottaa saman tuoteavaruuden tlan täyttävä tuotteta (syynä Bertrandn aradoks)

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä.

Hyrynsalmen kunta, jäljempänä kunta. Laskutie 1, 89400 HYRYNSALMI. Kohde sijaitsee Hallan Sauna- nimisessä kiinteistössä. VUOKRASOPIMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALMI Hallan Sauna Oy (y-tunnus: 18765087) CIO Tl- Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde

Lisätiedot

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet Vestntäjärjestelmät PRS-xPxxx- ja -tehovahvstmet PRS-xPxxx- ja - tehovahvstmet www.boschsecrty.f 1, 2, 4, ta 8 äänlähtöä (valnta 100 / 70 / 50 V:n lähdöstä) Äänenkästtely ja jokasen vahvstnkanavan vve

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekankan jatkokurss Fys102 Syksy 2009 Jukka Maalamp LUENTO 2 Alkuverryttelyä Vääntömomentt Oletus: Vomat tasossa, joka on kohtsuorassa pyörmsaksela vastaan. Oven kääntämseen tarvtaan er suurunen voma

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp. PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte

Lisätiedot

Suurivaltaisin, Armollisin Keisari ja Suuriruhtinas!

Suurivaltaisin, Armollisin Keisari ja Suuriruhtinas! 1907. Edusk. Krj. Suomen Pankn vuosrahasääntö. Suomen Eduskunnan alamanen krjelmä uudesta Suomen Pankn vuosrahasäännöstä. Suurvaltasn, Armollsn Kesar ja Suurruhtnas! Suomen Eduskunnan pankkvaltuusmehet

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman

5. Datan käsittely lyhyt katsaus. Havaitsevan tähtitieteen peruskurssi I, luento Thomas Hackman 5. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento 7.4.006 Thomas Hackman 5. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus Akasarja-anals 5. Tähtteteellsten

Lisätiedot

Webbihaku /indeksointi

Webbihaku /indeksointi Tedonhakumenetelmät Helsngn ylopsto/ TKTL, k 2014 Webbhaku Tedonhakumenetelmät Hakuobott (cawle) Indeksoja Indekst Manosndekst Webbhaku /ndeksont Hakukone Hae 1 2 Hakuobott Robotn elämää Hakuobotn (cawle,

Lisätiedot

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely)

Epälineaaristen pienimmän neliösumman tehtävien ratkaiseminen numeerisilla optimointimenetelmillä (valmiin työn esittely) Epälneaarsten penmmän nelösumman tehtäven ratkasemnen numeerslla optmontmenetelmllä valmn työn esttely Lar Pelkola 9.9.014 Ohjaaja/valvoja: Prof. Harr Ehtamo yön saa tallentaa ja julkstaa Aalto-ylopston

Lisätiedot

Moraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä

Moraalinen uhkapeli: N:n agentin tapaus eli moraalinen uhkapeli tiimeissä Moraalnen uhkapel: N:n agentn tapaus el moraalnen uhkapel tmessä Mat-2.4142 Optmontopn semnaar Ismo Räsänen 4.3.2008 S ysteemanalyysn Laboratoro Teknllnen korkeakoulu Estelmä 11 - Ismo Räsänen Optmontopn

Lisätiedot

Kanoniset muunnokset

Kanoniset muunnokset Kanonset muunnokset Koordnaatstomuunnokset Lagrangen formalsmssa pstemuunnoksa: Q = Q (q, t) nopeudet saadaan nästä dervomalla Kanonnen formalsm: p:t ja q:t samanarvosa 2n-ulottesen faasavaruuden muuttuja

Lisätiedot

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli

9. Jakojärjestelmät. Sisältö. Puhdas jakojärjestelmä. Yksinkertainen liikenneteoreettinen malli Ssältö Kertausta: ykskertae lkeeteoreette mall M/M/-PS asakasta palvelja asakaspakkaa M/M/-PS asakasta palveljaa asakaspakkaa Sovellus elastse datalketee malltamsee vuotasolla M/M//k/k-PS k asakasta palvelja

Lisätiedot

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi

Paperikoneiden tuotannonohjauksen optimointi ja tuotefokusointi TEKNILLINEN KORKEAKOULU Teknllsen fyskan koulutusohjelma ERIKOISTYÖ MAT-2.108 Sovelletun matematkan erkostyöt 22.4.2003 Paperkoneden tuotannonohjauksen optmont ja tuotefokusont Jyrk Maaranen 38012p 1 Ssällysluettelo

Lisätiedot

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät

Painokerroin-, epsilon-rajoitusehtoja hybridimenetelmät Panokerron-, epslon-rajotusehtoja hybrdmenetelmät Optmontopn semnaar - Kevät 000 / Estelmän ssältö Ylestä jälkkätespreferenssmenetelmstä Panokerronmenetelmä Epslon-rajotusehtomenetelmä Hybrdmenetelmä Esmerkkejä

Lisätiedot

Muuttujien välisten riippuvuuksien analysointi

Muuttujien välisten riippuvuuksien analysointi Mat-.4 Tlastollse aalyys peusteet, kevät 7 5. lueto: Tlastolle ppuvuus ja koelaato Muuttuje välste ppuvuukse aalysot Tlastollsssa aalyysessä tutktaa use muuttuje välsä ppuvuuksa Työttömyysastee ppuvuus

Lisätiedot

S ATM- JA MULTIMEDIASEMINAARI, KEVÄT -97

S ATM- JA MULTIMEDIASEMINAARI, KEVÄT -97 S-38.201 ATM- JA MULTIMEDIASEMINAARI, KEVÄT -97 9(3LQPQVWU#6/XGTMQPNKKMGPVGGPJCNNKPPCUUC Sampsamatt Tanne S 41820b Sampsamatt.Tanne@hut.f TIIVISTELMÄ 2 1. JOHDANTO 2 2. REILU JONOTUS - ALGORITMEJA 2 2.1.

Lisätiedot

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen

Ilmari Juva. Jalkapallo-ottelun lopputuloksen stokastinen mallintaminen Ilmar Juva 45727R Mat-2.108 Sovelletun matematkan erkostyö Jalkaallo-ottelun loutuloksen stokastnen mallntamnen 1 Johdanto Jalkaallo-ottelun loutuloksen mallntamsesta tlastollsn ja todennäkösyyslaskun

Lisätiedot

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1] Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord

Lisätiedot

VERKKOJEN MITOITUKSESTA

VERKKOJEN MITOITUKSESTA J. Vrtamo 38.3141 Telelkenneteora / Verkon mtotus 1 VERKKOJEN MITOITUKSESTA 1. Prkytkentäset verkot Lnkken kapasteetten (johtoja/lnkk) määräämnen sten, että verkon kokonaskustannukset mnmotuvat, kun päästä-päähän

Lisätiedot

Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 )

Käytetään säteille kompleksiesitystä. Tuleva säde on Ee 0 iw t ja peräkkäisiä heijastuneita säteitä kuvaaviksi esityksiksi saadaan kuvasta: 3 ( 2 ) 58 Yhtälön (0.4.) mukaan peräkkästen hejastuneen säteen optnen matkaero on D= n tcosqt ja vahe-eroks tulee (kun r = 0) p = kd= D. (.3.) l ässä on huomattava, että hejastuksssa tapahtuvat mahollset p :

Lisätiedot

4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino

4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Yritysten ja kuluttajien välinen tasapaino 4. MARKKINOIDEN TASAPAINOTTUMINEN 4.. Tasapanoperaate 4... Yrtysten ja kuluttajen välnen tasapano Näkymätön käs muodostuu kahdesta vakutuksesta: ) Yrtysten voton maksmont johtaa ne tuottamaan ntä hyödykketä,

Lisätiedot

3D-mallintaminen konvergenttikuvilta

3D-mallintaminen konvergenttikuvilta Maa-57.270, Fotogammetan, kuvatulknnan ja kaukokatotuksen semnaa 3D-mallntamnen konvegenttkuvlta nna Evng, 58394J 2005 1 Ssällysluettelo Ssällysluettelo...2 1. Johdanto...3 2. Elasa tapoja kuvata kohdetta...3

Lisätiedot

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden

Lisätiedot

Pyörimisliike. Haarto & Karhunen.

Pyörimisliike. Haarto & Karhunen. Pyörmslke Haarto & Karhunen www.turkuamk.f Pyörmslke Lttyy jäykän kappaleen pyörmseen akselnsa ympär Pyörmsenerga on pyörmsakseln A ympär pyörvän kappaleen osasten lke-energoden summa E r Ek mv mr mr www.turkuamk.f

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

Tomita-tyylisistä yleistetyistä LR-jäsentäjistä. Jaakko Korpela

Tomita-tyylisistä yleistetyistä LR-jäsentäjistä. Jaakko Korpela Tomta-tyylsstä ylestetystä LR-jäsentäjstä Jaakko Korpela Tampereen ylopsto Tetojenkästtelyteteden latos Tetojenkästtelyopp Pro gradu -tutkelma Marraskuu 2004 Tampereen ylopsto Tetojenkästtelyteteden latos

Lisätiedot

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k. Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n

Lisätiedot

Segmentointimenetelmien käyttökelpoisuus

Segmentointimenetelmien käyttökelpoisuus Metsäteteen akakauskrja t e d o n a n t o Rasa Sell Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa Rasa Sell Sell, R. 00. Segmentontmenetelmen käyttökelposuus ennakkokuvonnssa. Metsäteteen akakauskrja

Lisätiedot

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen

Sähkökiukaan kivimassan vaikutus saunan energiankulutukseen LAPPEENRANNAN ENILLINEN YLIOPISO eknllnen tedekunta LU Energa Sähkökukaan kvmassan vakutus saunan energankulutukseen Lappeenrannassa 3.6.009 Lass arvonen Lappeenrannan teknllnen ylopsto eknllnen tedekunta

Lisätiedot

7. Keko. Tarkastellaan vielä yhtä tapaa toteuttaa sivulla 162 määritelty tietotyyppi joukko

7. Keko. Tarkastellaan vielä yhtä tapaa toteuttaa sivulla 162 määritelty tietotyyppi joukko 7. Keko Tarkastellaan velä yhtä tapaa toteuttaa svulla 6 määrtelty tetotyypp joukko Tällä kertaa emme kutenkaan toteuta normaala operaatovalkomaa, vaan olemme knnostuneta anoastaan kolmesta operaatosta:

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

VAIKKA LAINAN TAKAISIN MAKSETTAVA MÄÄRÄ ON SEN NIMELLISARVO, SIJOITTAJA VOI MENETTÄÄ OSAN MERKINTÄHINNASTA, JOS LAINA ON MERKITTY YLIKURSSIIN

VAIKKA LAINAN TAKAISIN MAKSETTAVA MÄÄRÄ ON SEN NIMELLISARVO, SIJOITTAJA VOI MENETTÄÄ OSAN MERKINTÄHINNASTA, JOS LAINA ON MERKITTY YLIKURSSIIN DANSKE BANK A/S 2017: NOUSEVA KIINA Lanakohtaset ehdot A. Sopmusehdot Nämä lanakohtaset ehdot muodostavat yhdessä 28.6.2012 pävättyyn sekä 8.8.2012, 5.11.2013 ja 13.2.2013 täydennettyyn ohjelmaestteeseen

Lisätiedot

Kollektiivinen korvausvastuu

Kollektiivinen korvausvastuu Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...

Lisätiedot

VIHDIN KUNTA TOIMEENTULOTUKIHAKEMUS 1(5) PERUSTURVAKESKUS Perhehuolto

VIHDIN KUNTA TOIMEENTULOTUKIHAKEMUS 1(5) PERUSTURVAKESKUS Perhehuolto VIHDIN KUNTA TOIMEENTULOTUKIHAKEMUS 1(5) PERUSTURVAKESKUS Perhehuolto Hakemus kuulle 200 (Vranomanen täyttää) Hakemus saapunut/jätetty / 200 Henklötedot hakjasta ja hänen perheenjäsenstä Sukunm ja etunmet

Lisätiedot

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ

d L q i = V = mc 2 q i 1 γ = = p i. = V = γm q i + QA i. ṗ i + Q A i + Q da i t + j + V + Q φ TTKK/Fyskan latos FYS-1640 Klassnen mekankka syksy 2009 Laskuharjotus 5, 16102009 1 Ertysessä suhteellsuusteorassa Lagrangen funkto vodaan krjottaa muodossa v L = m 2 u t 1! ṙ 2 V (r) Osota, että tämä

Lisätiedot

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI n 2/2012 fo INMICSIN ASIAKASLEHTI 6-7 Dgtova kynä ja Joun Mutka: DgProfITn sovellukset pyörvät Inmcsn konesalssa. 4-5 HL-Rakentajen työmalle on vedettävä verkko 8-9 InHelp palvelee ana kun apu on tarpeen

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Vahtosähkön teho hetkellnen teho p(t) pätöteho P losteho Q näennästeho S kompleksnen teho S HETKELLINEN TEHO Kn veresen kvan mpedanssn Z jännte ja vrta (tehollsarvon osottmet)

Lisätiedot

LIGNIININ RAKENNE JA OMINAISUUDET

LIGNIININ RAKENNE JA OMINAISUUDET 16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu

Lisätiedot

SU/Vakuutusmatemaattinen yksikkö (5)

SU/Vakuutusmatemaattinen yksikkö (5) SU/Vakuutusmatemaattnen ykskkö 0..06 (5) Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä laskentakaavoja sovelletaan täydennyskertomen,

Lisätiedot

Palkanlaskennan vuodenvaihdemuistio 2014

Palkanlaskennan vuodenvaihdemuistio 2014 Palkanlaskennan vuodenvahdemusto 2014 Pkaohje: Tarkstettavat asat ennen vuoden ensmmästä palkanmaksua Kopo uudet verokortt. Samat arvot kun joulukuussa käytetyssä, lman kumulatvsa tetoja. Mahdollsest muuttuneet

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

Venymälle isotermisessä tilanmuutoksessa saadaan AE AE

Venymälle isotermisessä tilanmuutoksessa saadaan AE AE S-11435, Fyskka III (ES) Tntt 75 1 Stsmän tunnstttavssa olvaa hukkasta on jakautunut kahdll nrgatasoll Ylm taso on dgnrotumaton ja sn nrga on 1, mv korkam kun almman tason, joka uolstaan on dgnrotunut

Lisätiedot

6. Capital Asset Pricing Model

6. Capital Asset Pricing Model 6. Captal Asset cg odel Ivestotpäätökset edustavat use seuaava ogelmatyyppejä:. te sjotuspotolo kaattaa aketaa? vt. kassavtoje täsmääme ks. lueto 3. kä o sjotuskohtee okea hta? vt. abtaasvapaus jvk-hottelu

Lisätiedot

Jäykän kappaleen liike

Jäykän kappaleen liike aananta 9.9.014 1/17 Jäykän kappaleen lke Tähän ast tarkasteltu massapstemekankkaa : m, r, v Okeast fyskaalset systeemt ovat äärellsen kokosa, esm. jäykät kappaleet r r j = c j =vako, j elastset kappaleet

Lisätiedot

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike Suom USER GUIDE YLEISKATSAUS LATAAMINEN KIINNITTÄMINEN KÄYTÖN ALOITTAMINEN TIETOJEN SYNKRONOINTI NÄYTTÖTILAT AKTIIVISUUSMITTARI UNITILA TAVOITTEET MUISTUTUKSET TEKNISET TIEDOT 6 8 10 12 16 18 20 21 22

Lisätiedot

KOKONAISRATKAISUT YHDESTÄ PAIKASTA

KOKONAISRATKAISUT YHDESTÄ PAIKASTA KOKONAISRATKAISUT YHDESTÄ PAIKASTA Monpuolset järjestelmät varastontn ja tuotantoon TUOTELUETTELO 2009 Kappale D Varasto- ja hyllystövältasot vältasot optmaalsta tlankäyttöä varten SSI SCHÄFER: n varasto-

Lisätiedot

Äärellisten ryhmien hajotelmat suoriksi tuloiksi

Äärellisten ryhmien hajotelmat suoriksi tuloiksi TAMPEREEN YLIOPISTO Pro gradu -tutkelma Vel-Matt Nemnen Äärellsten ryhmen hajotelmat suorks tuloks Informaatoteteden ykskkö Matematkka Kesäkuu 2016 Tampereen ylopsto Informaatoteteden ykskkö NIEMINEN,

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Mat-2.142 Optmontopn semnaar K-2000 Montavoteopmont Semnaarestelmän tvstelmä Pentt Säynätjo 22.3.2000 Tchebycheff-menetelmä ja STEM 1. Johdanto Tchebycheff-menetelmä ja STEM ovat vuorovauttesa montavoteoptmontmenetelmä.

Lisätiedot

= m B splini esitys. B splini esitys. Tasaiset B splinit

= m B splini esitys. B splini esitys. Tasaiset B splinit .2. spln estys ézer estyksen yksnkertasuus ja voma ovat ettämättä sen suoson salasuus. Kakesta huolmatta slläkn on rajotuksensa, jotka ovat yltettävssä splnejä käyttäen. Lsäämällä kontrollpstetä saadaan

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana

Lisätiedot

10.5 Jaksolliset suoritukset

10.5 Jaksolliset suoritukset 4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e

Lisätiedot