COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

Koko: px
Aloita esitys sivulta:

Download "COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT"

Transkriptio

1 COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks Coulombn voma Koko sähkömagnetsmn peusta on Coulombn voma, ota kuvataan Coulombn lan avulla. Sen mukaan sähkösest vaatut kappaleet oko vetävät tosaan puoleensa ta hylkvät tosaan. Vaausta on kahdenlasta: tosta vaaustyyppä sanotaan postvseks vaaukseks, tosta negatvseks. Etyyppset vaaukset vetävät tosaan puoleensa, samantyyppset hylkvät. Coulombn lak kahden pstevaauksen välselle vomalle on yhtälön muodossa: Tämä yhtälö on otettu peuskussn kasta Unvesty Physcs, ekä tämä anna voman suuntaa vaan van vaattuen kappaleden välsen voman suuuuden. Sen saan luentomonsteen yhtälöt antavat myös voman suunnan: ) Tässä takottaa vektoa, oka petään pstevaauksesta pstevaaukseen. on voma, onka pstevaaus aheuttaa pstevaaukseen. Tonen estysmuoto kyseselle vomalle on: Tässä vektot a takottavat pstevaausten a pakkoa. Usean pstevaauksen tapauksessa yhtälö tulee muotoon: Tässä on kokonasvoma onka vaaukset yhdessä aheuttavat vaaukseen.

2 Sähkökenttä Koko sähkömagnetsmn dea ssältyy Coulombn lakn. Asoden matemaattstakn) kästtelyä a ymmätämstä helpottamaan on sähköopssa otettu käyttöön useta kästtetä, osta ensmmäsenä estellään sähkökenttä. Sähkökentän omnasuuksa: Sähkökenttää on sellä mssä Coulombn voma vakuttaa. Sähkökenttä on samalla tavalla vektosuue kun voma. Sähkökenttä vakuttaa e tavalla postvsest vaattuhn hukkasn kun negatvsest vaattuhn hukkasn: postvsest vaatut hukkaset pykvät sähkökentän suuntaan, negatvsest vaatut pänvastaseen suuntaan. Sähkökentän vomavakutus vaattuun hukkaseen on yhtälön avulla lausuttuna E Pstevaausten aheuttama sähkökenttä vodaan laskea yksnketaslla yhtälöllä. Jatkuvan vaauksen aheuttaman sähkökentän laskemseen käytetään useta elasa menetelmä, ota estellään tällä kusslla a otka ovat täkeä osa kussa. Nätä menetelmä ovat muun muassa ntegomsmenetelmä, Gaussn lan avulla laskemnen a sähkökentän laskemnen potentaaln gadenttna. Coulombn voman a sähkökentän laskemnen pstevaaukslle Pstevaauksen sähkökentän yhtälö on peuskussn kan Unvesty Physcs mukaan: E Tämä yhtälö e anna sähkökentän suuntaa. Seuaava luentomonsteen yhtälö antaa sähkökentän suunnan: E ) Tämä yhtälö antaa pstevaausten aheuttaman sähkökentän psteessä. Alottelevan sähkömagnetsmn haastaan on oskus vakea ymmätää, että psteessä e usemmten ole vaausta. Snä vakuttaa van lähstöllä oleven vaausten aheuttama Coulombn voma a täten sähkökenttäkn.

3 Esmekk : Kolme pstevaausta, a on tasasvusen kolmon kässä. Mkä on vaaukseen kohdstuva kokonasvoma, kun =, μc a =, cm? - Ratkasu: asketaan tämä lasku kahdella tavalla. Tapa I Käytetään yhtälöä: ) Nyt ols määtettävä vekto, oka takottaa vektoa vaauksesta vaaukseen, a vekto vaauksesta - vaaukseen. Vekto on määtetty, kun tedetään sen suuuus a suunta. Näden vektoeden suuuus on. Suunta lmotetaan ykskkövektolla. Vekto on helppo tapaus, koska se on postvsen x-akseln suuntanen el ykskkövekton î el ê x ) suuntanen. Vekto on ss î.

4 - 6 o Seuaavaks määtetään vekto. Suuuus on tetenkn. Suunta katso kuvasta, nyt e tavtse tse päätellä, onko kyseessä vetovoma va postovoma) on 6 o alaspän postvsen x-akseln suunnasta. Tämän suuntanen ykskkövekto on: Jollon: cos 6 ) sn 6 ) cos6 ) sn 6 ) Nyt on kokonasvoma: ) cos 6 o o 6cos 6 ) 6sn 6 ) 6sn 6 ) 8N) ) sn 6 )

5 Tapa II Käytetään doottvamaa yhtälöä: Tässä tapauksessa kokonasvoma on: Vektot, a ovat vaausten, - a pakkavektoeta: ) sn 6 ) cos 6 N ) 8.5) 6 ) sn 6 ) cos 6 sn 6 ) cos 6 6 ) sn 6 ) cos 6 ) sn 6 ) cos 6 Tämä tapa on helpon vakka näyttää monmutkaselta), sllä e tavtse tse mettä vektoeden suunta. 6 o -

6 Esmekk : Nelä pstevaausta, -, a -) on asetettu kuvan mukasest nelön käkn. Nelön svun ptuus on. aske sähkökenttä nelön keskpsteessä. Oleta, että >. - - Ratkasu: Käytetään luentomonsteessa annettua yhtälöä: E ) Tämä yhtälö kuvaa pstevaausten ota on kappaletta) aheuttamaa sähkökenttää pakassa. Vektot ovat pstevaausten pakkoa, otka tässä tapauksessa ovat: Nyt van sotetaan vektot a vaaukset yhtälöön. Vekto on nollavekto, nänhän me koodnaatston olemme valnneet. Saamme sähkökentän ogossa:

7 ) ) ) ) ) ) ) ) ) E ) ) ) Vakka tämä menetelmä vakuttaa monmutkaselta, tämä on snä melessä helppo, että okea suunta a suuuus tulevat automaattsest. Esmekk : Tässä on velä yks esmekk, oka vodaan laskea peuskussn kassa esntyvllä kaavolla: Tämä lasku vodaan laskea usealla elasella tavalla, osta kaks estetään tässä. TAPA I asketaan ensn sähkökentten suuuudet. Jaetaan kentät x- a y-akseleden suuntasn komponenttehn a lasketaan komponentt yhteen. Vastaus vodaan antaa vektona ta lasketaan komponentesta kokonaskenttä a suunta.

8 y E E x Käytetään Anta Akon Sähkö- a magnetsmopn luentomonsteessa esntyvää pstevaauksen aheuttaman sähkökentän lauseketta asketaan molempen pstevaausten aheuttamat kokonaskentät ekseen: Jaetaan sähkökentät komponenttehn: y,6 m E y E,8 m E E x x a

9 asketaan kokonaskenttä Kentän suuuus on Kentän suunta on y E E E x TAPA II Käytetään peuskussn luentomonsteen yhtälöä asketaan sähkökentät vektomuodossa molemmlle vaaukslle a sen älkeen lasketaan kentät yhteen. Yllä olevassa yhtälössä on sähkökentän suuntanen ykskkövekto. asketaan se molempen vaausten aheuttamalle kentälle:

10 y x Tämä saadaan päättelemällä) Sotetaan nämä ykskkövektot edellä laskettuhn sähkökentän suuuuden lausekkesn asketaan molempen pstevaausten aheuttamat kokonaskentät ekseen: Kokonaskentäks saadaan Kentän suuuus on Kentän suunta on

11 Jatkuvan vaauksen palottelemnen pstevaauksks Edellä laskettn pstevaausten aheuttama sähkökenttä. Nyt valmstaudutaan laskemaan atkuven vaausakaumen aheuttama sähkökenttä. Vaaus vo olla akautunut tasasest aneeseen el vaausakauma on sllon vako. Tällön vaaustheys aneessa tlavuus V) on V Vastaavast os pnnalle S on akautunut tasasest vaaus, on pnta-vaaustheys: S Sähköopssa käytetään myös kästettä vaaus ptuusykskköä kohden: Myöhemmn kästellään Gaussn lak, onka avulla sähkökentän laskemnen käy käteväst. Ana Gaussn laka e vo käyttää. Sllon täytyy vaausakauma palotella vaausalkoks, ota vodaan kästellä pstevaauksna a laskea pstevaausten yhtälöllä. Integomalla saadaan koko kappaleen aheuttama sähkökenttä. Esmekk : Ptkä suoa lanka on vaattu sten, että postvnen vaaustheys langassa on vako λ. aske sähkökenttä langan tosen pään kohdalla psteessä P, onka kohtsuoa etäsyys langasta on a. a x P y Opastus: dx x / x a ) a x a

12 Ratkasu:

13 Esmekk 5: Ympyän muotosesta langasta, onka säde on R, on vaattu puolet sten, että tällä vaatulla alueella postvnen vaaustheys on vako λ. aske sähkökenttä ympyän aksellla psteessä P, onka kohtsuoa etäsyys ympyän tasosta on a. z P a y R x Ratkasu:

14

3D-mallintaminen konvergenttikuvilta

3D-mallintaminen konvergenttikuvilta Maa-57.270, Fotogammetan, kuvatulknnan ja kaukokatotuksen semnaa 3D-mallntamnen konvegenttkuvlta nna Evng, 58394J 2005 1 Ssällysluettelo Ssällysluettelo...2 1. Johdanto...3 2. Elasa tapoja kuvata kohdetta...3

Lisätiedot

Sähkömagnetismin kaavoja

Sähkömagnetismin kaavoja ähkömagnetsmn kaavoja. Pstevaraukset ja Coulombn voma..... Coulombn lak kahden pstevarauksen välselle vomalle..... Usean pstevarauksen aheuttama voma varaukseen..... ähkökentän vomakkuus psteessä r....

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

Monte Carlo -menetelmä

Monte Carlo -menetelmä Monte Carlo -menetelmä Helumn perustlan elektron-elektron vuorovakutuksen laskemnen parametrsodulla yrteaaltofunktolla. Menetelmän käyttökohde Monen elektronn systeemen elektronkorrelaato oteuttamnen mulla

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15

A250A0100 Finanssi-investoinnit Harjoitukset 24.03.15 A50A000 Fnanss-nvestonnt Hajotukset 4.03.5 ehtävä. akknapotolon keskhajonta on 9 %. Laske alla annettujen osakkeden ja makknapotolon kovaanssen peusteella osakkeden betat. Osake Kovaanss A 40 B 340 C 60

Lisätiedot

FYSIIKAN LABORAATIOT (TLP058) LUKUVUOSI 2003-2004

FYSIIKAN LABORAATIOT (TLP058) LUKUVUOSI 2003-2004 FYSIIKAN LABORAATIOT (TLP058) LUKUVUOSI 003-004 OAMK TEKNIIKAN YKSIKKÖ ARI KORHONEN Moste ssältää - laboatootöh lttvä lesä ohjeta - OAMK: teto- ja automaatotekka sekä hvvottekologa koulutusohjelmassa tehtäve

Lisätiedot

Yksikköoperaatiot ja teolliset prosessit

Yksikköoperaatiot ja teolliset prosessit Ykskköoperaatot ja teollset prosesst 1 Ylestä... 2 2 Faasen välnen tasapano... 3 2.1 Neste/höyry-tasapano... 4 2.1.1 Puhtaan komponentn höyrynpane... 4 2.1.2 Ideaalnen seos... 5 2.1.3 Epädeaalnen nestefaas...

Lisätiedot

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio?

Mittausepävarmuus. Mittaustekniikan perusteet / luento 7. Mittausepävarmuus. Mittausepävarmuuden laskeminen. Epävarmuuslaskelma vai virhearvio? Mttausteknkan perusteet / luento 7 Mttausepävarmuus Mttausepävarmuus Mttaustulos e ole koskaan täysn oken Mttaustulos on arvo mtattavasta arvosta Mttaustuloksen ja mtattavan arvon ero on mttausvrhe Mkäl

Lisätiedot

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1] Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

Sähkökentät ja niiden laskeminen I

Sähkökentät ja niiden laskeminen I ähkökentät ja niiden laskeminen I IÄLTÖ: 1.1. Gaussin lain integaalimuoto ähkökentän vuo uljetun pinnan sisään jäävän kokonaisvaauksen laskeminen Vinkkejä Gaussin lain käyttöön laskettaessa sähkökenttiä

Lisätiedot

AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607

AquaPro 3-10 11-18 19-26 27-34. Bedienungsanleitung Operating instructions Gebruiksaanwijzing Käyttöohje FIN. 046.01.00 Rev.0607 046.01.00 Rev.0607 D GB NL FIN Bedenungsanletung Operatng nstructons Gebruksaanwjzng Käyttöohje 3-10 11-18 19-26 27-34 120 Automaattnen pyörvä laser kallstustomnnolla: Itsetasaus vaakasuorassa tasossa

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

ANTIBIOOTTIEN POISTO VEDESTÄ ADSORPTIOLLA

ANTIBIOOTTIEN POISTO VEDESTÄ ADSORPTIOLLA LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknllnen tedekunta Kemanteknkan koulutusohjelma Teknllsen keman laboratoro Kanddaatntyö ANTIBIOOTTIEN POISTO VEDESTÄ ADSORPTIOLLA Removal of antbots from water by adsorpton

Lisätiedot

Yrityksen teoria ja sopimukset

Yrityksen teoria ja sopimukset Yrtyksen teora a sopmukset Mat-2.4142 Optmontopn semnaar Ilkka Leppänen 22.4.2008 Teemoa Yrtyksen teora: tee va osta? -kysymys Yrtys kannustnsysteemnä: ylenen mall Työsuhde vs. urakkasopmus -analyysä Perustuu

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

Sisällysluettelo Laitteen asennus Toiminnot Tekniset tiedot Asetukset Viestikoodit Huolto Takuu Turvallisuusohjeet Toiminnot

Sisällysluettelo Laitteen asennus Toiminnot Tekniset tiedot Asetukset Viestikoodit Huolto Takuu Turvallisuusohjeet Toiminnot DEWALT DW03201 Ssällysluettelo Latteen asennus - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Johdanto- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Yleskuva -

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

KOKONAISRATKAISUT YHDESTÄ PAIKASTA

KOKONAISRATKAISUT YHDESTÄ PAIKASTA KOKONAISRATKAISUT YHDESTÄ PAIKASTA Monpuolset järjestelmät varastontn ja tuotantoon TUOTELUETTELO 2009 Kappale D Varasto- ja hyllystövältasot vältasot optmaalsta tlankäyttöä varten SSI SCHÄFER: n varasto-

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2009

MAOL-Pisteitysohjeet Fysiikka kevät 2009 MOL-Pstetysohjeet Fyskka kevät 9 Tyypllsten vrheden aheuttama pstemenetyksä (6 psteen skaalassa): - pen laskuvrhe -/3 p - laskuvrhe, epämelekäs tulos, vähntään - - vastauksessa yks merktsevä numero lkaa

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttausöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

BL20A0600 Sähkönsiirtotekniikka

BL20A0600 Sähkönsiirtotekniikka BLA6 Sähkönsrtoteknkka Tehonaon laskenta Jarmo Partanen LT Energy Electrcty Energy Envronment Srtoverkkoen laskenta Verkon tehonaon laskemnen srron hävöt ännteolosuhteet ohtoen kuormttumnen verkon käyttäytymnen

Lisätiedot

HASSEN-WEILIN LAUSE. Kertausta

HASSEN-WEILIN LAUSE. Kertausta HASSEN-WEILIN LAUSE Kertausta Käytetään seuraava merkntjä F = F/F q on sukua g oleva funktokunta Z F (t = L F (t (1 t(1 qt on funktokunnan F/F q Z-funkto. α 1, α 2,..., α 2g ovat polynomn L F (t nollakohten

Lisätiedot

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa

Työssä tutustutaan harmonisen mekaanisen värähdysliikkeen ominaisuuksiin seuraavissa URUN AMMAIKORKEAKOULU YÖOHJE (7) FYSIIKAN LABORAORIO V.2 2.2 38E. MEKAANISEN VÄRÄHELYN UKIMINEN. yön tavote 2. eoraa yössä tutustutaan harmonsen mekaansen värähdyslkkeen omnasuuksn seuraavssa tapauksssa:

Lisätiedot

REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA

REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA TAMPEREEN YLIOPISTO Talousteteden latos REILUUS, SOSIAALISET PREFERENSSIT JA PELITEORIA Kansantaloustede Pro gradu -tutkelma Marraskuu 2009 Ohaaat: Snkka Hämälänen Matt Tuomala Lsa Ekman TIIVISTELMÄ Tampereen

Lisätiedot

Valmistelut INSTALLATION INFORMATION

Valmistelut INSTALLATION INFORMATION Valmstelut 1 Pergo-lamnaattlattan mukana tomtetaan kuvallset ohjeet. Alla olevssa tekstessä on seltykset kuvn. Ohjeet on jaettu kolmeen er osa-alueeseen, jotka ovat valmstelu, asennus ja svous. Suosttelemme,

Lisätiedot

Betoniteollisuus ry 18.2.2010 1 (43)

Betoniteollisuus ry 18.2.2010 1 (43) Betonteollsuus r 18.2.2010 1 (43) 2 Jäkstsjärjestelmät... 2 2.1 Rakennuksen jäkstssuunnttelun tehtävät... 4 Alustava jäkstssuunnttelu... 4 Jäkstksen mtotus murtorajatlassa... 6 Jäkstksen mtotus kättörajatlassa...

Lisätiedot

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike

1. YLEISKATSAUS MYYNTIPAKKAUKSEN SISÄLTÖ. ZeFit USB -latausklipsi Käyttöohje. Painike Suom USER GUIDE YLEISKATSAUS LATAAMINEN KIINNITTÄMINEN KÄYTÖN ALOITTAMINEN TIETOJEN SYNKRONOINTI NÄYTTÖTILAT AKTIIVISUUSMITTARI UNITILA TAVOITTEET MUISTUTUKSET TEKNISET TIEDOT 6 8 10 12 16 18 20 21 22

Lisätiedot

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan

Tietoa sähkökentästä tarvitaan useissa fysikaalisissa tilanteissa, esimerkiksi jos halutaan 3 Sähköstatiikan laskentamenetelmiä Tietoa sähkökentästä tavitaan useissa fysikaalisissa tilanteissa, esimekiksi jos halutaan tietää missäläpilyönti on todennäköisin suujännitelaitteessa tai mikä on kahden

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt

Työn tavoitteita. 1 Johdanto. 2 Ideaalikaasukäsite ja siihen liittyvät yhtälöt FYSP103 / 1 KAASUTUTKIMUS Työn tavotteta havannollstaa deaalkaasun tlanyhtälöä oppa, mten lman kosteus vakuttaa havattavn lmöhn ja mttaustuloksn kerrata mttauspöytäkrjan ja työselostuksen laatmsta Luento-

Lisätiedot

Luento 6 Luotettavuus Koherentit järjestelmät

Luento 6 Luotettavuus Koherentit järjestelmät Aalto-ylosto erustetede korkeakoulu Matematka a systeemaalyys latos Lueto 6 Luotettavuus Koherett ärestelmät Aht Salo Systeemaalyys laboratoro Matematka a systeemaalyys latos Aalto-ylosto erustetede korkeakoulu

Lisätiedot

Kollektiivinen korvausvastuu

Kollektiivinen korvausvastuu Kollektvnen korvausvastuu Sar Ropponen 4.9.00 pävtetty 3..03 Ssällysluettelo JOHDANTO... KORVAUSVASTUUSEEN LIITTYVÄT KÄSITTEET VAHINKOVAKUUTUKSESSA... 3. MERKINNÄT... 3. VAHINGON SELVIÄMINEN JA KORVAUSVASTUU...

Lisätiedot

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28

Hallin ilmiö. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE. Tekopäivä 2005-9-14 Palautuspäivä 2005-9-28 Jyväskylän Aattkorkeakoulu, IT-nsttuutt IIF00 Sovellettu fyskka, Syksy 005, 4.5 ETS Opettaja Pas epo alln lö Laatja - Pas Vähäartt Vuoskurss - IST4SE Tekopävä 005-9-4 Palautuspävä 005-9-8 8.9.005 /7 LABOATOIOTYÖ

Lisätiedot

Kuntoilijan juoksumalli

Kuntoilijan juoksumalli Rakenteden Mekankka Vol. 42, Nro 2, 2009, s. 61 74 Kuntoljan juoksumall Matt A Ranta ja Lala Hosa Tvstelmä. Urhelututkmuksen melenknnon kohteena ovat yleensä huppu-urheljat. Tuokon yksnkertastettu juoksumall

Lisätiedot

JÄNNITETTYJEN ONTELOLAATTOJEN CE-MERKINNÄN MUKAINEN SUUNNITTELU EUROKOODIEN MUKAAN

JÄNNITETTYJEN ONTELOLAATTOJEN CE-MERKINNÄN MUKAINEN SUUNNITTELU EUROKOODIEN MUKAAN 05.11.08 1 JÄNNTETTYJEN ONTELOLAATTOJEN CE-ERKNNÄN UKANEN SUUNNTTELU EUROKOODEN UKAAN 5.1. armuuskertomet (1) Betonn osavarmuuslukua vodaan CE-merktyllä tuottella penentää arvoon γ c,red1 1,35. (Kansallnen

Lisätiedot

Uuden eläkelaitoslain vaikutus allokaatiovalintaan

Uuden eläkelaitoslain vaikutus allokaatiovalintaan TEKNILLINEN KORKEAKOULU Systeemanalyysn laboratoro Mat-2.108 Sovelletun matematkan erkostyö Uuden eläkelatoslan vakutus allokaatovalntaan Tmo Salmnen 58100V Espoo, 14. Toukokuuta 2007 Ssällysluettelo Johdanto...

Lisätiedot

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op)

PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) PHYS-A3131 Sähkömagnetismi (ENG1) (5 op) Sisältö: Sähköiset vuorovaikutukset Magneettiset vuorovaikutukset Sähkö- ja magneettikenttä Sähkömagneettinen induktio Ajasta riippuvat tasa- ja vaihtovirtapiirit

Lisätiedot

PAULI RAUTAKORPI LEIJAVOIMALAN TEHON ARVIOINTI

PAULI RAUTAKORPI LEIJAVOIMALAN TEHON ARVIOINTI Teknis-luonnontieteellinen koulutusohjelma PAULI RAUTAKORPI LEIJAVOIMALAN TEHON ARVIOINTI Kandidaatintyö Takastaja: lehtoi Risto Silvennoinen Palautuspäivä: 16.9.2008 II TIIVISTELMÄ TAMPEREEN TEKNILLINEN

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 1 761121P

FYSIIKAN LABORATORIOTYÖT 1 761121P FYSIIKAN LABORATORIOTYÖT 76P Espuhe Fyskassa pyrtään löytämään luonnosta lanalasuuksa, jota vodaan mtata kokeellsest ja kuvata matemaattsest. Tässä kurssssa tutustutaan yksnkertasten mttausvälneden käyttöön

Lisätiedot

Kuinka väestö sijoittuu siirryttäessä tietoyhteiskuntaan?

Kuinka väestö sijoittuu siirryttäessä tietoyhteiskuntaan? Kunka väestö sjottuu srryttäessä tetoyhteskuntaan? Esmerkknä Itä-Suom Oll Lehtonen & Markku Tykkylänen Johdanto 199-luvulla ja 2-luvun alussa väestönkasvu kesktty van muutamalle suurmmalle kaupunkseudulle,

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi

Tarkastellaan kuvan 8.1 (a) lineaarista nelitahoista elementtiä, jonka solmut sijaitsevat elementin kärkipisteissä ja niiden koordinaatit ovat ( xi Elementtmenetelmän erusteet 8. 8 D-SOLIDIRKEEE 8. ohdanto Kolmulottesa soldelementtejä tartaan kolmulottesten kaaleden mallntamseen. ällön tarkasteltaan kaaleen geometralla e ole ertsrtetä jotka teksät

Lisätiedot

Aamukatsaus 13.02.2002

Aamukatsaus 13.02.2002 Indekst & korot New Yorkn päätöskursst, euroa Muutos-% Päätös Muutos-% Helsnk New York (NY/Hel) Dow Jones 9863.7-0.21% Noka 26.21 26.05-0.6% S&P 500 1107.5-0.40% Sonera 5.05 4.99-1.1% Nasdaq 1834.2-0.67%

Lisätiedot

TKK @ Ilkka Mellin (2008) 1/24

TKK @ Ilkka Mellin (2008) 1/24 Mat-.60 Sovellettu todeäkösyyslasketa B Mat-.60 Sovellettu todeäkösyyslasketa B / Ratkasut Aheet: Mtta-astekot Havatoaesto kuvaame ja otostuusluvut Avasaat: Artmeette keskarvo, Frekvess, Frekvessjakauma,

Lisätiedot

KÄYTTÖTURVALLISUUSTIEDOTE

KÄYTTÖTURVALLISUUSTIEDOTE Pvys: 10.01.2006 Verso: 6.1 Muutettu vmeks: 22.12.2005 Svu: 1/7 1. AINEEN TAI VALMISTEEN SEKÄ YHTIÖN TAI YRITYKSEN TUNNISTUSTIEDOT Tuotetedot - Kauppanm: MULTIMIX-BASIS-PIGMENT MIX 853 BRILLANTBLAU MIX

Lisätiedot

KÄYTTÖTURVALLISUUSTIEDOTE

KÄYTTÖTURVALLISUUSTIEDOTE Pvys: 10.01.2006 Verso: 5.1 Muutettu vmeks: 22.12.2005 Svu: 1/7 1. AINEEN TAI VALMISTEEN SEKÄ YHTIÖN TAI YRITYKSEN TUNNISTUSTIEDOT Tuotetedot - Kauppanm: MULTIMIX BASIS-BINDEMITTEL NKL (5L) 93162 - Kyttötarkotus:

Lisätiedot

Physica 6 Opettajan OPAS (1/18)

Physica 6 Opettajan OPAS (1/18) Physica 6 Opettajan OPAS (1/18) 8. a) Jännitemittai kytketään innan lampun kanssa. b) Vitamittai kytketään sajaan lampun kanssa. c) I 1 = 0,51 A, I =? Koska lamput ovat samanlaisia, sähkövita jakautuu

Lisätiedot

KÄYTTÖTURVALLISUUSTIEDOTE

KÄYTTÖTURVALLISUUSTIEDOTE Pvys: 10.01.2006 Verso: 4.1 Muutettu vmeks: 13.12.2005 Svu: 1/6 1. AINEEN TAI VALMISTEEN SEKÄ YHTIÖN TAI YRITYKSEN TUNNISTUSTIEDOT Tuotetedot - Kauppanm: MULTIMIX SPEZIAL HAERTER - Kyttötarkotus: Kovetnane

Lisätiedot

KÄYTTÖTURVALLISUUSTIEDOTE

KÄYTTÖTURVALLISUUSTIEDOTE Pvys: 10.01.2006 Verso: 7.1 Muutettu vmeks: 22.12.2005 Svu: 1/7 1. AINEEN TAI VALMISTEEN SEKÄ YHTIÖN TAI YRITYKSEN TUNNISTUSTIEDOT Tuotetedot - Kauppanm: MULTIMIX-BASIS-PIGMENT MIX 861 SMARAGD MIX 861

Lisätiedot

KÄYTTÖTURVALLISUUSTIEDOTE

KÄYTTÖTURVALLISUUSTIEDOTE Pvys: 14.09.2004 Verso: 3.0 Muutettu vmeks: 16.08.2004 Svu: 1/6 1. AINEEN TAI VALMISTEEN SEKÄ YHTIÖN TAI YRITYKSEN TUNNISTUSTIEDOT Tuotetedot - Kauppanm: DP5510 NON SANDING PRIMER SURFACER GREY - Kyttötarkotus:

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely

Kansainvälisen konsernin verosuunnittelu ja tuloksenjärjestely Kansanvälsen konsernn verosuunnttelu ja tuloksenjärjestely Kansantaloustede Pro gradu -tutkelma Talousteteden latos Tampereen ylopsto Toukokuu 2007 Pekka Kleemola TIIVISTELMÄ Tampereen ylopsto Talousteteden

Lisätiedot

X310 The original laser distance meter

X310 The original laser distance meter TM Leca DISTO touch TMD810 Leca DISTO X10 The orgnal laser dstance meter The orgnal laser dstance meter The orgnal laser dstance meter Ssällysluettelo Latteen asennus- - - - - - - - - - - - - - - - - -

Lisätiedot

Asennus- ja käyttöohjeet. Videoterminaali 2600..

Asennus- ja käyttöohjeet. Videoterminaali 2600.. Asennus- ja käyttöohjeet Vdeotermnaal 2600.. Ssällysluettelo Latekuvaus...3 Asennus...4 Lassuojuksen rrottamnen...5 Käyttö...5 Normaal puhekäyttö...6 Kutsun vastaanotto... 6 Puheen suunnan ohjaus... 7

Lisätiedot

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp.

PPSS. Roolikäyttäytymisanalyysi 28.03.2011. Tämän raportin on tuottanut: MLP Modular Learning Processes Oy Äyritie 8 A FIN 01510 Vantaa info@mlp. PP Roolkäyttäytymsanalyys Roolkäyttäytymsanalyys Rool: Krjanptäjä Asema: Laskentapäällkkö Organsaato: Mallyrtys Tekjä: Matt Vrtanen 8.0.0 Tämän raportn on tuottanut: MLP Modular Learnng Processes Oy Äyrte

Lisätiedot

Työllistääkö aktivointi?

Työllistääkö aktivointi? Jyväskylän ylopsto Matemaatts-luonnonteteellnen tedekunta Työllstääkö aktvont? Vakuttavuusanalyys havannovassa tutkmuksessa Elna Kokkonen tlastoteteen pro gradu tutkelma 31. elokuuta 2007 Tlastoteteen

Lisätiedot

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa

Mittausvirhe. Mittaustekniikan perusteet / luento 6. Mittausvirhe. Mittausepävarmuus ja siihen liittyvää terminologiaa Mttausteknkan perusteet / luento 6 Mttausepävarmuus ja shen lttyvää termnologaa Mttausepävarmuus = mttaustulokseen lttyvä parametr, joka kuvaa mttaussuureen arvojen odotettua vahtelua Mttauksn lttyvä kästtetä

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Ñòåêëîêåðàìè åñêàÿ ïîâåðõíîñòü Glaskeramikhäll Keraaminen keittotaso ZVM64X

Ñòåêëîêåðàìè åñêàÿ ïîâåðõíîñòü Glaskeramikhäll Keraaminen keittotaso ZVM64X Ñòåêëîêåðàìè åñêàÿ ïîâåðõíîñòü Glaskeramikhäll Keraaminen keittotaso ZVM64X Èíñòðóêöèÿ ïî ìîíòàæó è ýêñïëóàòàöèè Installations- och bruksanvisning Asennus- ja käyttöohje u s q Óâàæàåìûé ïîêóïàòåëü, Áëàãîäàðèì

Lisätiedot

JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: empiirinen tutkimus kotimaisista pitkän koron rahastoista vuosilta 2001 2005.

JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: empiirinen tutkimus kotimaisista pitkän koron rahastoista vuosilta 2001 2005. TAMPEREEN YLIOPISTO Talousteteden latos JOHDANNAISTEN KÄYTTÖ JOUKKOVELKAKIRJALAINASALKUN RISKIENHALLINNASSA: emprnen tutkmus kotmassta ptkän koron rahastosta vuoslta 2001 2005. Kansantaloustede Pro gradu

Lisätiedot

PUUN LUJUUSVERTAILUTUTKIMUKSIA

PUUN LUJUUSVERTAILUTUTKIMUKSIA PUUN LUJUUSVERTAILUTUTKIMUKSIA LAHDEN AMMATTIKORKEAKOULU Puuteknkka Tuotantopanottenen puuteknkka Opnnäytetyö Kevät 2007 Mka Vlppunen ALKUSANAT Tämä opnnäytetyö tehtn Genetrade Wood Products Oy:lle ja

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Leica DISTO TM S910 The original laser distance meter

Leica DISTO TM S910 The original laser distance meter Leca DISTO TM S910 The orgnal laser dstance meter Ssällysluettelo Latteen asennus- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Johdanto - - - - - - - - - - - - - - - - - - - - - -

Lisätiedot

SUOMI LATAAMINEN LAITEPARI NÄYTTÖTILAT PUHELUT ILMOITUKSET AKTIVITEETTI UNITILA TAVOITTEET MUISTUTUKSET ÄÄNIKOMENNOT MUSIIKKI ETÄISYYSHÄLYTYS

SUOMI LATAAMINEN LAITEPARI NÄYTTÖTILAT PUHELUT ILMOITUKSET AKTIVITEETTI UNITILA TAVOITTEET MUISTUTUKSET ÄÄNIKOMENNOT MUSIIKKI ETÄISYYSHÄLYTYS SUOMI LATAAMINEN LAITEPARI NÄYTTÖTILAT PUHELUT ILMOITUKSET AKTIVITEETTI 06 07 11 12 13 14 UNITILA TAVOITTEET MUISTUTUKSET ÄÄNIKOMENNOT MUSIIKKI ETÄISYYSHÄLYTYS 15 16 17 18 19 19 YLEISKUVAUS VASEN panke

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

HIFI-KOMPONENTTIJÄRJESTELMÄ

HIFI-KOMPONENTTIJÄRJESTELMÄ HUOMIO: Kauttmes (e tomteta latteen mukana) vovat erota tässä ohjekrjassa estetystä. mall RNV70 HIFI-KOMPONENTTIJÄRJESTELMÄ Huolto ja teknset tedot LUE käyttöohjeet, ennen kun yrtät käyttää latetta. VARMISTA,

Lisätiedot

Karttaprojektion vaikutus alueittaisten geometristen tunnuslukujen määritykseen: Mikko Hämäläinen 50823V Maa-123.530 Kartografian erikoistyö

Karttaprojektion vaikutus alueittaisten geometristen tunnuslukujen määritykseen: Mikko Hämäläinen 50823V Maa-123.530 Kartografian erikoistyö Karttaprojekton vakutus aluettasten geometrsten tunnuslukujen määrtykseen: Mkko Hämälänen 50823V Maa-23.530 Kartografan erkostyö SISÄLLYSLUETTELO JOHDANTO... 4. TUTKIMUKSEN LÄHTÖKOHTA... 4.2 RAPORTISTA...

Lisätiedot

Mittaustulosten käsittely

Mittaustulosten käsittely Mttaustulosten kästtely Vrhettä ja epävarmuutta lmasevat kästteet Tostokoe ja satunnasten vrheden tlastollnen kästtely. Mttaustulosten jakaumaa kuvaavat tunnusluvut. Normaaljakauma 7. Tostokoe ja suurmman

Lisätiedot

Harjoituksen pituus: 90min 3.10 klo 10 12

Harjoituksen pituus: 90min 3.10 klo 10 12 Pallollse puolustae: Sokea ja ta käspallo/ Lppupallo Tavote: aalteo estäe sjottue puolustavalle puolelle, potku ta heto estäe, syöttäse estäe rstäe taklaus, pae tla vottase estäe sjottue puolustavalle

Lisätiedot

Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite

Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite S-66. Elekronkan perskrss Leno III: vass Päöeho en perskykennä kondensaaor Vahovrran lyhenney merknäapa Vakea vahovra-analyys? analyys? Kompleksarmekka odellnen vahovra-analyys analyys alkaa asavrralla

Lisätiedot

3.3 Hajontaluvuista. MAB5: Tunnusluvut

3.3 Hajontaluvuista. MAB5: Tunnusluvut MAB5: Tunnusluvut 3.3 Hajontaluvusta Esmerkk 7 Seuraavat kolme kuvaa osottavat, että jakaumlla vo olla sama keskarvo ja stä huolmatta ne vovat olla avan erlaset. Kakken kolmen keskarvo on 78,0! Frekvenss

Lisätiedot

KlapiTuli-palotila. www.klapituli.fi. KlapiTuli-palotilan osat, kokoamis- ja turvaiiisuusohje. Sormikiinnikkeet. 1. Nuppi 1. 2. 3. 4. 2.

KlapiTuli-palotila. www.klapituli.fi. KlapiTuli-palotilan osat, kokoamis- ja turvaiiisuusohje. Sormikiinnikkeet. 1. Nuppi 1. 2. 3. 4. 2. l u T p Kla ö t t e k Teho a j s m a koko e j h o s u asenn KlapTul-palotla KlapTul-palotlan osat, kokoams- ja turvaiisuusohje 1. Nupp 2. HoIkk 3. Kans 4. Ruuv Knntä holkk ja nupp ruuvlla kannen läp ja

Lisätiedot

Uuden opettajan opas

Uuden opettajan opas Uuden opettajan opas Ssällys 1 Opettajan työn hakemnen 4 1.1 Kuka vo saada vaknasen opettajan pakan? 5 1.2 Ulkomalla suortetun tutknnon tunnustamnen 6 1.3 Kunka hakemus tehdään? 7 1.4 Ansoluettelo el currculum

Lisätiedot

Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet

Menetelmiä signaali/kohina-suhteen parantamiseksi. Vahvistinten epäideaalisuudet Mtlmä sgaal/koha-suht paratamsks Vahvstt pädaalsuudt Atur kohasovtus vahvstm Suodatus Chopprvahvstmt Lock- vahvst (Vahhrkkävahvst, PSD) Kskarvostus (Auto- ja rstkorrlaato) Ptr Kärhä 0/0/009 Luto 4: Mtlmä

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

TheraPro HR90. 2. Lyhyt kuvaus. 1. toimituksen laajuus

TheraPro HR90. 2. Lyhyt kuvaus. 1. toimituksen laajuus . Lyhyt kuvaus TheraPro HR9 Elektronnen lämpöpattern säädn. tomtuksen laajuus Lämpöpattern säätmen pakkaus ssältää seuraavat osat: 4 Elektronsen lämpöpattern säätmen avulla vot säätää huoneenlämpötlan

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon

Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon 30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten

Lisätiedot

Paikkatietotyökalut Suomenlahden merenkulun riskiarvioinnissa

Paikkatietotyökalut Suomenlahden merenkulun riskiarvioinnissa Teknllnen korkeakoulu Lavalaboratoro Helsnk Unversty of Technology Shp Laboratory Espoo 2007 M-300 Tomm Arola Pakkatetotyökalut Suomenlahden merenkulun rskarvonnssa TEKNILLINEN KORKEAKOULU HELSINKI UNIVERSITY

Lisätiedot

VERKKO-OPPIMATERIAALIN LAATUKRITEERIT

VERKKO-OPPIMATERIAALIN LAATUKRITEERIT VERKKO-OPPIMATERIAALIN LAATUKRITEERIT Työryhmän raportt 16.12.2005 Monste 1/2006 Opetushalltus ja tekjät Tm Eja Högman ISBN 952-13-2718-9 (nd.) ISBN 952-13-2719-7 ISSN 1237-6590 Edta Prma Oy, Helsnk 2006

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Havaintokohteita 9. Polarimetria Lauri Jetsu Fysiikan laitos Helsingin yliopisto Havaintokohteita Polarimetria Havaintokohteita (kuvat: @phys.org/news, @annesastronomynews.com) Yleiskuvaus: Polarisaatio

Lisätiedot

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI

in 2/2012 6-7 4-5 8-9 InHelp palvelee aina kun apu on tarpeen INMICSIN ASIAKASLEHTI n 2/2012 fo INMICSIN ASIAKASLEHTI 6-7 Dgtova kynä ja Joun Mutka: DgProfITn sovellukset pyörvät Inmcsn konesalssa. 4-5 HL-Rakentajen työmalle on vedettävä verkko 8-9 InHelp palvelee ana kun apu on tarpeen

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

10.5 Jaksolliset suoritukset

10.5 Jaksolliset suoritukset 4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

SEKAELEMENTIT ABSOLUUTTISTEN SOLMUKOORDINAATTIEN MENETELMÄSSÄ

SEKAELEMENTIT ABSOLUUTTISTEN SOLMUKOORDINAATTIEN MENETELMÄSSÄ LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknllnen tedekunta / LUT School of Energy Systems LUT Kone Koneensuunnttelu Elas Altarrba SEKAELEMENTIT ABSOLUUTTISTEN SOLMUKOORDINAATTIEN MENETELMÄSSÄ Työn tarkastajat:

Lisätiedot

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta.

Yrityksellä on oikeus käyttää liketoimintaansa kunnan kanssa määriteltyä Hallan Saunan piha-aluetta. VUOKRSOPMUS 1.1 Sopjapuolet Hyrynsalmen kunta, jäljempänä kunta. Laskute 1, 89400 HYRYNSALM Hallan Sauna Oy (y-tunnus: 18765087) CO Tl-Tekno Oulu Oy Kauppurnkatu 12, 90100 OULU 1.2 Sopmuksen kohde Hallan

Lisätiedot

Näytteenoton virhelähteet, luotettavuuden estimointi ja näytteenottoketjun optimointi

Näytteenoton virhelähteet, luotettavuuden estimointi ja näytteenottoketjun optimointi FIAS S5/000 Opas äytteeoto tekste vaatmuste täyttämseks akkredtota varte 5 (9) Lte äytteeoto vrhelähteet, luotettavuude estmot ja äytteeottoketju optmot Pett Mkke äytteeoto vrhelähteet, luotettavuude estmot

Lisätiedot

KOHTA 3. KOOSTUMUS JA TIEDOT AINEOSISTA

KOHTA 3. KOOSTUMUS JA TIEDOT AINEOSISTA Ssältää 3% aneosa, joden vaaroja vesympärstölle e tunneta. Lsätetoja Vaaralauseketta H304 e sovelleta aerosolelle. Nota P: 64742-48-9. 2.3 Muut vaarat E tunneta. KOHTA 3. KOOSTUMUS JA TIEDOT AINEOSISTA

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Tilbehør 52 Eläinmobile

Tilbehør 52 Eläinmobile Tilbehør 52 Eläinmobile Lanka: Hjertegarn Blend Bamboo Langanmenekki: Eläimiin: seuraavia värejä 1 kerä kutakin: vaaleanpunaista, pinkkiä, ruskeaa, beigeä, mustaa, valkoista Kaariin: seuraavia värejä 1

Lisätiedot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot

Ilkka Mellin. Sovellettu todennäköisyyslasku: Kaavat ja taulukot Mat-.09 Sovellettu todeäkösyyslasku Systeemaalyys laboratoro Teklle korkeakoulu SYKSY 00 Ilkka Mell Sovellettu todeäkösyyslasku: Kaavat ja taulukot f XY x X x X y Y ( x, y) exp XY ( XY ) XY XY X X Y Tomttaut

Lisätiedot

- lzcht Frwaria ;:h'5ensuuntaisprc j sktioita

- lzcht Frwaria ;:h'5ensuuntaisprc j sktioita Krjallsuuden kdytto kelletty.,p,,':. Kun prustuksessa on estetty osen muodot ja asennust..,;,!:/ j Zrj estys, on sllon.kyseessd..' + '. cb. ksyttdohj eprustus. : *'. patenttprustus'. tydprustus :. : G

Lisätiedot

Mekatronisten koneiden reaaliaikainen simulointi Linux-ympäristössä

Mekatronisten koneiden reaaliaikainen simulointi Linux-ympäristössä Lappeenrannan teknllnen korkeakoulu Koneteknkan osasto Konstruktoteknkan latos Mekatronsten koneden reaalakanen smulont Lnux-ympärstössä Dplomtyön ahe on hyväksytty koneteknkan osaston osastoneuvostossa

Lisätiedot

SISÄLLYS. N:o 1138. Valtioneuvoston asetus. terveydenhuollon oikeusturvakeskuksesta annetun asetuksen eräiden säännösten kumoamisesta

SISÄLLYS. N:o 1138. Valtioneuvoston asetus. terveydenhuollon oikeusturvakeskuksesta annetun asetuksen eräiden säännösten kumoamisesta SUOMEN SÄÄDÖSKOKOELMA 2000 ulkastu Helsngssä 22 päänä joulukuuta 2000 N:o 1138 1143 SISÄLLYS N:o Su 1138 altoneuoston asetus teeydenhuollon okeustuakeskuksesta annetun asetuksen eäden säännösten kumoamsesta...

Lisätiedot

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä

Sähköstatiikasta muuta. - q. SISÄLTÖ Sähköinen dipoli Kondensaattori Sähköstaattisia laskentamenetelmiä Sähköstatiikasta muuta SISÄLTÖ Sähköinen ipoli Konensaattori Sähköstaattisia laskentamenetelmiä Sähköinen ipoli Tässä on aluksi samaa asiaa kuin risteet -kappaleen alussa ja lopuksi vähän uutta asiaa luentomonisteesta.

Lisätiedot