Sisältö. Ajoittaminen. Dynaaminen vai staattinen ajoitus. Staattisen ajoituksen rajoitukset: Ylikuormitus

Koko: px
Aloita esitys sivulta:

Download "Sisältö. Ajoittaminen. Dynaaminen vai staattinen ajoitus. Staattisen ajoituksen rajoitukset: Ylikuormitus"

Transkriptio

1 8 Tosiaikajärjstlmät (3ov) Lunto Ajoittaminn: RM & EDF Tiina Niklanr Sisältö Johanto ja trmistöä Dynaaminn, staattinn, ylikuormitus Ajoituksn prusmntlmiä Kllo-ohjattu Esim. staattinn taulukkopohjainn, jaksollinn Prioritttiprustainn Esim. RM, EDF Ajoitttavuusanalyysi Ajoittaminn Ajoitus on totuttamisklpoinn (fasibl), jos s totuttaa kaikki sovlluksn rajoittt (constraint) anntull joukoll tapahtumia. Joukko tapahtumia on ajoitusklpoinn (schulabl), jos on olmassa vähintään yksi ajoitusalgoritmi, joka pystyy muoostamaan totuttamisklpoisn ajoituksn. Ajoitusalgoritmi on optimaalinn (optimal) ottan huomioon ajoitusklpoisuun, jos s pystyy aina löytämään totuttamisklpoisn ajoituksn tilantssa, missä jokin toinnkin algoritmi pystyy siihn. Dynaaminn vai staattinn ajoitus Dynaaminn sallii uusia töitä vaihtlvan suoritusjärjstyksn Dynaamisuun onglmana on varmnnttavuus ja nnustttavuus Staattinn kiinnittää työt töin ajoituksn tukätn Staattisuutta käyttään kriittisissä järjstlmissä, koska matmaattissti tonnttavissa Staattisn ajoituksn rajoitukst: Kskyttämätön ajoittaminn (non-prmptiv) Tapahtuman käynnistyttyä tapahtumaa i voi kskyttää (prmpt) toinn tapahtuma. Ahn ajoittaja (gry) Tapahtuman käynnistyminn stää muin, sim. almman priorittin tapahtumin ajon. Ei prosssorin jakoa Prosssori voi suorittaa vain yhtä tapahtumaa krrallaan. Ei ynaamista tapahtumin rinnakkaisuutta Tapahtumaa voiaan suorittaa vain yhllä prosssorilla krrallaan Ei tapahtuman siirtoa (migration) Tapahtuma i voi vaihtaa prosssoria kskn suorituksn. Ylikuormitus Mikä on ylikuormitus? Kun ajoittaja, s nnustavasti, i voi thä totuttamisklpoista ajoitusta Mitn toivutaan? Osa thtävistä on jätttävä suorittamatta Suoritusaikaist ajoittajat ivät slviä ylikuormitustilantista kovinkaan hyvin.

2 Ajoituksn prusmntlmät Kllo-ohjattu suoritus tn kllon määräämässä tahissa Ylnsä staattinn ajoitus, mutta voi olla myös staattinn vain yhn jakson ajan Prioritttipohjainn ajoitus Thtävät suorittaan vuorotlln, suoritusvuoroon valitaan s, jolla korkin priorittti Priorittti voi olla staattinn tai ynaaminn, ajoitus on ynaaminn Kllo-ohjatut ajoittajat (clockrivn schulrs) Ajoituspäätökst thään tittyinä määritltyinä aikahtkinä, jotka on tyypillissti valittu tukätn. Esimrkki: Ajoittaja hrää tityn ajan välin ja muoostaa osan ajoitukssta. T T T Staattinn taulukkopohjainn ajoitus Etukätn tunntut jaksollist thtävät Ajoitustaulukko tukätn koko hyprprioill, jota sittn toisttaan T T T T T T T T T T T Taulukon alkiot: (0,T),(,),(,T),(3.8,I),(,T),...,(9.8,I) Jaksollinn ajoitus Ajoituspäätökst säännöllisin väliajoin Khys f (kahn päätöshtkn väli) Khyksn koko? jakso li hyprprioi i T T T T T T T T T T T t t+f t+f t+3f... t+h Khykst i+ Khyksn koko: Alaraja - riittävän suuri Yksittäinn työ mahtuu kokonaan khyksn Tällöin i tarvita kskytyksiä (prmption) Yläraja Ajoittajan toiminnan varmistamisksi on kunkin työn aloitusajan (t ) ja aikarajan (D i ) väliin mahuttava aina kokonainn khys. f syt (p i,f) D i f max ( i ) i n Khystn määrä Khystn lukumäärän on oltava tasan jaollinn yhn jakson sisällä Khysraja ja jakson raja osuvat samaan kohtaan Jakson pituun pitää olla joku hyprprioi H:n tkijöistä (li jonkun thtävän T i jakso p i on tasan jaollinn f:llä p i / f -p i / f 0

3 T T T Khyksn koon määrääminn Hyprprioi H = Alaraja: f max(,.8,, ) Kokovaihtohot,,,0,0 Yläraja: f-syt(p i,f) D i ainoastaan f= käy T T T T T T T T T T T Staattinn jaksollinn ajoitus Khyksn koon määritys kaavat llä Töin ositus joskus tarkoituksnmukaista Töin sijoittlu aikajanall tämä määrää suoritusjärjstyksn Töin sijoittlusta syntyy ajoitustaulu Muutos staattisn taulukkoon vrrattuna on, ttä nyt työt alkavat khysrajoilta T T Khyksn koon määrääminn (sim ) T p Hyprprioi H = 0 Alaraja: f max(,, ) Kokovaihtohot,,,0,0 Yläraja: f-syt(p i,f) D i : f jattava osiin!,3, => f= T T T T T T T T Jaksollinn ajoitus (sim 3) Tapahtumat (,0.), (,.0), (0,), ja (,9) Hyprprioi =*,, 0=*, = 3 *3 siis hyprprioi H= 3 *3*=0 Tästä joukosta voiaan suoraan vikata, ttä pisin työ jouutaan sijoittamaan usampaan khyksn (pävirallinn prustlu 9 > ), koska Tavoittna on löytää sllainn khyskoko, ttä ainakin yksi khys mahtuu jokaisn työn aloituksn ja loptusrajan sisään (li pitää olla varmasti ) T T T p H=0 3 Esimrkki 3 jatkuu Unohtaan tuo suurin htkisksi ja tutkitaan vain joukkoa (,0.), (,), ja (0,) Nyt mahollinn vaihtohto on vain Khyksn yläraja (koko 3) : *3-pyj(,3) = *3-= joka i ol pinmpi kuin Khyksn yläraja (koko ): *-pyj(,)= Siis käyttään khyksn kokoa! Khyksn koko i toimi työll (,) Esim 3: Suurimman työn osittaminn Työ (,9) täytyy jakaa osiin ja sallia sn kskyttäminn. Osituksssa pyritään mahollisimman pinn määrään paloja. Suurin osan koko on, koska s on khyksn koko. Ositus 7:ään osaan on ilmissti toimivin vaihtohto:,++0,++0,++0, 3

4 t t t t Lopullinn ajoitus Sisältö Johanto ja trmistöä Ajoituksn prusmntlmiä Kllo-ohjattu Esim. staattinn taulukkopohjainn, jaksollinn Prioritttiprustainn Rat-monotonic, Dalin-monotonic Earlist-alin-first, Last-slack-tim Ajoitttavuusanalyysi Prioritttiprustaist ajoittajat Ajoituspäätökst thään tittyjn tapahtumin hrättn prustlla Tapahtuma tul järjstlmään Prosssori tul vapaaksi Prosssori on kiirinn aina, kun on työtä thtäväksi. Esimrkkjä: FIFO, LIFO, EDF Prioritttiprustaistn luokittlu Staattinn priorittti (skä thtävä ttä työ) Rat-monotonic (RM) Dalin-monotonic (DM) Dynaaminn priorittti EDF - mutta yksittäisllä työllä staattinn LST - skä työllä ttä thtävällä ynaaminn Rat-monotonic (RM) Käyttää staattisia prioritttja Priorittti määräytyy tapahtuman taajuusta (frquncy) Tapahtumat, joilla on lyhymmät jaksot saavat korkamman priorittin. Torttissti hyvin tutkittu ( prosssorill) Riittävä ajoitttavuuststi voiaan suorittaa linaarisssa ajassa (tityin hoin). Tarkka ajoitttavuuststi on NP-täyllinn onglma. Optimaalinn vrrattuna kaikkiin staattista prioritttia käyttäviin mntlmiin, jos aikaraja on sama kaikilla tapahtumilla. Rat monotonic Ajoittaa suoritusvuoroon aina sn, jonka priorittti (li taajuus) on korkin T T

5 Rat monotonic Ajoittaa suoritusvuoroon aina sn, jonka priorittti (li taajuus) on korkin Rat monotonic Ajoittaa suoritusvuoroon aina sn, jonka priorittti (li taajuus) on korkin T T 0 Ensin sijoitllaan T T T 0 Ensin sijoitllaan T Sittn T vapaisiin kohtiin Rat monotonic Ajoittaa suoritusvuoroon aina sn, jonka priorittti (li taajuus) on korkin T T 0 Ensin sijoitllaan T Sittn T vapaisiin kohtiin Lopuksi Rat monotonic Ajoittaja toimissaan valits kullakin tapahtumahtkllä suorituksn sn, jonka priorittti (li taajuus) on korkin T T p/ 0 Esim. ajanhtkllä 6: kun T tul suorituksn, s kskyttää T:n suorituksn Dalin monotonic (DM) Algoritmi kutn rat monotonic, mutta Priorittiksi asttaan työn suhtllinn aikaraja, jolloin s, jonka aikaraja on pinin pääs nsin suorituksn. RM ja DM ovat inttist, jos kaikkin tapahtumin aikarajat ovat niin jaksojn mittaist. Esim tapahtumajoukko T (0,0,,00), T (0,6.,0,0) ja T 3 (0,,,0) on ajoitttavissa DM, mutta i RM-mntlmällä Earlist-alin-first (EDF) EDF (Earlist Dalin First) algoritmi käyttää ynaamista prioritttia Työ, jonka absoluuttinn aikaraja on lähinnä saa korkimman priorittin. Torttissti hyvin tutkittu ( prosssorill) Täsmällinn ajoitttavuuststi voiaan suorittaa linaarisssa ajassa (tityin hoin). EDF on optimaalinn vrrattuna kaikkiin ynaamista prioritttia käyttäviin mntlmiin, kun yksi prosssori, kskyttävä suoritus sallitaan ja i kilpailua rsurssista

6 Esim: RM vs EDF (,) (7,) LST Last Slack Tim LST on EDF:ll kääntinn; optimaalinn samoin rajoituksin Ajoittaan vuoroon s, joka voi oottaa huonoimmin Vaatii tarkan tion lasknnan kstosta joka htki laskmaan kulloisnkin viivyttlyajan aina kaikill töill Ajoitttavuusanalyysi Tavoittna slvittää, voiaanko annttu joukko tapahtumia ajoittaa anntulla suoritusaikaislla ajoittajalla sitn, ttä kaikki tapahtumin ilmntymät päättyvät aikarajoihin mnnssä. Ajoitttavuusanalyysi tyypillissti sisältää ajoitttavuuststin, joka on sovitttu käytttäväll ajonaikaislla ajoittajall. Ajoitttavuuststi Ajoitttavuuststi on riittävä, jos s positiivislla vastaukslla osoittaa, ttä joukko tapahtumia on varmasti ajoitttava. Ajoitttavuuststi Ajoitttavuuststi on välttämätön, jos s ngatiivislla vastaukslla osoittaa, ttä joukko tapahtumia i varmasti ol ajoitttava. Ajoitttavuuststi Täsmällinn ajoitttavuuststi on skä riittävä ttä välttämätön. Jos vastaus on positiivinn, tapahtumajoukko on varmasti ajoitttava ja jos vastaus on ngatiivinn tapahtumajoukko i varmasti ol ajoitttava. 6

7 Ajoitttavuuststin mntlmiä Prosssorin käyttöastn analyysi prosssoriajan (murto-)osa, joka käyttään tapahtumajoukon suorituksn i saa ylittää tittyä rajaa. Sopii staattisn/ynaamisn priorittin ajoittajiin yksiprosssorijärjstlmässä. Vastausaika-analyysi Jokaisn tapahtuman pahimman tapauksn suoritusaikaa vrrataan tapahtuman aikarajaan Sopii staattisn priorittin ajoittajiin (kutn RM). Prosssorin vaatimusanalyysi Yhtnlaskttu prosssointivaatimus tapahtumajoukoll tityssä aikavälissä i saa ylittää aikaväliä. Vain EDF-mntlmäll yksiprosssorijärjstlmässä. Prosssorin käyttöast Käyttöast U joukoll prioisia tapahtumia on s murto-osa prosssorikapasittistä, joka käyttään tapahtumin suorituksn. Koska i /p i on s osa, joka käyttään yhn tapahtuman T suorituksn, n:n tapahtuman yhtnlaskttu käyttöast on: n i U = i = p i Ajoitttava käyttöast (schulabl utilization) Ajoitusmntlmä pystyy ajoittamaan, minkä tahansa jaksollisn työjoukon, kunhan niin yhtnlaskttu käyttöast on mntlmän ajoitttavaa käyttöasttta pinmpi (tai yhtä suuri). Kaikill ajoitusmntlmill voiaan laska ajoitttava käyttöast, jolla saaaan tuo yo. ta. S on riittävä hto, mutta i aina välttämätön. Ajoitttavuuststaus (EDF): Käyttöastn avulla Riittävä ja myös välttämätön hto EDF (ja LST) ajoituksll: U EDF n i = min( pi, i) i= HUOM: Jakajassa on joko jakson pituus tai työn suhtllinn aikaraja jakson alusta Ajoitttavuuststaus (RM) käyttöastn avulla Riittävä hto RM (ja DM) ajoituksll on: URM n( / n Konsrvatiivinn raja saaaan: lim n( n / n ) ) = ln Esimrkki: ajoitttavuuststi Thtäväjoukko (3,), (,.), (7,.) ja (9,0.) Käyttöast /3 +./ +./7 +0./9 = < => On ajoitttavissa EDF:llä 0.8 >( / -)= 0.77 => RM? hki kokillaan (tai thään toinn analyysi) T T T

8 (3,), (,.), (7,.) ja (9,0.) JNE RM ajoitus (alkuosa) Aikavaatimusanalyysi (Tim-Dman Analysis) Tarkastllaan yksi krrallaan töitä T i korkimmasta priorittista alimpaan wi( t) i = i + k= t k, pk kun 0 < t pi Työt voiaan ajoittaa, kun i wi( t) t, jollkin t i pi T (3,) T (,.) (7,.) ja T (9,0.) Maksimivastajat (kuvasta, mrkitty pinllä pallolla) T T..7 T 9 Aikavaatimusanalyysi Kuva 6-9: saman työt kuin llisssä simrkissä Analyysin onglma: Suorituksn styminn Almman priorittin työ voi Estää kskyttämisnsä (sim. systmikutsu) Käyttää poissulkvasti jattua rsurssia Korkamman priorittin työ joutuu oottamaan => ns. priorittin kääntyminn Esttty korkamman priorittin työ saattaa myös ylittää aikarajansa ootuksn vuoksi Siksi ajoitttavuusanalyysissä tarkastltava myös matalamman priorittin töin kskyttämättömin suoritusjaksojn kstoja Estyminn analyysin kannalta Korkamman priorittin työn voi stää vain yksi almpi nnn sn pääsyä suorituksn Jotn lisätään arviossa korkamman priorittin työn suoritusaikaan almpin stoaikojn maksimi. Työn pisin stymisaika (blocking tim) on tällöin bi( np) = max θ k i+ k n Kun työt järjsttty prioritttin mukaan ja i on yhn ston ksto Estyminn ja EDF TyöJ k (, k ) voi stää työtä J i (, i ) vain jos k > j Ainoastaan tällöin sn priorittti on pinmpi li aikaraja on myöhäismpi. Toisaalta sn on täytyy olla jo suorituksssa, jotta stäminn olisi mahollista, li sn aloitusajan täytyy olla aikaismpi. U EDF n i = min( pi, i) bi + min( pi, ) i= i 8

9 Prioritttiluokkin määrä Tasan Prioritttin jako Säilyttään suhtt Analyysit olttavat äärtöntä määrää prioritttja Samalla arvolla i ol riarvoisia töitä Käytännössä prioritttiluokkin määrä rajoitttu joskus 8, usin 3, 7 tai. Mitn työt sijoitllaan rajallisn prioritttiavaruutn? jataan tasan säilyttään suhtt (+)/ = / (+)/0 = / 0 0 Yhtnvtona: Kllo-ohjatut staattist ajoitukst Hyöyt: Ei tarvita rinnakkaisuun hallintaa riksn Voiaan määrittää ja arvioia tukätn Haitat: Kaikkin töin aloitusajat on kiinnitttävä tukätn Koko työkuorma on tunnttava nnakkoon, i salli ynaamisuutta Tuk suhtllisn huonosti skakuormia Erinomainn, jos yo. haitat ivät ol st Yhtnvtona: Prioritttipohjaist ajoitukst Algoritmit: RM, DM, EDF ja LST Ajoitttavuuststi: EDF: lasknnallinn käyttöast RM: lasknnallinn käyttöast RM:n tapauksssa hto on riittävä, mutta i välttämätön EDF:ll hto on skä riittävä ttä välttämätön Mitä voi mnnä piln? Rsurssit, kriittist alut, ootus Priorittin kääntyminn, lukkiumat Kskytymättömät kriittist alut Ootusonglma (Blocking problm) 9

10 Priorittin kääntyminn (Priority invrsion) Mars Pathfinr Laskutui Kohtaa ohjlmisto-onglmia (softwar glitchs). Pathfinr kok toistuvia RESET:jä mtorologisn tion kruussa. Priorittin kääntymisstä aihutuvia ajoitustn ylityksiä. mbj/mars_pathfinr/mars_pat hfinr.html Priorittin kääntyminn Mars Pathfinr Priorittin kääntymisn välttäminn Kskytymättömät kriittist alut Luovat tarptonta ootusta. Käyttöklpoisia vain lyhyill kriittisill aluill. Sisääntuloprotokollia kriittisll alull Priorittin printä (Priority Inhritanc Protocol). Priorittin kattomntlmä (Priority Ciling Protocol). 0

1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5.

1. Laske sivun 104 esimerkin tapaan sellainen likiarvo luvulle e, että virheen itseisarvo on pienempi kuin 10 5. MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi II Harjoitus Ratkaisuhdotuksia Aapo Tvanlinna. Lask sivun 4 simrkin tapaan sllainn likiarvo luvull, ttä virhn itsisarvo on pinmpi kuin 5. Huomataan nsin,

Lisätiedot

exp(x) = e x x n n=0 v(x, y) = e x sin y

exp(x) = e x x n n=0 v(x, y) = e x sin y 4 Alkisfunktioita 41 Eksponnttifunktio Eksponnttifunktio xp : R R on määritlty khitlmällä xp(x) = x x n = n! Pyrimm laajntamaan määritlmän koko tasoon C sitn, ttä 1 xp : C C on analyyttinn ja xp(x) = x,

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

Sisältö. Tosiaikajärjestelmät: Luento 3 Epäsäännöllisten töiden ajoitus. Sporadisten ja jaksottomien ajoitus Kellopohjainen ajoitus jaksollisilla

Sisältö. Tosiaikajärjestelmät: Luento 3 Epäsäännöllisten töiden ajoitus. Sporadisten ja jaksottomien ajoitus Kellopohjainen ajoitus jaksollisilla Tosiaikajärjestelmät: Luento 3 Epäsäännöllisten töiden ajoitus Tiina Niklander 20.3.2006 (päiv. 22.3.) Sisältö Yleistä Jaksottomien (ei-tosiaikaisten) töiden jaksolliset vuorotuspalvelut Osa-aika palvelimet

Lisätiedot

Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit

Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit Tiina Niklander Jaetut resurssit Useat tapahtumat jakavat ohjelma-/laitteisto-olioita, joissa keskinäinen poissulkeminen on välttämätöntä.

Lisätiedot

Variations on the Black-Scholes Model

Variations on the Black-Scholes Model Variations on th Black-Schols Mol Sovlltun matmatiikan jatko-opintosminaari 6.9 Koh-tuus maksaa osinkoja avoittna on tarkastlla tilantita, joissa B&S yhtälö i ol riittävä sllaisnaan (sim. option koh-tuus

Lisätiedot

Tosiaikajärjestelmät: Luento 3 Epäsäännöllisten töiden ajoitus

Tosiaikajärjestelmät: Luento 3 Epäsäännöllisten töiden ajoitus Tosiaikajärjestelmät: Luento 3 Epäsäännöllisten töiden ajoitus Tiina Niklander 20.3.2006 (päiv. 22.3.) Sisältö Yleistä Jaksottomien (ei-tosiaikaisten) töiden jaksolliset vuorotuspalvelut Osa-aika palvelimet

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.11 SÄHKÖTKNIIKKA JA LKTONIIKKA 2. väliko 14.12.26. Saat vastata vain nljään thtävään! Kimmo Silvonn 1. Millä välillä vaihtl opraatiovahvistimn lähtöjännit, jos =1 +û sin ωt. =2, û =5. 2 Thtävä 2.

Lisätiedot

6. Luento: Skedulointi eli Vuoronnus. Tommi Mikkonen, tommi.mikkonen@tut.fi

6. Luento: Skedulointi eli Vuoronnus. Tommi Mikkonen, tommi.mikkonen@tut.fi 6. Luento: Skedulointi eli Vuoronnus Tommi Mikkonen, tommi.mikkonen@tut.fi Agenda Peruskäsitteet Skedulointialgoritmeja Reaaliaikajärjestelmien skedulointi Skeduloituvuuden analysoinnista Yhteenveto Peruskäsitteet

Lisätiedot

4. Putkivirtaus 4. PUTKIVIRTAUS. 4.1 Virtauslajit ja Reynoldsin luku. 4.2 Putkivirtauksen häviöt

4. Putkivirtaus 4. PUTKIVIRTAUS. 4.1 Virtauslajit ja Reynoldsin luku. 4.2 Putkivirtauksen häviöt 4. Putkivirtaus 4. PUTKIVIRTAUS Brnoullin yhtälön yhtydssä todttiin todllisssa virtauksssa syntyvän aina häviöitä, jotka muuttuvat lämmöksi. Putkivirtauksssa nämä häviät näkyvät painn laskuna virtaussuunnassa

Lisätiedot

4 KORKEAMMAN KL:N LINEAARISET DIFFERENTIAALIYHTÄLÖT

4 KORKEAMMAN KL:N LINEAARISET DIFFERENTIAALIYHTÄLÖT KORKEAMMAN KL:N LINEAARISET DIFFERENTIAALIYHTÄLÖT Krtalukua n olvassa diffrntiaalihtälössä F(,,,, (n) ) = siint n:nnn krtaluvun drivaatta (n) = d n /d n ja mahdollissti almpia drivaattoja, :tä ja :ää.

Lisätiedot

Johdatus graafiteoriaan

Johdatus graafiteoriaan Johdatus graafitoriaan Syksy 2017 Lauri Hlla Tamprn yliopisto Luonnontitidn tidkunta 2 Luku 1 Pruskäsittitä 1.1 Määritlmiä 1.2 Esimrkkjä 1.3 Trminologiaa 1.4 Joitakin rikoisia yksinkrtaisia graafja 1.5

Lisätiedot

Differentiaaliyhtälöt, Syksy 2015 Harjoitus 2, Ratkaisut Ratkaise separoituvat differentiaaliyhtälöt. a) y = y

Differentiaaliyhtälöt, Syksy 2015 Harjoitus 2, Ratkaisut Ratkaise separoituvat differentiaaliyhtälöt. a) y = y Diffrntiaaliyhtälöt, Syksy 215 Harjoitus 2, Ratkaisut 1.11.215 1. Ratkais sparoituvat diffrntiaaliyhtälöt a) y = y 3, b) y = 1 + y 2 y 2. y Ratkaisu. a): Yhtälö y = 3 on hyvin määritlty kun 3. Lisäksi

Lisätiedot

6 Hypertekstin rakenne ja navigointi

6 Hypertekstin rakenne ja navigointi 6 Hyprtkstin raknn ja navigointi Hyprtkstin prusraknn on vrkko li graafi Laajnntaan näkökulmaa WWW:stä ylisn hyprtkstin suuntaan. Hyprmiasta ja hyprtkstistä puhuttassa on hyvä huomata, ttä samoja trmjä

Lisätiedot

3 TOISEN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. y + p(x)y + q(x)y = r(x) (1)

3 TOISEN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. y + p(x)y + q(x)y = r(x) (1) 5 3 TOISEN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT Huomautus pälinaarisista diffrntiaalihtälöistä: Epälinaarisn DY:n ratkaismisn i ol lispätvää mntlmää. Joitakin rikoistapauksia voidaan ratkaista:

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa. / ELEMENIMENEELMÄN PERUSEE SESSIO : Gaussin intgrointi mojanan alussa. JOHDANO Ylisssä lujuusopin lmnttimntlmässä lmntin jäykkyysmatriisi [ k ] ja kvivalnttinn solmukuormitusvktori { r } lasktaan määrätyistä

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

Ensimmäisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon. + p(x)y = r(x) (28)

Ensimmäisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon. + p(x)y = r(x) (28) .5 Linaarist diffrntiaaliyhtälöt 10 Ensimmäisn krtaluvun diffrntiaaliyhtälö on linaarinn, jos s voidaan kirjoittaa muotoon + p(x)y = r(x) (8) Yhtälö on linaarinn y:n ja y:n suhtn, p ja r voivat olla mitä

Lisätiedot

Algoritmit 1. Luento 12 Ti Timo Männikkö

Algoritmit 1. Luento 12 Ti Timo Männikkö Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit

Lisätiedot

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 0 Thtävin ratkaisut Kustannusosakyhtiö Otava päivittty 9..08 Kokoavia thtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Kirjoittaan kskiarvoll lausk :n avulla ja ratkaistaan yhtälöstä. π 4 π 4π :4 π 4 a b

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ LIITE 8A: RAKENNELUVUN 37 YHTÄLÖITÄ Raknnluvusta 37 on tämän työn yhtydssä syntynyt yli 00 yhtälöä, joista 00 yhtälöä on analysoitu. Näistä on osoittautunut 70 yhtälöä milnkiintoisiksi ja saman vrran otaksutaan

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali 7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin

Lisätiedot

Lämmönsiirto (ei tenttialuetta)

Lämmönsiirto (ei tenttialuetta) ämmönsiirto um 4..3 ämmönsiirto (i tnttialutta) rminologiaa ämpötila on suur, joka kuvaa, mitn kuuma jokin sin tai ain on. ämpötilaa (lat. tmpratura) mitataan SI-järjstlmässä klvinillä (K) tai clsiusastilla

Lisätiedot

Ongelma(t): Jotta tietokone olisi mahdollisimman yleiskäyttöinen ja suorituskykyinen, niin miten tietokoneen resurssit tulisi tarjota ohjelmoijalle,

Ongelma(t): Jotta tietokone olisi mahdollisimman yleiskäyttöinen ja suorituskykyinen, niin miten tietokoneen resurssit tulisi tarjota ohjelmoijalle, Ongelma(t): Jotta tietokone olisi mahdollisimman yleiskäyttöinen ja suorituskykyinen, niin miten tietokoneen resurssit tulisi tarjota ohjelmoijalle, sovellusohjelmille ja käyttäjille? 2012-2013 Lasse Lensu

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK)

Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja lineaaripiirit. Maxwellin yhtälöt. (Kuuluu kurssiin Sähkömagnetismi, LuTK) Jakso 10. Tasavirrat. Tasaantumisilmiöt. Vaihtovirrat. Sarja- ja linaaripiirit. Maxwllin yhtälöt. (Kuuluu kurssiin Sähkömagntismi, LuTK) Näytä tai jätä tarkistttavaksi tämän jakson pakollist thtävät viimistään

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava

Lisätiedot

Algoritmit 2. Luento 10 To Timo Männikkö

Algoritmit 2. Luento 10 To Timo Männikkö Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien

Lisätiedot

Tosiaikajärjestelmät Luento 9: Moniprosessorijärjestelmät

Tosiaikajärjestelmät Luento 9: Moniprosessorijärjestelmät Tosiaikajärjestelmät Luento 9: Moniprosessorijärjestelmät Tiina Niklander Liu: Real-Time Systems luku 9 Sisältö Järjestelmämalli moniprosessorikone hajautettu järjestelmä Päästä-päähän Tehtävän töiden

Lisätiedot

5. Luento: Rinnakkaisuus ja reaaliaika. Tommi Mikkonen, tommi.mikkonen@tut.fi

5. Luento: Rinnakkaisuus ja reaaliaika. Tommi Mikkonen, tommi.mikkonen@tut.fi 5. Luento: Rinnakkaisuus ja reaaliaika Tommi Mikkonen, tommi.mikkonen@tut.fi Agenda Perusongelmat Jako prosesseihin Reaaliaika Rinnakkaisuus Rinnakkaisuus tarkoittaa tässä yhteydessä useamman kuin yhden

Lisätiedot

Y56 laskuharjoitukset 6 - mallivastaukset

Y56 laskuharjoitukset 6 - mallivastaukset Y56 Kvät 00 Harjoitus. Monopsoni Y56 laskuharjoitukst 6 - mallivastaukst Tavoittna on ymmärtää panosmarkkinoidn luonntta, kun markkinoilla on vain yksi ostaja. Monopsoni tuottaa hyödykttä y kilpailullisill

Lisätiedot

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2 Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot.. Tehtävä Edellinen tehtävä voidaan ratkaista mm. Bellman-Fordin, Floyd-Warshallin tai Dikstran algoritmilla. Kyseessä on syklitön suunnattu verkko, oten algoritmi. (lyhimmät tiet

Lisätiedot

8. RAKENNELUKU /α = 137, (8.1)

8. RAKENNELUKU /α = 137, (8.1) 8. RAKENNELUKU 37 Raknnluku 37 on skä matmatiikassa ttä fysiikassa samantapainn ja prustavalaatuinn raknnluku kuin luonnonluku /. Fysiikassa luvun 37 kääntisarvoa kutsutaan hinoraknnvakioksi, jonka tarkka

Lisätiedot

Esimerkki 1, Perusmalli (1)

Esimerkki 1, Perusmalli (1) (1) Lhtipaino hankkii tarvitsmansa painomustn krran viikossa. Kskimäärin viikossa hankitaan 1000 kg painomusttta (5000 kg vuodssa). Tilauskustannus on 50,00/tilaus. Yksikköylläpitokustannus on 1,0/kg/.

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely

FYSA220/K2 (FYS222/K2) Vaimeneva värähtely FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet kevät 2019 / orms.1030 Talousmatematiikan perusteet 5. harjoitus, viikko 7 11.02. 15.02.2019 R01 Ma 12 14 F453 R08 Ke 10 12 F453 R02 Ma 16 18 F453 L To 08 10 A202 R03 Ti 08 10 F425 R06 To 12 14 F140 R04

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

Yhteysopas. Windows-ohjeet paikallisesti liitettyä tulostinta varten. Mitä paikallinen tulostaminen on? Ohjelmiston asentaminen CD-levyltä

Yhteysopas. Windows-ohjeet paikallisesti liitettyä tulostinta varten. Mitä paikallinen tulostaminen on? Ohjelmiston asentaminen CD-levyltä Yhtysopas Sivu 1/6 Yhtysopas Winows-ohjt paikallissti liitttyä tulostinta vartn Huomautus: Kun asnnat paikallissti liitttyä tulostinta, ja Ohjlmisto ja käyttöoppaat -CD-lvy i tu käyttöjärjstlmää, käytä

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi syksy 2012

SATE.10xx Staattisen kenttäteorian laajentaminen Sähkömagneettiseksi kenttäteoriaksi syksy 2012 SATE.0 Staattisn knttätorian laantainn Sähköagnttisksi knttätoriaksi sks 0 /6 Laskuharoitus 5 / Sähköagnttist aalton polarisoituinn a tninn väliainsta toisn Thtävä. a) Määritä tniskrroin 50 kh:n taauudlla

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut A1 Diplomi-insinöörin ja arkkithtin yhtisalinta - dia-alinta 2010 Alla on lutltu kuusi suurtta skä annttu taulukoissa kahdksan lukuaroa ja kahdksan SI-yksikön symbolia. Yhdistä suurt oikan suuruusluokan

Lisätiedot

e n 4πε S Fysiikka III (Est) 2 VK

e n 4πε S Fysiikka III (Est) 2 VK S-11.137 Fysiikka III (Est) VK 7.5.009 1. Bohrin vtyatomimallissa lktronilla voi olla vain tittyjä nopuksia. Johda kaava sallituill nopuksill, ja lask sn avulla numrinn arvo suurimmall mahdollisll nopudll.

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Faustmannin (1849) kiertoaikamalli on yksinkertaisin

Faustmannin (1849) kiertoaikamalli on yksinkertaisin Mtsätitn aikakauskirja 3/1999 Titn tori Olli Tahvonn Faustmannin kirtoaikamallista ja sn ylistyksistä m t a Johdanto Faustmannin (1849) kirtoaikamalli on yksinkrtaisin mahdollinn kuvaus taloudllissti thokkaasta

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa

Kenguru 2013 Ecolier sivu 1 / 6 (4. ja 5. luokka) yhteistyössä Pakilan ala-asteen kanssa Kenguru 2013 Ecolier sivu 1 / 6 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Suurin yhteinen tekijä (s.y.t.) ja pienin yhteinen monikerta (p.y.m.)

Suurin yhteinen tekijä (s.y.t.) ja pienin yhteinen monikerta (p.y.m.) Suurin yhteinen tekijä (s.y.t.) ja pienin yhteinen monikerta (p.y.m.) LUKUTEORIA JA TODISTAMINEN, MAA11 Määritelmä, yhteinen tekijä ja suurin yhteinen tekijä: Annettujen lukujen a ja b yhteinen tekijä

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

1. Osoita, että annetut funktiot ovat seuraavien differentiaaliyhtälöiden ratkaisufunktioita:

1. Osoita, että annetut funktiot ovat seuraavien differentiaaliyhtälöiden ratkaisufunktioita: 760P FYSIIKAN MATEMATIIKKAA Krtausthtäviä välikoksn, sl 008 Näitä laskuja i laskta laskupäivissä ikä näistä saa laskuharjoituspistitä Laskut on tarkoitttu laskttaviksi itsksn, kavriporukalla tai Fsiikan

Lisätiedot

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.

n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla

Lisätiedot

Tietorakenteet (syksy 2013)

Tietorakenteet (syksy 2013) Tietorakenteet (syksy 2013) Harjoitus 1 (6.9.2013) Huom. Sinun on osallistuttava perjantain laskuharjoitustilaisuuteen ja tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. Näiden laskuharjoitusten

Lisätiedot

Läpivientien suunnittelu- ja asennusohje

Läpivientien suunnittelu- ja asennusohje Läpivintin suunnittlu- ja asnnusohj G-khyksn pulttaus sinärakntsn Lvystolranssi G-khys voiaan kiinnittää pulttaamalla. Kiinnitystapa on tällöin valittava sinärakntn mukaan. Lisäksi on huolhittava siitä,

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Algoritmit 2. Luento 1 Ti Timo Männikkö

Algoritmit 2. Luento 1 Ti Timo Männikkö Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia

Lisätiedot

Ax 0 mm Bx mm Cx 1800 Ay 0 mm By mm Cy 0

Ax 0 mm Bx mm Cx 1800 Ay 0 mm By mm Cy 0 Tamprn tknillinn yliopisto Tknisn suunnittlun laitos EDE-00 Elmnttimntlmän prustt. Harjoitus 6 Syksy 0. F 00 OpNro 859 L 800 mm M T 85 K K 9 E 05000 MPa Kulmat ja pituudn lämpölaajnmiskrroin α 0.60865

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

Pag e. Lukion työskentelyä ohjaavat lukiolaki, lukioasetus, opetushallituksen ohjeet, koulutoimen toimintasääntö ja järjestyssäännöt.

Pag e. Lukion työskentelyä ohjaavat lukiolaki, lukioasetus, opetushallituksen ohjeet, koulutoimen toimintasääntö ja järjestyssäännöt. Liit 6 Mäntyharjun lukion järjstyssääntö Lukion työskntlyä ohjaavat lukiolaki, lukioastus, optushallituksn ohjt, koulutoimn toimintasääntö ja järjstyssäännöt. Järjstyssääntöjn tavoittna on turvata kouluyhtisön

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 2 Lisää osamurtoja Tutkitaan jälleen rationaalifunktion P(x)/Q(x) integrointia. Aiemmin käsittelimme tapauksen, jossa nimittäjä voidaan esittää muodossa Q(x) = a(x x

Lisätiedot

Tutkimusmenetelmät-kurssi, s-2004

Tutkimusmenetelmät-kurssi, s-2004 Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

SATE2140 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 5 / Sähkömagneettisten aaltojen eteneminen väliaineessa ja väliaineesta toiseen

SATE2140 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 5 / Sähkömagneettisten aaltojen eteneminen väliaineessa ja väliaineesta toiseen SAT14 Dnaainn knttätoria sks 16 1 /6 Laskuharjoitus 5 / Sähköagnttistn aaltojn tninn väliainssa ja väliainsta toisn Thtävä 1. Alulla 1 r1 =,5, r1 = 1 ja =, alu on vapaa tila (fr spac). Määritä suhtt h

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu 811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään

Lisätiedot

Teknillinen korkeakoulu Mat Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 11. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 11. harjoituksen ratkaisut Tknillinn korkakoulu Mat-5.187 Epälinaarisn lmnttimntlmän prustt (Mikkola/Ärölä) 11. harjoituksn ratkaisut Tht. 1 Rfrnssitilan suurita käyttän (kokonais-lagrang) lausuttu hto krittisn aika-askln pituudll

Lisätiedot

Harjoitus 2 ( )

Harjoitus 2 ( ) Harjoitus 2 (24.3.2015) Tehtävä 1 Figure 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[0] = 0 v[p] max 0 i p 1 {v[i]+a i (i,p) E} = v[l]+a l d[p] l. Muodostetaan taulukko, jossa

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon

S , FYSIIKKA III (ES), Syksy 2002, LH 4, Loppuviikko 39. Partitiofunktiota käyttäen keskiarvo voidaan kirjoittaa muotoon S-11435, FYSIIKKA III (ES), Syksy 00, LH 4, Loppuvkko 39 LH4-1* Käyttän Maxwll-Boltzmann-jakauman parttofunktota määrtä a) nrgan nlön kskarvo (E ) skä b) nrgan nlöllnn kskpokkama kskarvosta l nrgan varanss,

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet kevät 219 / orms.1 Talousmatematiikan perusteet 1. Laske integraalit a 6x 2 + 4x + dx, b 5. harjoitus, viikko 6 x + 1x 1dx, c xx 2 1 2 dx a termi kerrallaan kaavalla ax n dx a n+1 xn+1 +C. 6x 2 + 4x +

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tamprn ksäyliopisto, 2015-2016 Talousmatmatiikan prustt, ORMS1030 1. väliko, (ti 15.12.2015) Ratkais 3 thtävää. Kokssa saa olla mukana laskin (myös graafinn laskin on sallittu) ja taulukkokirja (MAOL tai

Lisätiedot

Harjoitus 2 ( )

Harjoitus 2 ( ) Harjoitus 2 (27.3.214) Tehtävä 1 7 4 8 1 1 3 1 2 3 3 2 4 1 1 6 9 1 Kuva 1: Tehtävän 1 graafi. Aikaisimmat aloitushetket selvitetään kaavoilla v[] = v[p] d[p] l. max i p 1 {v[i] + a i (i, p) E} = v[l] +

Lisätiedot

PVC-IKKUNOIDEN ASENNUS

PVC-IKKUNOIDEN ASENNUS OHJE Tarvittavat työkalut Asnnusraudat Sorkkar auta Ruuvja / ruuvja ja tulppia, jos sinä on btonia Vsivaaka Ruuvinväännin Saumausvaahtoa, laajnvaa saumanauhaa, villakaistaa jn. Taivutu spihdit Kiiloja

Lisätiedot

Algoritmit 2. Luento 12 To Timo Männikkö

Algoritmit 2. Luento 12 To Timo Männikkö Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento

Lisätiedot

Algoritmit 2. Luento 2 To Timo Männikkö

Algoritmit 2. Luento 2 To Timo Männikkö Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

3. Laskennan vaativuusteoriaa

3. Laskennan vaativuusteoriaa 3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan

Lisätiedot

Arto Salminen,

Arto Salminen, 6. Luento: Skedulointi eli Vuoronnus Arto Salminen, arto.salminen@tut.fi Agenda Peruskäsitteet Skedulointialgoritmeja Reaaliaikajärjestelmien skedulointi Skeduloituvuuden analysoinnista Yhteenveto Peruskäsitteet

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA . väliko 27.0.2008. Saat vatata vain nljään thtävään!. ak jännit. = 4 Ω, 2 = 4 Ω, 3 = 4 Ω, = 0 V, = 3 A, = 2 A. 2 + I 3 2. ak jännit, kun kytkin uljtaan htkllä. = 0 V = 2 = 0 Ω, = 0,2 F, 0 = 2 V. 2 i 2

Lisätiedot

Harjoitus 1 (20.3.2014)

Harjoitus 1 (20.3.2014) Harjoitus 1 (20.3.2014) Tehtävä 1 Piirretään tilanteesta verkko, jossa kaupungeille on annetttu seuraavat numerot: 1 = Turku 2 = Tampere 3 = Hämeenlinna 4 = Imatra 5 = Jyväskylä. 5 2 149(5) 190(4) 113(1)

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

Luottamusvälit. Normaalijakauma johnkin kohtaan

Luottamusvälit. Normaalijakauma johnkin kohtaan Luottamusvälit Normaalijakauma johnkin kohtaan Perusjoukko ja otanta Jos halutaan tutkia esimerkiksi Suomessa elävien naarashirvien painoa, se voidaan (periaatteessa) tehdä kahdella tavalla: 1. tutkimalla

Lisätiedot

4.6 RADIOMETRIA. Radiometrian suureet: Taulukossa: e = electromagnetic sr = steradiaani (avaruuskulma) Määrittelyyhtälö. Symboli. Yksikkö.

4.6 RADIOMETRIA. Radiometrian suureet: Taulukossa: e = electromagnetic sr = steradiaani (avaruuskulma) Määrittelyyhtälö. Symboli. Yksikkö. 89 4.6 RADIOMETRIA Radiomtria käsittl sähkömagnttisn sätilyn (aaltoliikkn) nrgian ja thon mittaamista. Radiomtrian suurt ja niidn yksiköt (SI-järjstlmässä) on sittty taulukossa alla. Taulukossa sätilynrgia,

Lisätiedot

Sauvaelementti hum

Sauvaelementti hum Sauvalmntti hum.9. Yhdn solmuvapausastn sauvalmntti akastllaan kuvan mukaista sauvalmnttiä. Sauvan vasmmassa päässä on sauvan lokaalisolmu numo, jonka -koodinaatti on ja vastaavasti oikassa päässä lokaalisolmu

Lisätiedot

Projektin aikataulutus

Projektin aikataulutus Projektin aikataulutus Aikataulutuksen tehtävät Suunnittelutarkkuus & tehtävien kestojen arviointi PERT-tekniikka CPA/CPM kriittisen polun analyysi Resurssirajoituksen huomioiminen, resurssien tasaus Critical

Lisätiedot