Algoritmit 1. Luento 11 Ti Timo Männikkö
|
|
- Niina Saarinen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Algoritmit 1 Luento 11 Ti Timo Männikkö
2 Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017 Luento 11 Ti /31
3 Algoritminen ongelmanratkaisu Algoritmin suunnittelu: Käytetään hyviksi osoittautuneita suunnittelumenetelmiä Samantyyppisille ongelmille sopivat samantyyppiset algoritmit Voidaanko ongelma muuntaa joksikin tunnetuksi ongelmaksi Algoritmit 1 Kevät 2017 Luento 11 Ti /31
4 Suunnittelumenetelmät Yleisiä tekniikoita ja periaatteita algoritmin muodostamiseksi Joskus algoritmi voidaan katsoa kuuluvan usean eri suunnittelumenetelmän mukaiseksi Joskus algoritmin ei voida katsoa kuuluvan mihinkään erityiseen suunnittelumenetelmäluokkaan Monesti algoritmi käyttää hyväksi ongelman erityisominaisuuksia Algoritmit 1 Kevät 2017 Luento 11 Ti /31
5 Osittaminen Osittaminen (hajota ja hallitse): Jos ongelman esiintymä riittävän pieni tai yksinkertainen, ratkaistaan se jollain suoralla menetelmällä Muuten ositetaan ongelman esiintymä saman ongelman useaksi pienemmäksi esiintymäksi Ratkaistaan osaongelmat (yleensä) rekursiivisesti Muodostetaan osaongelmien ratkaisuista alkuperäisen ongelman esiintymän ratkaisu Algoritmit 1 Kevät 2017 Luento 11 Ti /31
6 Osittaminen Yleensä ositus kannattaa tehdä siten, että osaongelmat ovat keskenään suunnilleen samankokoisia Joissain tapauksissa on mahdollista, että osaongelmat eivät ole täysin erillisiä Algoritmit 1 Kevät 2017 Luento 11 Ti /31
7 Osittaminen vastaus osittava(tapaus x) { if (x on "pieni") y = pienen tapauksen ratkaisu; else { jaetaan x osiin x[1],...,x[m]; y[1] = osittava(x[1]);... y[m] = osittava(x[m]); kootaan x:n vastaus y osista y[1],...,y[m]; } return y; } Algoritmit 1 Kevät 2017 Luento 11 Ti /31
8 Lomituslajittelu (merge sort) Oletus: Järjestettäviä alkioita n = 2 k Jaetaan järjestettävät alkiot kahteen osajoukkoon Osajoukoissa n/2 alkiota Osajoukot lajitellaan rekursiivisesti Rekursio lopetetaan, kun osajoukossa on yksi alkio Yhdistetään kahden järjestetyn osajoukon alkiot lomittamalla Algoritmit 1 Kevät 2017 Luento 11 Ti /31
9 Lomituslajittelu Merge_sort(a, l, h) { if (l < h) { k = (l + h)/2; Merge_sort(a, l, k); Merge_sort(a, k+1, h); Merge(a, l, k, h); } } Merge(a, l, k, h) // Lomitetaan alkiot l,...,k ja // k+1,...,h järjestykseen Algoritmit 1 Kevät 2017 Luento 11 Ti /31
10 Lomituslajittelu Lomitus: Verrataan molempien osien ensimmäisiä alkioita ja siirretään niistä pienempi järjestettyjen alkioiden joukon viimeiseksi Verrataan uudestaan molempien osien tällä hetkellä ensimmäisinä olevia alkiota ja siirretään niistä pienempi järjestettyjen alkioiden joukon viimeiseksi Näin jatketaan kunnes jommastakummasta osasta alkiot loppuvat, minkä jälkeen toisessa osassa jäljellä olevat alkiot voidaan siirtää suoraan järjestettyjen alkioiden joukon loppuun Algoritmit 1 Kevät 2017 Luento 11 Ti /31
11 Lomituslajittelu: Esimerkki Algoritmit 1 Kevät 2017 Luento 11 Ti /31
12 Lomituslajittelu: Esimerkki jatkuu Algoritmit 1 Kevät 2017 Luento 11 Ti /31
13 Lomituslajittelun vaativuus Merkitään: T (n) = suoritusajan pahimman tapauksen vaativuus, kun syöttötiedon koko n alkiota Yhden alkion järjestäminen: vakioaika b Rekursiivisten kutsujen suoritukset: kaksi kutsua T (n/2) Lomitus voidaan tehdä lineaarisessa ajassa: cn jollain vakiolla c Algoritmit 1 Kevät 2017 Luento 11 Ti /31
14 Lomituslajittelun vaativuus T (n) = { b, kun n = 1 2T ( n ) + cn, kun n > 1 2 Tästä voidaan ratkaista T (n) Algoritmit 1 Kevät 2017 Luento 11 Ti /31
15 Rekursioyhtälön ratkaiseminen n = 2 k k = log 2 n T (n) = 2T ( n 2 ) + cn ( = 2 2T ( n 4 ) + c n ) 2 = 21 T (2 k 1 ) + 1cn + cn = 4T ( n 4 ) + 2cn = 22 T (2 k 2 ) + 2cn =... = 2 k T (2 0 ) + kcn = nb + kcn = bn + cn log 2 n = O(n log n) Algoritmit 1 Kevät 2017 Luento 11 Ti /31
16 Suurten kokonaislukujen kertolasku Annettu n-bittisiä kokonaislukuja Oletus: n = 2 k jollain k = 0, 1,... Kahden luvun yhteenlasku: Bitti kerrallaan O(n) Kertominen kakkosen potenssilla 2 m : Voidaan toteuttaa sivuttaissiirtona O(m) Kahden luvun kertolasku: Bitti kerrallaan ( peruskoulualgoritmilla ) O(n 2 ) Algoritmit 1 Kevät 2017 Luento 11 Ti /31
17 Suurten kokonaislukujen kertolasku Tehtävä: Kokonaislukujen X ja Y kertolasku Osittavaa ratkaisua varten: Jaetaan X :n bitit kahteen yhtäsuureen osaan: X [A, B] Jaetaan Y :n bitit kahteen yhtäsuureen osaan: Y [C, D] X = A 2 n/2 + B Y = C 2 n/2 + D Algoritmit 1 Kevät 2017 Luento 11 Ti /31
18 Suurten kokonaislukujen kertolasku Osittava ratkaisu 1: XY = AC 2 n + (AD + BC) 2 n/2 + BD 4 kpl kertolaskuja n/2-bittisillä luvuilla 2 kpl sivuttaissiirtoja 3 kpl yhteenlaskuja T (n) = { b, kun n = 1 4T ( n 2 ) + cn, kun n = 2k T (n) = = O(n log 2 4 ) = O(n 2 ) Algoritmit 1 Kevät 2017 Luento 11 Ti /31
19 Suurten kokonaislukujen kertolasku Osittava ratkaisu 2 (Karatsuba & Ofman 1962): XY = AC 2 n + [(A B)(D C) + AC + BD] 2 n/2 + BD 3 kpl kertolaskuja n/2-bittisillä luvuilla 2 kpl sivuttaissiirtoja 6 kpl yhteen- ja vähennyslaskuja T (n) = { b, kun n = 1 3T ( n 2 ) + cn, kun n = 2k T (n) = = O(n log 2 3 ), log < 2 Algoritmit 1 Kevät 2017 Luento 11 Ti /31
20 Suurten kokonaislukujen kertolasku Aikavaativuusfunktion vakiot ovat sellaisia, että peruskoulualgoritmi on tehokkaampi aina noin 500-bittisiin lukuihin asti Vielä nopeampi algoritmi: O(n log n log(log n)) (Schönhage & Strassen 1971) Avoin ongelma: Onko algoritmia, jolla O(n) Toteutuksissa osittamista jatketaan vain käytettävän tietokoneen sananpituuteen asti Osien kertolasku voidaan toteuttaa yhdellä konekäskyllä Algoritmit 1 Kevät 2017 Luento 11 Ti /31
21 Pikalajittelu (quicksort) Perustuu osittamiseen ja rekursioon Periaate: Alkiot jaetaan kahteen pienempään osaan, jotka voidaan lajitella erikseen toisistaan riippumatta Pikalajittelu: Jos taulukon pituus pienempi kuin jokin raja, järjestetään alkiot lisäyslajittelulla (ainakin silloin jos pituus < 3) Valitaan jokin alkioista jakotietueeksi (Jatkuu) Algoritmit 1 Kevät 2017 Luento 11 Ti /31
22 Pikalajittelu jatkuu Ositetaan taulukko siirtelemällä alkioita siten, että tämän vaiheen jälkeen: Jakotietue on paikassa j Alkiot, jotka ovat pienempiä kuin jakotietue, ovat ennen paikkaa j Alkiot, jotka ovat suurempia kuin jakotietue, ovat paikan j jälkeen Alkiot, jotka ovat yhtä suuria kuin jakotietue, voivat olla paikan j kummalla puolella tahansa (Jatkuu) Algoritmit 1 Kevät 2017 Luento 11 Ti /31
23 Pikalajittelu jatkuu Lajitellaan alkuosa (paikat 0, 1,..., j-1): Pikalajittelulla (rekursio) Lajitellaan loppuosa (paikat j+1, j+2,..., n-1): Pikalajittelulla (rekursio) Algoritmit 1 Kevät 2017 Luento 11 Ti /31
24 Jakotietueen valinta Ensimmäinen alkio Jos alkiot satunnaisessa järjestyksessä, sopiva valinta Jos alkiot jo järjestyksessä, jakotietue jää tarkasteltavan osan alkuun (tai loppuun) Epäonnistunut ositus: Epätasainen jako johtaa tehottomuuteen Satunnainen alkio Suurin tai pienin alkio valitaan todennäköisyydellä 2/n Epäonnistumisen todennäköisyys ei kovin suuri Algoritmit 1 Kevät 2017 Luento 11 Ti /31
25 Jakotietueen valinta jatkuu Keskimmäinen alkio Jos alkiot jo järjestyksessä, ositus ei voi epäonnistua Muuten epäonnistumisen todennäköisyys sama kuin edellä Mediaanimenetelmä Valitaan suuruudeltaan keskimmäinen ensimmäisestä, keskimmäisestä ja viimeisestä alkiosta Jos alkuperäisestä järjestyksestä ei tiedetä mitään etukäteen, tämä on yleensä parempi kuin edelliset Algoritmit 1 Kevät 2017 Luento 11 Ti /31
26 Jakotietueen valinta jatkuu Yhdeksän alkion pseudomediaani Valitaan tasavälisesti yhdeksän alkiota Valitaan näistä kolmen ensimmäisen mediaani, sitten kolmen seuraavan ja vielä kolmen viimeisen mediaani Jakotietueeksi valitaan näiden kolmen mediaanialkion mediaani Voidaan käyttää, kun alkioiden lukumäärä riittävän suuri (yleensä 40) Algoritmit 1 Kevät 2017 Luento 11 Ti /31
27 Ositus Alkiot taulukossa t Indeksit l ja r ilmoittavat tarkasteltavan osan ensimmäisen ja viimeisen alkiot paikat Järjestettävänä siis taulukon osa t[l..r] Jakotietueeksi on valittu (jollain tavalla) alkio t[k] Ositus esimerkiksi seuraavan aliohjelman mukaisesti Algoritmit 1 Kevät 2017 Luento 11 Ti /31
28 Ositus, aliohjelma int partition(int[] t, int l, int r, int k) { swap(l, k); // jakotietue taulukon alkuun i = l; j = r+1; while (true) { do i++; while (i < r+1 && t[i].key < t[l].key); do j--; while (t[j].key > t[l].key); if (j < i) break; swap(i, j); // vaihdetaan t[i] ja t[j] } swap(l, j); // jakotietue paikalleen return j; // jakotietueen indeksi } Algoritmit 1 Kevät 2017 Luento 11 Ti /31
29 Ositus, erikoistapauksia Kaikki alkiot pienempiä kuin jakotietue: Ensimmäisen do-silmukan jälkeen i = r+1 Toisen do-silmukan jälkeen j = r Jakotietue siirretään paikkaan r Kaikki alkiot suurempia kuin jakotietue: Ensimmäisen do-silmukan jälkeen i = l+1 Toisen do-silmukan jälkeen j = l Jakotietue säilyy paikassa l Algoritmit 1 Kevät 2017 Luento 11 Ti /31
30 Pikalajittelu void quicksort(int[] t, int l, int r) { if (r-l < raja) { // järjestetään lisäyslajittelulla } else { k = pivot(t, l, r); // jakotietue j = partition(t, l, r, k); // ositus quicksort(t, l, j-1); // alkuosa quicksort(t, j+1, r); // loppuosa } } Algoritmit 1 Kevät 2017 Luento 11 Ti /31
31 Lajittelumenetelmien stabiilisuus Lomituslajittelu: Stabiili Pikalajittelu: Edellä esitetty versio ei ole stabiili Mutta voidaan toteuttaa myös stabiilina Algoritmit 1 Kevät 2017 Luento 11 Ti /31
Algoritmit 2. Luento 8 To Timo Männikkö
Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät
Algoritmit 1. Luento 12 Ti Timo Männikkö
Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit
Algoritmit 1. Luento 12 Ke Timo Männikkö
Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu
Algoritmit 1. Luento 3 Ti Timo Männikkö
Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien
Algoritmit 1. Luento 10 Ke Timo Männikkö
Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot
Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö
Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu
Algoritmit 1. Luento 5 Ti Timo Männikkö
Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti
Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö
Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit
Algoritmit 2. Luento 14 Ke Timo Männikkö
Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019
Algoritmit 2. Luento 7 Ti Timo Männikkö
Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26
Algoritmit 2. Luento 3 Ti Timo Männikkö
Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava
Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin
Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2
Algoritmit 1. Luento 2 Ke Timo Männikkö
Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät
Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista).
Esimerkki Lomitusjärjestäminen merge-sort(a, p, q): var k % paikallinen muuttuja, vakiotila 1. if p < q then 2. r := (p + q)/2 3. merge-sort(a, p, r) 4. merge-sort(a, r + 1, q) 5. merge(a, p, r, q) Olkoon
Algoritmit 1. Luento 1 Ti Timo Männikkö
Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017
TIE Tietorakenteet ja algoritmit 25
TIE-20100 Tietorakenteet ja algoritmit 25 Tällä kurssilla keskitytään algoritmien ideoihin ja algoritmit esitetään useimmiten pseudokoodina ilman laillisuustarkistuksia, virheiden käsittelyä yms. Otetaan
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan
Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5
4 Tehokkuus ja algoritmien suunnittelu
TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin
Algoritmit 2. Luento 2 To Timo Männikkö
Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento
1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:
Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return
Nopea kertolasku, Karatsuban algoritmi
Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012
ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,
58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)
58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä
Algoritmit 2. Luento 2 Ke Timo Männikkö
Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen
811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta
811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden
Algoritmit 2. Luento 12 To Timo Männikkö
Algoritmit 2 Luento 12 To 3.5.2018 Timo Männikkö Luento 12 Geneettiset algoritmit Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Algoritmit 2 Kevät 2018 Luento 12 To 3.5.2018 2/35 Algoritmien
Algoritmit 2. Demot Timo Männikkö
Algoritmit 2 Demot 2 3.-4.4.2019 Timo Männikkö Tehtävä 1 Avoin osoitteenmuodostus: Hajautustaulukko t (koko m) Erikoisarvot VAPAA ja POISTETTU Hajautusfunktio h(k,i) Operaatiot: lisaa etsi poista Algoritmit
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys
8. Lajittelu, joukot ja valinta
8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa
Algoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 11.4.2019 Timo Männikkö Luento 10 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutusmenetelmä Osajoukon summa Algoritmit 2 Kevät 2019 Luento 10 To
Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö
Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista
811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista
Algoritmit 1. Luento 8 Ke Timo Männikkö
Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin
811312A Tietorakenteet ja algoritmit , Harjoitus 2 ratkaisu
811312A Tietorakenteet ja algoritmit 2017-2018, Harjoitus 2 ratkaisu Harjoituksen aiheena on algoritmien oikeellisuus. Tehtävä 2.1 Kahvipurkkiongelma. Kahvipurkissa P on valkoisia ja mustia kahvipapuja,
Algoritmit 2. Luento 6 To Timo Männikkö
Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100
4. Algoritmien tehokkuus
4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien
Numeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
5 Kertaluokkamerkinnät
TIE-20100 Tietorakenteet ja algoritmit 75 5 Kertaluokkamerkinnät Tässä luvussa käsitellään asymptoottisessa analyysissa käytettyjä matemaattisia merkintätapoja Määritellään tarkemmin Θ, sekä kaksi muuta
811312A Tietorakenteet ja algoritmit, 2015-2016. VI Algoritmien suunnitteluparadigmoja
811312A Tietorakenteet ja algoritmit, 2015-2016 VI Algoritmien suunnitteluparadigmoja Sisältö 1. Hajota ja hallitse-menetelmä 2. Dynaaminen taulukointi 3. Ahneet algoritmit 4. Peruuttavat algoritmit 811312A
Algoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia
Algoritmit 2. Luento 12 Ke Timo Männikkö
Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit
Algoritmit 1. Demot Timo Männikkö
Algoritmit 1 Demot 2 7.-8.2.2018 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: etsipienin(t, n) { pnn = t[0]; for (i = 1; i < n; i++) { pnn = min(pnn, t[i]); return pnn; Silmukka suoritetaan
Algoritmit 2. Luento 13 Ti Timo Männikkö
Algoritmit 2 Luento 13 Ti 8.5.2018 Timo Männikkö Luento 13 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys Kertaus ja tenttivinkit Algoritmit 2 Kevät
On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen.
6. Järjestäminen On annettu jono lukuja tai muita alkioita, joiden välille on määritelty suuruusjärjestys. Tehtävänä on saattaa alkiot suuruusjärjestykseen. Tämä on eräs klassisimpia tietojenkäsittelyongelmia,
Algoritmit 1. Luento 13 Ma Timo Männikkö
Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29
Algoritmit 2. Luento 10 To Timo Männikkö
Algoritmit 2 Luento 10 To 19.4.2018 Timo Männikkö Luento 10 Peruutusmenetelmä Osajoukon summa Verkon 3-väritys Pelipuut Pelipuun läpikäynti Algoritmit 2 Kevät 2018 Luento 10 To 19.4.2018 2/34 Algoritmien
Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti
Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan
Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten,
Ongelma(t): Miten tietokoneen komponentteja voi ohjata siten, että ne tekevät yhdessä jotakin järkevää? Voiko tietokonetta ohjata (ohjelmoida) siten, että se pystyy suorittamaan kaikki mahdolliset algoritmit?
1 Erilaisia tapoja järjestää
TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi
Ohjelmoinnin perusteet Y Python
Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin
ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2
Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,
Algoritmit 2. Luento 1 Ti Timo Männikkö
Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia
Algoritmit 2. Luento 5 Ti Timo Männikkö
Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti
811312A Tietorakenteet ja algoritmit, , Harjoitus 4, Ratkaisu
81112A Tietoraketeet ja algoritmit, 217-218, Harjoitus 4, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä 4.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje
A TIETORAKENTEET JA ALGORITMIT
A274105 TIETORAKENTEET JA ALGORITMIT HARJOITUSTEHTÄVÄT 6 DEADLINE 1.4.2009 KLO 9:00 Kynätehtävät tehdään kirjallisesti ja esitetään harjoituksissa. Välivaiheet näkyviin! Ohjelmointitehtävät sähköisesti
Algoritmit 2. Luento 6 Ke Timo Männikkö
Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu
REKURSIO. Rekursiivinen ohjelma Kutsuu itseään. Rekursiivinen rakenne. Rakenne sisältyy itseensä. Rekursiivinen funktio. On määritelty itsensä avulla
REKURSIO Rekursiivinen ohjelma Kutsuu itseään Rekursiivinen rakenne Rakenne sisältyy itseensä Rekursiivinen funktio On määritelty itsensä avulla Esim. Fibonacci-luvut: X(i) = X(i-1) + X(i-2), X(0) = X(1)
811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu
811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään
Algoritmit 2. Luento 14 To Timo Männikkö
Algoritmit 2 Luento 14 To 2.5.2019 Timo Männikkö Luento 14 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydelliset ongelmat Kertaus ja tenttivinkit Algoritmit
811312A Tietorakenteet ja algoritmit, 2014-2015, Harjoitus 7, ratkaisu
832A Tietorakenteet ja algoritmit, 204-205, Harjoitus 7, ratkaisu Hajota ja hallitse-menetelmä: Tehtävä 7.. Muodosta hajota ja hallitse-menetelmää käyttäen algoritmi TULOSTA_PUU_LASKEVA, joka tulostaa
A TIETORAKENTEET JA ALGORITMIT
A274101 TIETORAKENTEET JA ALGORITMIT LISÄÄ JÄRJESTÄMISESTÄ JÄRJESTÄMISEN TEORIAA Inversio taulukossa a[] on lukupari (a[i],a[j]) siten, että i < j mutta a[i] > a[j] Esimerkki Taulukko a[] = [2, 4, 1, 3]
Käänteismatriisin ominaisuuksia
Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit
Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö
Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen
Algoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016
Numeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
Numeeriset menetelmät
Numeeriset menetelmät Luento 14 To 20.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 14 To 20.10.2011 p. 1/39 p. 1/39 Nopeat Fourier-muunnokset Diskreetti Fourier-muunnos ˆf k = 1 N 1 N
1.4 Funktioiden kertaluokat
1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee
Tietorakenteet ja algoritmit. Järjestäminen. Ari Korhonen
Tietorakenteet ja algoritmit Järjestäminen Ari Korhonen 6.10.2015 1 6. Järjestäminen (sor0ng) 6.1 Johdanto 6.2 Yksinkertaiset menetelmät 6.2.1 Valintajärjestäminen 6.2.2 Lisäysjärjestäminen 6.3 Lomitusjärjestäminen
TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 11.08.2010 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ
LAUSEKKEET JA NIIDEN MUUNTAMINEN
LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua
12. Algoritminsuunnittelun perusmenetelmiä
12. Algoritminsuunnittelun perusmenetelmiä Ei vain toteuteta tietorakenteita algoritmeilla, vaan myös tietorakenteita käytetään tyypillisesti erilaisten algoritmien yhteydessä. Kun nämä tietojenkäsittelytieteen
12. Algoritminsuunnittelun perusmenetelmiä
12. Algoritminsuunnittelun perusmenetelmiä Ei vain toteuteta tietorakenteita algoritmeilla, vaan myös tietorakenteita käytetään tyypillisesti erilaisten algoritmien yhteydessä. Kun nämä tietojenkäsittelytieteen
4. Joukkojen käsittely
4 Joukkojen käsittely Tämän luvun jälkeen opiskelija osaa soveltaa lomittuvien kasojen operaatioita tuntee lomittuvien kasojen toteutuksen binomi- ja Fibonacci-kasoina sekä näiden totetutusten analyysiperiaatteet
Algoritmit 2. Luento 11 Ti Timo Männikkö
Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento
811312A Tietorakenteet ja algoritmit II Perustietorakenteet
811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi
4.3. Matemaattinen induktio
4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta
Algoritmit 2. Luento 4 To Timo Männikkö
Algoritmit 2 Luento 4 To 21.3.2019 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2019 Luento 4
Harjoitustyön testaus. Juha Taina
Harjoitustyön testaus Juha Taina 1. Johdanto Ohjelman teko on muutakin kuin koodausta. Oleellinen osa on selvittää, että ohjelma toimii oikein. Tätä sanotaan ohjelman validoinniksi. Eräs keino validoida
8. Lajittelu, joukot ja valinta
8. Lajittelu, joukot ja valinta Yksi tietojenkäsittelyn klassisista tehtävistä on lajittelu (järjestäminen) (sorting) jo mekaanisten tietojenkäsittelylaitteiden ajalta. Lajiteltua tietoa tarvitaan lukemattomissa
Algoritmit 1. Luento 4 Ke Timo Männikkö
Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,
Algoritmit 1. Luento 7 Ti Timo Männikkö
Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017
Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus
NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:
9 Erilaisia tapoja järjestää
TIE-20100 Tietorakenteet ja algoritmit 198 9 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi.
Tietorakenteet ja algoritmit syksy Laskuharjoitus 1
Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,
Algoritmit 2. Luento 9 Ti Timo Männikkö
Algoritmit 2 Luento 9 Ti 17.4.2018 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen Huffmanin koodi LZW-menetelmä Taulukointi Editointietäisyys Algoritmit 2 Kevät 2018 Luento 9 Ti 17.4.2018 2/29 Merkkitiedon
Numeeriset menetelmät
Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot
Liitosesimerkki Tietokannan hallinta, kevät 2006, J.Li 1
Liitosesimerkki 16.02.06 Tietokannan hallinta, kevät 2006, J.Li 1 Esim R1 R2 yhteinen attribuutti C T(R1) = 10,000 riviä T(R2) = 5,000 riviä S(R1) = S(R2) = 1/10 lohkoa Puskuritilaa = 101 lohkoa 16.02.06
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut
58131 Tietorakenteet ja algoritmit (kevät 2016) Ensimmäinen välikoe, malliratkaisut 1. Palautetaan vielä mieleen O-notaation määritelmä. Olkoon f ja g funktioita luonnollisilta luvuilta positiivisille
Numeeriset menetelmät TIEA381. Luento 14. Kirsi Valjus. Jyväskylän yliopisto. Luento 14 () Numeeriset menetelmät / 55
Numeeriset menetelmät TIEA381 Luento 14 Kirsi Valjus Jyväskylän yliopisto Luento 14 () Numeeriset menetelmät 15.5.2013 1 / 55 Luennon 14 sisältö Nopeat Fourier-muunnokset (FFT) Yleinen algoritmi 2-kantainen
TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 06.09.2005 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ