STOKASTISET DIFFERENTIAALIYHTÄLÖT 7

Koko: px
Aloita esitys sivulta:

Download "STOKASTISET DIFFERENTIAALIYHTÄLÖT 7"

Transkriptio

1 STOKASTISET DIFFERENTIAALIYHTÄLÖT 7 1. Todennäöisyyslasennasta ja merinnöistä Palautamme seuraavassa lyhyesti mieleen todennäöisyyslasennan äsitteitä ja esittelemme myös muutamia urssilla äytettäviä merintätapoja. Kaien satunnaisuuden äsittelyn taana on (mahdollisesti suuri) musta laatio, jota nimitetään todennäöisyysavaruudesi. Tämä on olmio (Ω, F, P). Jouo Ω on aiien aleistapahtumien muodostama jouo. Kurssin annalta tällä jouolla ei ole juuriaan meritystä eli suurimmasi osasi jouoa Ω voi ajatella äärellisenä tai numeroituvasti äärettömänä jouona vaia oieasti se yleensä on ooltaan suuri. Jouo F on aleistapahtumien jouon osajouojen P(Ω) osajouo, eli niin sanottujen tapahtumien jouo. Monessa äytännön esimerissä voi ajatella, että aii mahdolliset jouon Ω osajouot ovat tapahtumia. Tämä ei tosin pidä yleisesti paiaansa. Yleisessä tilanteessa aleistapahtumia voi olla liiaa, joten välttämättä aiien aleistapahtumien osajouojen ei tarvitse olla tapahtumia, mutta ainain Ω on aina tapahtuma. Yleisestiin tapahtumat on uvailtavissa seuraavilla säännöillä Määrittelevät ominaisuudet. jouo Ω on varma tapahtuma jos A on tapahtuma, niin jouo A C := Ω \ A on myös tapahtuma (ns. omplementtitapahtuma) jos { A : =0, 1, 2,... } ovat tapahtumia, niin niiden yhdiste {A tapahtuu jollain =0, 1, 2,... } on tapahtuma jos { A : =0, 1, 2,... } ovat tapahtumia, niin niiden leiaus on tapahtuma. {A tapahtuu joaisella =0, 1, 2,... } Yleisesti, jos jollain jouoperheellä on yllä mainitut ominaisuudet, niin sitä nimitetään σ-algebrasi. Kaiien tapahtumien jouo F on siis aina σ- algebra. Tarvitsemme urssilla tätäin äsitettä, jotta voimme puhua tapahtumien osajouosta, joa itsein toteuttaa tapahtumien määrittelevät ominaisuudet Määritelmä. Kun F on join σ-algebra ja G F on sen sellainen osajouo, että G on myös σ-algebra, niin jouoa G sanotaan ali-σ-algebrasi.

2 8 STOKASTISET DIFFERENTIAALIYHTÄLÖT Jos Ω on numeroituva, niin yleensä F = P(Ω). Edelleen joudumme usein yhdistelemään alujaan eri tapahtumajouojen tietoja yhdesi ali-σ-algebrasi. Tätä varten esittelemme yhden tapahtumiin liittyvän merinnän Merintä. Jos C F on mielivaltainen osajouo, niin pienintä ali-σalgebraa G F sanomme jouon C virittämäsi σ-algebrasi ja meritsemme σ(c ) := G. Hyödyllistä lisätietoa σ-algebroista ja niihin läheisesti liittyvistä muista jouoluoista löytyy urssin Todennäöisyysteoria -urssimateriaaleista. Kosa tapahtumat {A 1,A 2,... ja A d } ovat varsin yleisiä, niin äytämme näille lyhennysmerintää 1.4. Merintä. Kun A 1,..., A d ovat tapahtumia, niin äytämme merintää A 1 A 2... A d := {A 1,A 2,... ja A d }. Kuvaus P liittää uhunin tapahtumaan sen todennäöisyyden, miä on luu suljetulla välillä [0, 1] ja se toteuttaa seuraavat ehdot: 1.5. Määrittelevät ominaisuudet. varman tapahtuman Ω todennäöisyys P ( Ω ) = 1 jos A on tapahtuma, niin omplementtitapahtuman A C := Ω \ A todennäöisyys on P ( A C ) =1 P ( A ) ja jos (A ) N ovat pistevieraita tapahtumia, niin P ( A tapahtuu jollain N )= N P ( A ) Mallintaasemme stoastisia ilmiöitä tarvitsemme vielä satunnaismuuttujan seä ehdollisen todennäöisyyden äsitteet. Palautamme ensin mieleen satunnaismuuttujat. Satunnaismuuttuja X on (lähes) mielivaltainen uvaus todennäöisyysavaruudesta tilajouoon S. Jos tilajouo S on join äärellinen tai numeroituvasti ääretön jouo, niin tällöin satunnaismuuttuja X voidaan tulita mielivaltaisesi uvausi Ω S. Yleisemmässä tapausessa, meidän tulisi asettaa myös tilajouoon sen säännölliset eli mitattavat tapahtumat. Tällöin vaatimus olisi vain: jos A S on tilajouon miä tahansa säännöllinen tapahtuma, niin jouon {X A} on oltava tapahtuma todennäöisyysavaruudessa Ω. Mitta- ja integrointi -urssin terminologialla: X on S-arvoinen satunnaismuuttuja taroittaa, että uvaus X :Ω S on F -mitallinen. Usein tilajouo S on myös topologinen avaruus (eli sen avoimet jouot on määrätty). Tällöin yleensä tilajouon S mitattavat jouot oostuvat sen Borelin jouoista B(S), miä on sen avointen jouojen virittämä σ-algebra.

3 STOKASTISET DIFFERENTIAALIYHTÄLÖT 9 Olemme nyt saaneet errattua todennäöisyysavaruuden ja satunnaismuuttujan äsitteet. Jatossa emme enää irjoita allaolevaa todennäöisyysavaruutta Ω näyviin lainaan. Puhumme vain tapahtumista ja todennäöisyysistä. Satunnaismuuttujien ohdalla tarvitsemme vain tiedon tilajouosta S ja siten satunnaismuuttujaa X voimme pitää tilajouon tuntemattomana aliona X S ja jota voimme äsitellä taralleen samoin uin tilajouon aliota. Tarvitsemme vielä muutaman äsitteen seä merinnän. Kun satunnaismuuttujan X tilajouo S = {i 0,i 1,... } on join positiivisten reaaliluujen R + numeroituva osajouo, niin satunnaismuuttujan X odotusarvo E X on positiivinen reaaliluu (tai mahdollisesti ääretön ) (1.6) E X := i P ( X = i ). =0 Jos tilajouo S C on äärellinen, niin sama määritelmä on voimassa, mutta jos tilajouo on numeroituvasti ääretön omplesiluujen osajouo, niin satunnaismuuttujalla on odotusarvo, jos myös itseisarvolla X on äärellinen odotusarvo. Käytännössä urssilla satunnaismuuttujat ovat positiivisia 3 tai niillä on odotusarvo. Yleisessä tapausessa tilajouo S voi olla ylinumeroituva omplesiluujen osajouo, ja tällöin tarvitsisimme hieman lisätietoja odotusarvosta. Tällaisia tietoja äsitellään lähemmin todennäöisyysteorian urssilla, mutta myös Mitta- ja integraali urssilla, sillä yleisesti odotusarvo on vain mittaintegraali todennäöisyysmitan P suhteen. Tarvitsemme näitä tietoja urssilla, mutta yritämme johtaa niiden tarpeen tilanneohtaisesti ysinertaistaen tarasteltavia ongelmia ensin. Odotusarvolla on seuraavia ominaisuusia: odotusarvo on lineaarinen eli jos α, β C ja X seä Y ovat satunnaismuuttujia, niin E (αx + βy )=αe X + βe Y jos 0 X 0 X 1,... ovat satunnaismuuttujia ja lim X n = X, niin (1.7) E X = lim n E X n. Näitä ahta ominaisuutta tulemme jatossa tarvitsemaan usein. Tulemme myös äyttämään seuraavaa niin sanotun Iversonin 4 notaatiota tai haasulumerinnän. Jotain vastaavaa merintää tarvitaan eri tilanteissa niin usein, että on 3 eli tilajouo on R + :n osajouo 4 Kenneth Eugene Iversonin muaan lähteenä Donald Erwin Knuthin The Art of Computer Progamming, Vol I

4 10 STOKASTISET DIFFERENTIAALIYHTÄLÖT järevää äyttää mahdollisimman lyhyttä, seleää seä yhtenevää merintää oo ajan Merintä. Iversonin haasulumerintä taroittaa uvausta väitteiltä luvuille {0, 1}, joa määritellään seuraavasti: 1, jos väite on tosi, [väite ] := 0, jos väite ei ole tosi. Tämän merinnän erioistapausena saamme esimerisi Kronecerin deltan, sillä δ ij =[i = j ]. Tutustutaan lyhyesti tämän merinnän ominaisuusiin. Voimme esimerisi irjoittaa joaisen satunnaismuuttujan X, jona tilajouo on join luujouo, ysinertaisena summana X = S [ X = ]. Yleistämme merinnän tapahtumille A seuraavasti 1.9. Merintä. Jos A on tapahtuma, niin [ A ] on satunnaismuuttuja, jolle 1, jos ω A, [ A ](ω) := [ ω A ]= 0, jos ω/ A, Jatossa emme tule irjoittamaan aleistapahtumaa ω näyviin, joten jos A on tapahtuma, niin [ A ] on satunnaismuuttuja, jona tilajouona on asio {0, 1}. Erityisesti havaitsemme, että odotusarvon määritelmän muaan (1.10) E [ A ] = 0 P ([A ] = 0 ) + 1 P ([A ] = 1 ) = P ( A ), sillä {[ A ] = 1} = A. Siispä indutioilla voimme päätellä, että jos satunnaismuuttujan X tilajouo S = {i 0,i 1,..., i d }, niin odotusarvon lineaarisuuden seä identiteetin (1.10) avulla voimme johtaa esittämämme odotusarvon määritelmän, sillä ( ) E X = E i [ X = i ] = i E [ X = i ]= i P ( X = i ). Myös suorana sovellusena Iversonin notaatiosta voimme lasea satunnaismuuttujan f(x) odotusarvon, sillä ( ) E f(x) =E f(i )[ X = i ] = f(i )P ( X = i ). Summausen ja odotusarvon järjestystä voi aina vaihtaa, un tilajouo S on äärellinen. Äärettömän tilajouon tapausessa voimme yleensä perustella summausen ja odotusarvon järjestysen vaihdon soveltamalla odotusarvon rajaarvo-ominaisuutta (1.7).

5 STOKASTISET DIFFERENTIAALIYHTÄLÖT 11 Todennäöisyyslasennan piaertausessa tarvitsemme vielä ehdollisen todennäöisyyden äsitteen Merintä. Meritsemme tapahtuman A todennäöisyyttä ehdolla, että tapahtuma B on tapahtunut, seuraavasti P ( A B ) := P ( AB ) P ( B ) Ehdollinen todennäöisyydellä on samat ominaisuudet uin tavallisella todennäöisyydellä, joten sitä vastaa myös ehdollinen odotusarvo: Merintä. Meritsemme satunnaismuuttujan X joa saa numeroituvan määrän arvoja ehdollista odotusarvo ehdolla, että tapahtuma B on tapahtunut, seuraavasti E (X B) := i P ( X = i B ). Tämä on helposti yleistettävissä tilanteeseen, missä tapahtuman sijasta tiedämme, että toisen satunnaismuuttujan arvon. Jos Y = l j l [ Y = j l ] niin edellisen motivoimana voimme ajatella, että (1.13) [ Y = j l ]E (X Y ) := [ Y = j l ]E (X Y = j l ) Summaamalla apumuuttujan l suhteen saamme E (X Y )= l [ Y = j l ]E (X Y )= l [ Y = j l ]E (X Y = j l ) Huomaamme, että näin saatu satunnaismuuttujan X ehdollinen odotusarvo ehdolla, että tiedämme satunnaismuuttujan Y on myös satunnaismuuttuja. Täreänä erityistapausena tästä voimme päätellä, että jos X = f(y ), niin E (f(y ) Y )= l [ Y = j l ]E (f(j l ) Y = j l )= l f(j l )[ Y = j l ]=f(y ) eli satunnaismuuttujan f(y ) ehdollinen odotusarvo ehdolla, että tiedämme satunnaismuuttujan Y, on satunnaismuuttuja f(y ) itse. Voimme yleistää ehdollisen odotusarvon äsitettä edellee tilanteeseen, missä tiedämmein jonin äärellisen σ-algebran G. Yleistämme aavan (1.13) muotoon (1.14) [ B ]E (X G ) := [ B ]E (X B)

6 12 STOKASTISET DIFFERENTIAALIYHTÄLÖT joaisella tapahtumalla B G. Kun G on äärellinen, niin sen virittää äärellinen jouo pistevieraita tapahtumia {B 1,..., B m }.Tällöin saisimme taas summaamalla (1.15) E (X G )= m [ B ]E (X B ). =1 Huomionarvoinen seia on, että E (X G ) on G -mitallinen satunnaismuuttuja, sillä tapahtuma {E (X G ) A} = {B j1 tai... tai B jl } G. Valitettavasti, un Ω ja tilajouo S voivat olla mielivaltaisen suuria ja satunnaismuuttujat voivat saada ylinumeroituvan määrän eri arvoja, ei edellinen summaamisteniia riitä. Yleisesti, satunnaismuuttujan X ehdollinen odotusarvo ehdolla tapahtuma B on ilmaistavissa integraalina. Voimme hyvin äyttää tavallista odotusarvoa vastaavia approsimointitulosi tällaisille ehdollisille odotusarvoille ehdollinen odotusarvo, ehdolla tapahtuma B on lineaarinen eli jos α, β C ja X seä Y ovat satunnaismuuttujia, niin E (αx + βy B) =αe (X B) +βe (Y B) jos 0 X 0 X 1,... ovat satunnaismuuttujia ja lim X n = X, niin (1.16) E (X B) = lim n E (X n B). Yleisen ehdollistamisen σ-algebran G suhteen onin jo huomattavasti inisempi. Ongelmana on se, että tällaista σ-algebraa ei voida esittää pistevieraana yhdisteenä tapahtumista, joiden todennäöisyys on aidosti positiivinen. Joudumme siis ottamaan huomioon myös lähes mahdottomat tapahtumat. Tämä johtaa muodollisesti 0/0 -tilanteisiin, joten jotain muuta on tehtävä. Havaitsemme aavasta (1.15), että äärellisessä tilanteessa ehdollisen odotusarvon määräämisesi riittää tuntea ehdolliset odotusarvot tapahtumien suhteen. Nämä ehdolliset odotusarvot on rataistavissa myös seuraavasta aavasta (1.17) (1.17) E ([ B ]E (X G ) ) = E ([ B ]E (X B) ) = E ([ B ]X), joaisella tapahtumalla B G. Kaava (1.17) seuraa suoraan aavasta (1.14) ottamalla odotusarvot puolittain. Voisimmein määritellä, että satunnaismuuttujan X ehdollinen odotusarvo ehdolla G on se satunnaismuuttuja E (X G ), joa on yhtälöryhmän (1.17) ysiäsitteinen rataisu. Tämä yhtälö yleistyy helposti yleiseen tilanteeseen. Määrittelemmein, että

7 STOKASTISET DIFFERENTIAALIYHTÄLÖT Määritelmä. Oloon X omplesiarvoinen satunnaismuuttuja, jona E X < ja G F join taphtumien ali-σ-algebra. Sanomme, että satunnaismuuttujan X ehdollinen odotusarvo ehdolla G on se satunnaismuuttuja E (X G ), joa on G -mitallinen, E E (X G ) < ja joa on yhtälöryhmän (1.17) rataisu. Se tosiseia, että ehdollinen odotusarvo on olemassa ja ysiäsitteinen on epätriviaali. Tämä seuraa Radonin-Niodymin lauseesta ja se sivuutetaan tällä urssilla. Enemmän tästä löytyy Todennäöisyysteoria -urssilla. Edelleen ysiäsitteisyys on voimassa nollatapahtumia vaille. Tätä varten esittelemme merinnän Merintä. Sanomme, että join asia on voimassa melein varmasti tai m.v., jos todennäöisyys asian voimassaololle on 1. Sanomme esimerisi, että X = Y m.v. jos tapahtuma {X = Y } on melein varma. Kosa usein ehdollistamme yleisen satunnaismuuttujan X suhteen, niin määrittelemme missä E (Y X) := E (Y σ(x)), σ(x) := σ{ {X A} : A on mitallinen jouo } on satunnaismuuttujan X virittämä σ-algebra. Äärettömyyden muaantulo paottaa sietämään näitä nollatapahtumia, joten otamme ne muaan avosylin ja muistutamme niiden olemassaolosta aina tarvittaessa. Palaamme niihinin uudestaan, un emme voi niitä välttää. Ehdollisen todennäöisyyden avulla voimme määritellä tapahtumien riippumattomuuden Määritelmä. Sanomme, että tapahtumajouo { A λ : λ I } on riippumaton, jos joaisella äärellisellä osajouolla {λ 0,..., λ d } I on voimassa P ( A λd A λ0 A λ1... A λd 1 ) = P ( Aλd ). Sanomme, että satunnaismuuttujajouo { X λ : λ I } on riippumaton, jos aina, un { B λ : λ I } on perhe tilajouon tapahtumia, niin vastaava tapahtumajouo on riippumaton. {{X λ B λ } : λ I }

8 14 STOKASTISET DIFFERENTIAALIYHTÄLÖT Olemme nyt äsitelleet lyhyesti tarvittavat todennäöisyyslasennan äsitteet. Johdatus todennäöisyyslasentaan urssilla esitettyjä malleja ja jaaumia emme tässä ertaa vaan palautamme ne mieleen tarpeen tullessa. Myösään jouojen ylinumeroituvuusien aiheuttamia tenisiä vaieusia tulemme äsittelemään, un niiden aia on. Jotta jatossa ei olisi liiaa määrittelemättömiä äsitteitä, lopetamme johdannon, määräämällä mitä stoastinen prosessi taroittaa. Ensin määrittelemme, miä on tilajouo Määritelmä. Oloon S ja S join σ-algebra jouolla S. Paria (S, S ) sanotaan tilajouosi tai tila-avaruudesi. Jos mitattavista jouoista S ei ole epäselvyyttä, meritsemme tilajouoa pelästään irjaimella S. Nyt voimme määritellä stoastisen prosessin Määritelmä. Oloon T. Oloon (X t ; t T ) perhe S-arvoisia satunnaismuuttujia. Sanomme tätä perhettä S-arvoisesi stoastisesi prosessisi. Huomaamme, että määritelmässä jouolle T ei ollut mitään erityisiä rajoitteita. Tällä urssilla yleensä oletamme seuraavaa Oletus. Aiajouo T on joo T = αn jollain α> 0 tai T R on reaalinen väli. Jos t T, niin luua t nimitetään ajanhetesi. Jos T = αn, niin sanomme aiaa disreetisi, muuten aia on jatuvaa. Välillä joudumme irjoittamaan iäviä lauseeita ajanhetisi. Tällöin on ätevää, että voimme tarvittaessa irjoittaa ajanheten ahteen paiaan Merintä. Voimme vapaasti meritä satunnaismuuttujaa ajanhetellä t T joo X t tai X(t) Oletus. (1) Jos S on numeroituva jouo, niin S on aina P(S). (2) Käytännössä oo ajan tällä urssilla tilajouo S on join seuraavista jouoista {0, 1,..., d}, N := {0, 1,... }, S = Z := {..., 2, 1, 0, 1, 2,... }, D R d, un d N + := N \{0} (3) Kun S = D R d, niin jouo on Borelin jouo (mutta yleensä joo avoin tai suljettu) ja S = B(S). Stoastinen prosessi on siis vain varsin mielivaltainen ooelma ajasta riippuvia satunnaismuuttujia, jota saavat arvoja tilajouossa S.

9 STOKASTISET DIFFERENTIAALIYHTÄLÖT Huomautus. Huomautamme vielä, että antamalla sopiva σ-algebra aiien uvausten jouoon S T jouolta T jouoon S (taremmin ns. tulo-σalgebra), niin (X(t)) on stoastinen prosessi jos ja vain jos X(ω) := t X(t, ω) on S T -arvoinen satunnaismuuttuja. Satunnaismuuttujan arvoa X(ω), joa on siis uvausia aiajouolta T tilajouolle S, nimitetään usein stoastisen prosessin realisaatiosi tai otosfuntiosi. Myös nimeä polu äytetään. Kosa tulojouo S T sisältää aii uvauset eiä vain säännöllisiä uvausia, ei ole syytä olettaa, että nämä otosfuntiot olisivat jatuvia saatia edes mitallisia.

3. Markovin prosessit ja vahva Markovin ominaisuus

3. Markovin prosessit ja vahva Markovin ominaisuus 30 STOKASTISET DIFFERENTIAALIYHTÄLÖT 3. Marovin prosessit ja vahva Marovin ominaisuus Aloitamme nyt edellisen appaleen päättäneen esimerin yleistämisen Brownin liieelle. Käymme ysitellen läpi esimerin

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 1, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (sysy 2017) HARJOITUS 1, MALLIRATKAISUT Tehtävä 1. (i) Etsi luvun 111312 aii teijät. (ii) Oloot a ja b positiivisia oonaisluuja joilla a b ja b a. Osoita, että silloin a = b. Rataisu

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Disreetin matematiian perusteet Osa 3: Kombinatoriia Riia Kangaslampi 2017 Matematiian ja systeemianalyysin laitos Aalto-yliopisto Kombinatoriia Summaperiaate Esimeri 1 Opetusohjelmaomiteaan valitaan

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon

M 2 M = sup E M 2 t. E X t = lim. niin martingaalikonvergenssilauseen oletukset ovat voimassa, eli löydämme satunnaismuuttujan M, joka toteuttaa ehdon Matematiian ja tilastotieteen laitos Stoastiset differentiaaliyhtälöt Rataisuehdotelma Harjoituseen 7 1. Näytä, että uvaus M M M 2, un M 2 M = sup E M 2 t 2 t 0 on normi jouossa M 2 = { M : M on martingaali

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Disreetin matematiian perusteet Esimerejä ym., osa I G. Gripenberg Jouo-oppi ja logiia Todistuset logiiassa Indutioperiaate Relaatiot ja funtiot Funtiot Aalto-yliopisto. maalisuuta 0 Kombinatoriia

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 1. laskuharjoitus, ratkaisuehdotukset Todennäöisyyslasenta IIa, syys loauu 019 / Hytönen 1. lasuharjoitus, rataisuehdotuset 1. ( Klassio ) Oloot A ja B tapahtumia. Todista lasuaavat (a) P(A B) P(A) + P(B \ A), (b) P(B) P(A B) + P(B \ A), (c)

Lisätiedot

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus luuteoriaan Harjoitus 1 ss 008 Eemeli Blåsten Rataisuehdotelma Tehtävä 1 Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa siäsitteinen luu h ('luujen a ja b pienin hteinen jaettava',

Lisätiedot

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M

V. POTENSSISARJAT. V.1. Abelin lause ja potenssisarjan suppenemisväli. a k (x x 0 ) k M V. POTENSSISARJAT Funtioterminen sarja V.. Abelin lause ja potenssisarjan suppenemisväli P a x x, missä a, a, a 2,... R ja x R ovat vaioita, on potenssisarja, jona ertoimet ovat luvut a, a,... ja ehitysesus

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

Riemannin sarjateoreema

Riemannin sarjateoreema Riemannin sarjateoreema LuK-tutielma Sami Määttä 2368326 Matemaattisten tieteiden laitos Oulun yliopisto Sysy 206 Sisältö Johdanto 2 Luujonot 3 2 Sarjat 4 2. Vuorottelevat sarjat........................

Lisätiedot

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali

Todennäköisyysjakaumat 1/5 Sisältö ESITIEDOT: todennäköisyyslaskenta, määrätty integraali Todennäöissjaaumat /5 Sisältö ESITIEDOT: lasenta, määrätt Haemisto KATSO MYÖS: tilastomatematiia P (X = )=p. Nämä ovat 0 ja niiden summa on p =. Pistetodennäöisdet voidaan graafisesti esittää pstsuorien

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Hannu Pajula. Stirlingin luvuista TAMPEREEN YLIOPISTO Pro gradu -tutielma Hannu Pajula Stirlingin luvuista Informaatiotieteiden ysiö Matematiia Maalisuu 2014 Tampereen yliopisto Informaatiotieteiden ysiö PAJULA, HANNU: Stirlingin luvuista

Lisätiedot

Luku kahden alkuluvun summana

Luku kahden alkuluvun summana Luu ahden aluluvun summana Juho Salmensuu Lahden Lyseon luio Matematiia 008 Tiivistelmä Tutielmassa tarastellaan ysymystä; uina monella eri tavalla annettu parillinen oonaisluu voidaan esittää ahden aluluvun

Lisätiedot

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6

J1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6 MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7

Inversio-ongelmien laskennallinen peruskurssi Luento 7 Inversio-ongelmien laskennallinen peruskurssi Luento 7 Kevät 2012 1 Tilastolliset inversio-ongelmat Tilastollinen ionversio perustuu seuraaviin periaatteisiin: 1. Kaikki mallissa olevat muuttujat mallinnetaan

Lisätiedot

OHJ-2300 Johdatus tietojenkäsittelyteoriaan Syksy 2008

OHJ-2300 Johdatus tietojenkäsittelyteoriaan Syksy 2008 OHJ-2300 Johdatus tietojenäsittelyteoriaan Sysy 2008 1 2 Organisaatio & aiataulu Luennot: prof. Tapio Elomaa P1: Ti 14-16 TC 103 ja to 14 16 TC 133 P2: Ti 14-16 TB 219 ja to 12 14 TB 224 26.8. 20.11. Jussi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x , III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat

Lisätiedot

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24

Perustehtäviä. Sarjateorian tehtävät 10. syyskuuta 2005 sivu 1 / 24 Sarjateorian tehtävät 0. syysuuta 2005 sivu / 24 Perustehtäviä. Muunna sarja telesooppimuotoon ja osoita, että se suppenee. Lase myös sarjan summa. ( + ) = 2 + 6 + 2 +... 2. Osoita suoraan määritelmään

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Luku 11. Jatkuvuus ja kompaktisuus

Luku 11. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2008 Luu 11. Jatuvuus ja opatisuus 11.1 Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

X k+1 X k X k+1 X k 1 1

X k+1 X k X k+1 X k 1 1 Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 4 1. Oletetaan, että X n toteuttaa toisen kertaluvun differenssiyhtälön X k+2 2X k+1 + 2X k = ξ k,

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Luku 2. Jatkuvuus ja kompaktisuus

Luku 2. Jatkuvuus ja kompaktisuus 1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia

Lisätiedot

4.3 Erillisten joukkojen yhdisteet

4.3 Erillisten joukkojen yhdisteet 4.3 Erillisten jouojen yhdisteet Ongelmana on pitää yllä ooelmaa S 1,..., S perusjouon X osajouoja, jota voivat muuttua ajan myötä. Rajoitusena on, että miään alio x ei saa uulua useampaan uin yhteen jouoon.

Lisätiedot

Joulukuun vaativammat valmennustehtävät ratkaisut

Joulukuun vaativammat valmennustehtävät ratkaisut Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim

Modaalilogiikan harjoitusteht vi Aatu Koskensilta 1 Harjoitusteht v t Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesim Modaalilogiian harjoitusteht vi Aatu Kosensilta 1 Harjoitusteht v t 16.4 1.1 Teht v 100 a) Osoitamme, ett Th(F 1 F 2 ) Th(F 1 ) [ Th(F 2 ) vastaesimerin avulla. Otamme ehysisi F 1 = hz? ;?i ja F 1 = hz

Lisätiedot

4.0.2 Kuinka hyvä ennuste on?

4.0.2 Kuinka hyvä ennuste on? Luonteva ennuste on käyttää yhtälöä (4.0.1), jolloin estimaattori on muotoa X t = c + φ 1 X t 1 + + φ p X t p ja estimointivirheen varianssi on σ 2. X t }{{} todellinen arvo Xt }{{} esimaattori = ε t Esimerkki

Lisätiedot

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0

z z 0 (m 1)! g(m 1) (z0) k=0 Siksi kun funktioon f(z) sovelletaan Cauchyn integraalilausetta, on voimassa: sin(z 2 dz = (z i) n+1 k=0 TKK, Matematiian laitos v.pfaler/pursiainen Mat-.33 Matematiian perusurssi KP3-i sysy 2007 Lasuharjoitus 4 viio 40 Tehtäväsarja A viittaa aluviion ja L loppuviion tehtäviin. Valmistauu esittämään nämä

Lisätiedot

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko.

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko. Luento odennäöisyyslasentaa Otosavaruus, tapahtuma ja todennäöisyys Ehdollinen todennäöisyys, tilastollinen riippumattomuus, Bayesin teoreema, oonaistodennäöisyys Odotusarvo, varianssi, momentti Stoastiset

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko.

Luento Otosavaruus, tapahtuma. Otosavaruus (sample space) on kaikkien mahdollisten alkeistapahtumien (sample) ω joukko. Luento 0 odennäöisyyslasentaa Otosavaruus, tapahtuma ja todennäöisyys Ehdollinen todennäöisyys, tilastollinen riippumattomuus, Bayesin teoreema, oonaistodennäöisyys Odotusarvo, varianssi, momentti Stoastiset

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 Sisältö 1 KERTOMAT, BINOMIKERTOIMET 2 1.0.1 Kertoma/Factorial......................

Lisätiedot

x k x j < ε Seuraavat kolme lausetta kertovat Cauchy jonojen perusominaisuudet. kaikilla n m ε. x k y + y x j < ε 2 + ε 2 = ε.

x k x j < ε Seuraavat kolme lausetta kertovat Cauchy jonojen perusominaisuudet. kaikilla n m ε. x k y + y x j < ε 2 + ε 2 = ε. 28 FUNKTIONAALIANALYYSIN PERUSKURSSI 3. Täydellisyys ja Banachin avaruus Reaaliluujen jouo R (varustettuna normilla x y ) eroaa rataisevasti rationaaliluujen jouosta Q seuraavan ominaisuutensa perusteella:

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

9 Lukumäärien laskemisesta

9 Lukumäärien laskemisesta 9 Luumäärie lasemisesta 9 Biomiertoimet ja osajouoje luumäärä Määritelmä 9 Oletetaa, että, N Biomierroi ilmaisee, uia mota -alioista osajouoa o sellaisella jouolla, jossa o aliota Meritä luetaa yli Lasimesta

Lisätiedot

4. Martingaalit ja lokaalit martingaalit

4. Martingaalit ja lokaalit martingaalit STOKASTISET DIFFERENTIAALIYHTÄLÖT 45 4. Martingaalit ja lokaalit martingaalit Lähestymme nyt jo kovaa vauhtia hetkeä, jolloin voimme aloittaa stokastisen integroinnin. Ennen sitä käymme vielä läpi yhtä

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT imat-2.104 Tilastollisen analyysin perusteet / Tehtävät Aiheet: Avainsanat: Ysisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Koonaisesiarvo,

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause 116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

3. Täydellisyys ja Banachin avaruus. ominaisuutta sanotaan täydellisyydeksi. Toisena esimerkkinä mainitaan avaruus

3. Täydellisyys ja Banachin avaruus. ominaisuutta sanotaan täydellisyydeksi. Toisena esimerkkinä mainitaan avaruus FUNKTIONAALIANALYYSIN PERUSKURSSI 25 3. Täydellisyys ja Banachin avaruus Reaaliluujen jouo R (varustettuna normilla x y ) eroaa rataisevasti rationaaliluujen jouosta Q seuraavan ominaisuutensa perusteella:

Lisätiedot

termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s.

termit on luontevaa kirjoittaa summamuodossa. Tällöin päädymme lukusarjojen teoriaan: a k = s. SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 7 3. Luusarjat Josus luujonon (b ) termit on luontevairjoittaa summamuodossa. Tällöin päädymme luusarjojen teoriaan: Määritelmä 3.. Oloon ( ), R luujono. Symboli (3.)

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

VALIKOITUJA KOHTIA LUKUTEORIASTA

VALIKOITUJA KOHTIA LUKUTEORIASTA VALIKOITUJA KOHTIA LUKUTEORIASTA ARI LEHTONEN 1. Laajennettu Euleideen algoritmi 1.1. Jaoyhtälö. Oloot r 0, r 1 Z, r 0 r 1 > 0. Tällöin on olemassa ysiäsitteiset luvut q 1 ja r 2 Z siten, että r 0 = q

Lisätiedot

5. Stokastinen integrointi

5. Stokastinen integrointi STOKASTISET DIFFERENTIAALIYHTÄLÖT 55 5. Stokastinen integrointi Olemme lopulta käyneet läpi tarvittavat tiedot peruskäsitteistä ja voimme aloittaa stokastisen integroinnin (ja siten stokastisen derivoinnin

Lisätiedot

Reaalianalyysin perusteita

Reaalianalyysin perusteita Reaalianalyysin perusteita Heikki Orelma 16. marraskuuta 2008 Sisältö 1 Johdanto 3 2 Mitallisuus 3 3 Yksinkertaiset funktiot 6 4 Mitat ja integrointi 7 5 Kompleksisten funktioiden integrointi 10 6 Nolla-mittaisten

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen

Lisätiedot

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx. Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa

Lisätiedot

1 Reaaliset lukujonot

1 Reaaliset lukujonot Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo. Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat

Lisätiedot

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Toispuoleiset raja-arvot

Toispuoleiset raja-arvot Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen

Lisätiedot

Mitta- ja integraaliteoria 2 Harjoitus 1, Olkoon f : A! [0, 1] mitallinen ja m(a) < 1. Näytä, että josonp>1javakio M<1, joille

Mitta- ja integraaliteoria 2 Harjoitus 1, Olkoon f : A! [0, 1] mitallinen ja m(a) < 1. Näytä, että josonp>1javakio M<1, joille Harjoitus 1, 30.10.2015 1. Olkoon f : A! [0, 1] mitallinen ja ma) < 1. Näytä, että josonp>1javakio Mt} apple M 2. Olkoon f 2 L 1 A). Näytä, että 2 kaikilla

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-0401 Disreeti matematiia perusteet Yhteeveto, osa I G. Gripeberg alto-yliopisto 30. syysuuta 2015 1 Jouo-oppi ja logiia Prediaattilogiia Idutioperiaate 2 Relaatiot ja futiot Futiot Iso-O 3 Kombiatoriia

Lisätiedot

Tehtävä 11 : 1. Tehtävä 11 : 2

Tehtävä 11 : 1. Tehtävä 11 : 2 Tehtävä : Käytetää irjaita M luvu ( ) meritsemisee. Satuaisverossa G, p() o yhteesä solmua, jote satuaismuuttuja X mahdollisia arvoja ovat täsmällee jouo0,..., M} aii aliot. Joaie satuaisvero mahdollisista

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa

DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA. Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa / DISKREETIN MATEMATIIKAN SOVELLUKSIA: KANAVA-EKVALISOINTI TIEDONSIIRROSSA Taustaa Disreetin matematiian excursio: anava-evalisointi tiedonsiirrossa

Lisätiedot

2.1. Bijektio. Funktion kasvaminen ja väheneminen ********************************************************

2.1. Bijektio. Funktion kasvaminen ja väheneminen ******************************************************** .. Funtion asvainen ja väheneinen.. Bijetio. Funtion asvainen ja väheneinen Palautetaan ieleen funtion äsite. ******************************************************** MÄÄRITELMÄ Oloot ja B asi ei-tyhjää

Lisätiedot

= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja

= X s + IE[X t X s ] = 0, s ja sitä, että ehdollinen odotusarvo on tavallinen odotusarvo silloin, kun satunnaismuuttuja 44 E. VALKEILA 6. Geometrinen Brownin liike 6.1. Brownin liike ja Iton kaava. Tavoitteena on mallintaa osakkeen tuottoa jatkuvassa ajassa. Jos (S t ) t T on osakkeen hintaprosessi, niin tuotolla tarkoitetaan

Lisätiedot

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla MAT21007 Mitta ja integraali Harjoitus 2 viikko 25.3-29.3 2019) Palauta mieleen: monisteen luku 0; Topologia I) avaruuden d euklidinen etäisyys, avoimet kuulat ja joukot. Ohjausta laskuharjoitusten tekoon:

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Talousmatematiikan verkkokurssi. Koronkorkolaskut

Talousmatematiikan verkkokurssi. Koronkorkolaskut Sivu 1/7 oronorolasuja sovelletaan tapausiin, joissa aia on pidempi uin ysi oonainen orojaso, eli aia, jolle oroanta ilmoittaa oron määrän. orolasu: enintään yhden orojason pituisille oroajoille; oronorolasu:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Neljännen viikon luennot Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuun 2.1. Esko Turunen esko.turunen@tut.fi Funktion y = f (x) on intuitiivisesti

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-0402 Disreeti matematiia perusteet Yhteeveto, osa I G. Gripeberg 1 Jouo-oppi ja logiia Idutioperiaate 2 Relaatiot ja futiot Futiot Iso-O alto-yliopisto 12. maalisuuta 2015 3 Kombiatoriia ym. Summa-,

Lisätiedot

14. Juurikunnat Määritelmä ja olemassaolo.

14. Juurikunnat Määritelmä ja olemassaolo. 14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

8. Avoimen kuvauksen lause

8. Avoimen kuvauksen lause FUNKTIONAALIANALYYSIN PERUSKURSSI 125 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Tilastollinen päättely II, kevät 2018 Harjoitus 6A Ratkaisuehdotuksia. HY, MTO / Matemaattiste tieteide adiohjelma Tilastollie päättely II, evät 2018 Harjoitus 6A Rataisuehdotusia Tehtäväsarja I 1. (Moistee tehtävä 5.4) Kauppias myy mäysiemeiä, joide itävyyde väitetää oleva

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

Gaussin ja Jordanin eliminointimenetelmä

Gaussin ja Jordanin eliminointimenetelmä 1 / 25 : Se on menetelmä lineaarisen yhtälöryhmän ratkaisemiseksi. Sitä käytetään myöhemmin myös käänteismatriisin määräämisessä. Ideana on tiettyjä rivioperaatioita käyttäen muokata yhtälöryhmää niin,

Lisätiedot

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio 6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.

Lisätiedot

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset

Todennäköisyyslaskenta IIa, syyslokakuu 2019 / Hytönen 2. laskuharjoitus, ratkaisuehdotukset Todennäköisyyslaskenta IIa, syyslokakuu 019 / Hytönen. laskuharjoitus, ratkaisuehdotukset 1. Kurssilla on 0 opiskelijaa, näiden joukossa Jutta, Jyrki, Ilkka ja Alex. Opettaja aikoo valita umpimähkään opiskelijan

Lisätiedot