Algoritmit 1. Demot Timo Männikkö

Koko: px
Aloita esitys sivulta:

Download "Algoritmit 1. Demot Timo Männikkö"

Transkriptio

1 Algoritmit 1 Demot Timo Männikkö

2 Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena Jäljelle jää jakojäännös Algoritmit 1 Kevät 2017 Demot /27

3 Tehtävä 1 (a) jatkuu int m, n; // oletetaan, että molemmat > 0 while (m >= n) { m = m - n; return m; // jakojäännös nyt muuttujassa m Algoritmit 1 Kevät 2017 Demot /27

4 Tehtävä 1 (b) Algoritmi, joka tutkii onko merkkijonossa jossain kohtaa kaksi samaa merkkiä peräkkäin Kaksi osoitinta c ja d Aluksi c merkkijonon alkuun Jos sitä seuraava merkki d on sama on Muuten siirrytään yksi askel eteenpäin ja tehdään uusi vertailu Jos c siirtyy merkkijonon loppuun ei ole Algoritmit 1 Kevät 2017 Demot /27

5 Tehtävä 1 (b) jatkuu string mjono; // oletetaan, että pituus > 0 c = ensimmainen(mjono); while (c!= viimeinen(mjono)) { d = seuraava(c); if (c == d) return true; // samat merkit peräkkäin c = d; return false; // ei löytynyt Algoritmit 1 Kevät 2017 Demot /27

6 Tehtävä 2 (a) Taulukossa on lukuja satunnaisessa järjestyksessä Algoritmi, joka laskee kuinka moni luvuista on suurempi kuin kaikkien lukujen keskiarvo Käydään taulukko läpi ja lasketaan keskiarvo Käydään taulukko läpi toisen kerran, verrataan jokaista lukua keskiarvoon ja lisätään tarvittaessa laskurin arvoa Algoritmit 1 Kevät 2017 Demot /27

7 Tehtävä 2 (a) jatkuu // taulukko t, koko n > 0 summa = 0; for (i = 0; i < n; i++) { summa = summa + t[i]; keskiarvo = summa/n; lkm = 0; for (i = 0; i < n; i++) { if (t[i] > keskiarvo) { lkm++; return lkm; // Suoritusaika: // silmukka n kertaa // joka kierroksella // silmukka n kertaa // joka kierroksella // vain tarvittaessa Suoritusaika muotoa T (n) = n t 1 + t 2 = O(n) Algoritmit 1 Kevät 2017 Demot /27

8 Tehtävä 2 (b) Taulukossa on lukuja suuruusjärjestyksessä Algoritmi, joka pakkaa taulukon siten, että kutakin eri lukua jää taulukkoon vain yksi kappale Muuttuja j osoittaa viimeisimpään eri lukuun Muuttuja i käy läpi taulukon loput luvut Jos i ja j osoittavat samansuuruiseen lukuun, j ei muutu Muuten j kasvaa yhdellä ja i:n kohdalla oleva luku kopioidaan j:n kohdalle Näin duplikaatit korvautuvat uusilla luvuilla Lopulta pakattu taulukko koostuu alkuperäisen taulukon alkuosasta Algoritmit 1 Kevät 2017 Demot /27

9 Tehtävä 2 (b) jatkuu // taulukko t, koko n > 0 j = 0; for (i = 1; i < n; i++) { if (t[i]!= t[j]) { j++; if (i!= j) t[j] = t[i]; n = j + 1; // uusi koko // Suoritusaika: // silmukka n-1 kertaa // joka kierroksella // vain tarvittaessa // vain tarvittaessa Suoritusaika muotoa T (n) = n t 1 + t 2 = O(n) Algoritmit 1 Kevät 2017 Demot /27

10 Tehtävä 3 Funktioiden asymptoottiset ylärajat: Kertaluokan määrää termi, joka kasvaa nopeimmin kun n kasvaa Joidenkin peruskertaluokkien suuruusjärjestys on log 2 n, n, n log 2 n, n 2, n 3, 2 n Yleisesti, n k kasvaa sitä nopeammin mitä suurempi k on Pätee myös kun k ei ole kokonaisluku, toisin sanoen n = n 1/2 on kertaluokaltaan pienempi kuin n Algoritmit 1 Kevät 2017 Demot /27

11 Tehtävä 3 jatkuu Tarkempi perustelu laskemalla raja-arvot: Tiedetään, että f (n) ja g(n) ovat samaa kertaluokkaa, jos lim n f (n) g(n) = C 0 Algoritmit 1 Kevät 2017 Demot /27

12 Tehtävä 3 (a) f (n) = 4n 5 + 8n n lim n 4n 5 + 8n n n 5 = lim n ( n + 16 ) 2 n 4 = 4 f (n) = O(n 5 ) Algoritmit 1 Kevät 2017 Demot /27

13 Tehtävä 3 (b) f (n) = n + n lim n n + n n = lim n ( 1000 n + 10 ) + 1 n = 1 f (n) = O(n) Algoritmit 1 Kevät 2017 Demot /27

14 Tehtävä 3 (c) f (n) = n n lim n n n 2 n = lim n ( ) n n = 1 f (n) = O(2 n ) Algoritmit 1 Kevät 2017 Demot /27

15 Tehtävä 3 (d) f (n) = 2 log 2 n + 5n lim n 2 log 2 n + 5n n = lim n ( 2 log 2 n n ) + 5 = 5 f (n) = O(n) Algoritmit 1 Kevät 2017 Demot /27

16 Tehtävä 3 (e) f (n) = 2n log 2 n + 5n lim n 2n log 2 n + 5n n log 2 n = lim n ( ) log 2 n = 2 f (n) = O(n log 2 n) Algoritmit 1 Kevät 2017 Demot /27

17 Tehtävä 3 (f) f (n) = 2n/ log 2 n + 5n lim n 2n/ log 2 n + 5n n = lim n ( ) 2 log 2 n + 5 = 5 f (n) = O(n) Algoritmit 1 Kevät 2017 Demot /27

18 Tehtävä 4 Neljä algoritmia, joiden laskutoimitusten lukumäärät: 50n, 1 2 n2, 4n 3, 2 n (a) (b) Yksi laskutoimitus kestää 1 ms (= 10 3 s) Minkä kokoinen tehtävä minuutissa? Tietyssä ajassa tehtävä, jonka koko Nopeus kasvaa 10-kertaiseksi Minkä kokoinen tehtävä samassa ajassa? Algoritmit 1 Kevät 2017 Demot /27

19 Tehtävä 4 (a) Minuutti = ms N = kpl 50n = N n = N/50 = n2 = N n = 2N n 3 = N n = 3 N/ n = N n = log 2 N = ln N/ ln Algoritmit 1 Kevät 2017 Demot /27

20 Tehtävä 4 (b) Laskutoimitusten lkm kasvaa 10-kertaiseksi Merkitään n old = m = n = 10 50m n = 10m = n2 = m2 n = 10m n 3 = 10 4m 3 n = 3 10m n = 10 2 m n = log m Algoritmit 1 Kevät 2017 Demot /27

21 Tehtävä 5 (a) for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { c[i][j] = 0; for (k = 0; k < n; k++) { c[i][j] += a[i][k]*b[k][j]; // silmukka n kertaa // silmukka n kertaa // silmukka n kertaa // Sisimmän silmukan sisältö n n n kertaa O(n 3 ) Algoritmit 1 Kevät 2017 Demot /27

22 Tehtävä 5 (b) for (i = 1; i < n; i++) { for (j = n-2; j >= i-1; j--) { if (t[j+1] < t[j]) { swap(t[j], t[j+1]); Sisemmän silmukan sisältö suoritetaan n 1 (n 1)n (n i) = (n 1)n 2 i=1 kertaa O(n 2 ) // silmukka n-1 kertaa // silmukka n-i kertaa // tod.näk. vakio = 1 2 n2 1 2 n Algoritmit 1 Kevät 2017 Demot /27

23 Tehtävä 5 (b) jatkuu for (i = 1; i < n; i++) { for (j = n-2; j >= i-1; j--) { if (t[j+1] < t[j]) { swap(t[j], t[j+1]); // silmukka n-1 kertaa // silmukka n-i kertaa // tod.näk. vakio Aliohjelmakutsu on sisemmässä silmukassa Suoritetaan pahimmassa tapauksessa 1 2 n2 1 2 n = O(n2 ) kertaa Algoritmit 1 Kevät 2017 Demot /27

24 Tehtävä 5 (c) for (i = 0; i < n-1; i++) { k = i; for (j = i+1; j < n; j++) { if (t[j] < t[k]) k = j; if (k!= i) swap(t[i], t[k]); // silmukka n-1 kertaa // silmukka n-1-i kertaa // tod.näk. vakio // Sisemmän silmukan sisältö suoritetaan n 2 (n 1 i) = (n 1) 2 (n 2)(n 1) 2 i=0 kertaa O(n 2 ) = 1 2 n2 1 2 n Algoritmit 1 Kevät 2017 Demot /27

25 Tehtävä 5 (c) jatkuu for (i = 0; i < n-1; i++) { k = i; for (j = i+1; j < n; j++) { if (t[j] < t[k]) k = j; if (k!= i) swap(t[i], t[k]); // silmukka n-1 kertaa // silmukka n-1-i kertaa // tod.näk. vakio // Aliohjelmakutsu on ulommassa silmukassa Suoritetaan pahimmassakin tapauksessa vain n 1 = O(n) kertaa Algoritmit 1 Kevät 2017 Demot /27

26 Tehtävä 5 (d) for (i = 0; i < n; i++) { if (i%2!= 0) { for (j = i; j < n; j++) a = a + 5; for (j = 0; j <= i; j++) b = b - 20; // silmukka n kertaa // silmukka n-i kertaa // silmukka i+1 kertaa // (j-silmukat vain // jos i pariton) Molemmat j-silmukat suoritetaan vain jos i on pariton, ts. vain joka toisella i-silmukan kierroksella Algoritmit 1 Kevät 2017 Demot /27

27 Tehtävä 5 (d) jatkuu Sisempien silmukoiden sisällöt suoritetaan tai n 2 (n i + i + 1) = 1 2 n2 + 1 n (jos n parillinen) 2 n 1 2 (n i + i + 1) = 1 2 n2 1 2 kertaa O(n 2 ) (jos n pariton) Algoritmit 1 Kevät 2017 Demot /27

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Algoritmit 2. Luento 1 Ti Timo Männikkö

Algoritmit 2. Luento 1 Ti Timo Männikkö Algoritmit 2 Luento 1 Ti 14.3.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

11. Javan toistorakenteet 11.1

11. Javan toistorakenteet 11.1 11. Javan toistorakenteet 11.1 Sisällys Laskuri- ja lippumuuttujat. Sisäkkäiset silmukat. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

12. Javan toistorakenteet 12.1

12. Javan toistorakenteet 12.1 12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu

Lisätiedot

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat

Sisällys. 12. Javan toistorakenteet. Yleistä. Laskurimuuttujat Sisällys 12. Javan toistorakenteet Ylstä toistorakentsta. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirhtä. Silmukan rajat asetettu kierroksen

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä

Sisällys. 11. Javan toistorakenteet. Laskurimuuttujat. Yleistä Sisällys 11. Javan toistorakenteet Laskuri- ja lippumuuttujat.. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin lopettaminen break-lauseella.

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua.

Kohdissa 2 ja 3 jos lukujen valintaan on useita vaihtoehtoja, valitaan sellaiset luvut, jotka ovat mahdollisimman lähellä listan alkua. A Lista Aikaraja: 1 s Uolevi sai käsiinsä listan kokonaislukuja. Hän päätti laskea listan luvuista yhden luvun käyttäen seuraavaa algoritmia: 1. Jos listalla on vain yksi luku, pysäytä algoritmi. 2. Jos

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

Tietorakenteet, laskuharjoitus 2,

Tietorakenteet, laskuharjoitus 2, Tietorakenteet, laskuharjoitus, 6.-9.1 Muista TRAKLA-tehtävien deadline 31.1. 1. Tarkastellaan ensin tehtävää yleisellä tasolla. Jos funktion T vaativuusluokka on O(f), niin funktio T on muotoa T (n) =

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

1.4 Funktioiden kertaluokat

1.4 Funktioiden kertaluokat 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia. MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 10.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 10.2.2010 1 / 43 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

Ohjelmassa muuttujalla on nimi ja arvo. Kääntäjä ja linkkeri varaavat muistilohkon, jonne muuttujan arvo talletetaan.

Ohjelmassa muuttujalla on nimi ja arvo. Kääntäjä ja linkkeri varaavat muistilohkon, jonne muuttujan arvo talletetaan. Osoittimet Ohjelmassa muuttujalla on nimi ja arvo. Kääntäjä ja linkkeri varaavat muistilohkon, jonne muuttujan arvo talletetaan. Muistilohkon koko riippuu muuttujan tyypistä, eli kuinka suuria arvoja muuttujan

Lisätiedot

Tarkennamme geneeristä painamiskorotusalgoritmia

Tarkennamme geneeristä painamiskorotusalgoritmia Korotus-eteen-algoritmi (relabel-to-front) Tarkennamme geneeristä painamiskorotusalgoritmia kiinnittämällä tarkasti, missä järjestyksessä Push- ja Raise-operaatioita suoritetaan. Algoritmin peruskomponentiksi

Lisätiedot

Sisältö. 2. Taulukot. Yleistä. Yleistä

Sisältö. 2. Taulukot. Yleistä. Yleistä Sisältö 2. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.1 2.2 Yleistä

Lisätiedot

Java-kielen perusteet

Java-kielen perusteet Java-kielen perusteet Tunnus, varattu sana, kommentti Muuttuja, alkeistietotyyppi, merkkijono, literaalivakio, nimetty vakio Tiedon merkkipohjainen tulostaminen 1 Tunnus Java tunnus Java-kirjain Java-numero

Lisätiedot

Informaatioteknologian laitos Olio-ohjelmoinnin perusteet / Salo 15.2.2006

Informaatioteknologian laitos Olio-ohjelmoinnin perusteet / Salo 15.2.2006 TURUN YLIOPISTO DEMO III Informaatioteknologian laitos tehtävät Olio-ohjelmoinnin perusteet / Salo 15.2.2006 1. Tässä tehtävässä tarkastellaan erääntyviä laskuja. Lasku muodostaa oman luokkansa. Laskussa

Lisätiedot

Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma.

Yleistä. Nyt käsitellään vain taulukko (array), joka on saman tyyppisten muuttujien eli alkioiden (element) kokoelma. 2. Taulukot 2.1 Sisältö Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko operaation parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 2.2 Yleistä

Lisätiedot

Ohjelmointiharjoituksia Arduino-ympäristössä

Ohjelmointiharjoituksia Arduino-ympäristössä Ohjelmointiharjoituksia Arduino-ympäristössä Yleistä Arduino-sovelluksen rakenne Syntaksi ja käytännöt Esimerkki ohjelman rakenteesta Muuttujat ja tietotyypit Tietotyypit Esimerkkejä tietotyypeistä Ehtolauseet

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.4.2009 T-106.1208 Ohjelmoinnin perusteet Y 1.4.2009 1 / 56 Tentti Ensimmäinen tenttimahdollisuus on pe 8.5. klo 13:00 17:00 päärakennuksessa. Tämän jälkeen

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 22. huhtikuuta 2016 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille! Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin.

Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet suoritetaan peräkkäin. 2. Ohjausrakenteet Ohjausrakenteiden avulla ohjataan ohjelman suoritusta. peräkkäisyys valinta toisto Koottu lause; { ja } -merkkien väliin kirjoitetut lauseet muodostavat lohkon, jonka sisällä lauseet

Lisätiedot

List-luokan soveltamista. Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen

List-luokan soveltamista. Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen 1 List-luokan soveltamista List-luokan metodeja Listaan lisääminen Listan läpikäynti Listasta etsiminen Listan sisällön muuttaminen Listasta poistaminen Listan kopioiminen 1 List-luokan metodeja List-luokan

Lisätiedot

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2

Lisätiedot

Java-kielen perusteet

Java-kielen perusteet Java-kielen perusteet Tunnus, varattu sana, kommentti Muuttuja, alkeistietotyyppi, merkkijono, Vakio Tiedon merkkipohjainen tulostaminen Ohjelmointi (ict1tx006) Tunnus (5.3) Javan tunnus Java-kirjain Java-numero

Lisätiedot

Sisältö. 22. Taulukot. Yleistä. Yleistä

Sisältö. 22. Taulukot. Yleistä. Yleistä Sisältö 22. Taulukot Yleistä. Esittely ja luominen. Alkioiden käsittely. Kaksiulotteinen taulukko. Taulukko metodin parametrina. Taulukko ja HelloWorld-ohjelma. Taulukko paluuarvona. 22.1 22.2 Yleistä

Lisätiedot

Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5)

Alkuarvot ja tyyppimuunnokset (1/5) Alkuarvot ja tyyppimuunnokset (2/5) Alkuarvot ja tyyppimuunnokset (3/5) Alkuarvot ja tyyppimuunnokset (1/5) Aiemmin olemme jo antaneet muuttujille alkuarvoja, esimerkiksi: int luku = 123; Alkuarvon on oltava muuttujan tietotyypin mukainen, esimerkiksi int-muuttujilla kokonaisluku,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 3.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 3.2.2010 1 / 36 Esimerkki: asunnon välityspalkkio Kirjoitetaan ohjelma, joka laskee kiinteistönvälittäjän asunnon

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 21.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 21.9.2015 1 / 25 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Merkkijonon tutkiminen matches-metodilla

Merkkijonon tutkiminen matches-metodilla Merkkijonon tutkiminen matches-metodilla String-luokkaan on määritelty seuraava metodi: public boolean matches(string regular_expression) Mihin käytetään String-luokan metodia public boolean matches(string

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 25.4.2017 Timo Männikkö Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti 25.4.2017 2/29

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Muuttujien roolit Kiintoarvo cin >> r;

Muuttujien roolit Kiintoarvo cin >> r; Muuttujien roolit Muuttujilla on ohjelmissa eräitä tyypillisiä käyttötapoja, joita kutsutaan muuttujien rooleiksi. Esimerkiksi muuttuja, jonka arvoa ei muuteta enää kertaakaan muuttujan alustamisen jälkeen,

Lisätiedot

Jaetun muistin muuntaminen viestin välitykseksi. 15. lokakuuta 2007

Jaetun muistin muuntaminen viestin välitykseksi. 15. lokakuuta 2007 Jaetun muistin muuntaminen viestin välitykseksi Otto Räsänen 15. lokakuuta 2007 1 Motivaatio 2 Valtuuden välitys Peruskäsitteitä 3 Kolme algoritmia Valtuuden välitys käyttäen laskuria ilman ylärajaa Valtuuden

Lisätiedot

JavaScript alkeet Esimerkkikoodeja moniste 2 (05.10.11 Metropolia)

JavaScript alkeet Esimerkkikoodeja moniste 2 (05.10.11 Metropolia) JavaScript alkeet Esimerkkikoodeja moniste 2 (05.10.11 Metropolia) Esim 5.1 laskujärjestys operaattorit var tulos = 5 + 4 * 12 / 4; document.write("5 + 4 * 12 / 4 laskutoimituksen tulos

Lisätiedot

Muistutus aikatauluista

Muistutus aikatauluista Muistutus aikatauluista (Nämä eivät välttämättä koske avoimen yo:n opiskelijoita Erkki Kailan rinnakkaisella kurssilla) Luento 1: kotitehtävät sulkeutuvat 20.9 12:00, ennen tutoriaalia Tutoriaali 1 sulkeutuu

Lisätiedot

Ohjelmoinnin perusteet Pythonilla. Teemu Sirkiä, 2015

Ohjelmoinnin perusteet Pythonilla. Teemu Sirkiä, 2015 Ohjelmoinnin perusteet Pythonilla Teemu Sirkiä, 2015 Päivitetty 16.9.2015 Yleistä Materiaali sisältää lähinnä Aalto-yliopiston Ohjelmoinnin peruskurssi Y1:n harjoitustehtävissä tarvittavia keskeisiä asioita

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 16.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 16.9.2015 1 / 26 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1

Tietorakenteet ja algoritmit syksy Laskuharjoitus 1 Tietorakenteet ja algoritmit syksy 2012 Laskuharjoitus 1 1. Tietojenkäsittelijä voi ajatella logaritmia usein seuraavasti: a-kantainen logaritmi log a n kertoo, kuinka monta kertaa luku n pitää jakaa a:lla,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 2.2.2011 1 / 37 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Plagioinnin tunnistaminen lähdekielisistä ohjelmista

Plagioinnin tunnistaminen lähdekielisistä ohjelmista Plagioinnin tunnistaminen lähdekielisistä ohjelmista Plagiointi- ja tutkimusetiikka seminaari 30.09.2003 Kirsti Ala-Mutka TTY/Ohjelmistotekniikka Sisältö Plagiointi ohjelmointikursseilla Tyypillisiä ulkoasumuutoksia

Lisätiedot

Harjoitus 4 -- Ratkaisut

Harjoitus 4 -- Ratkaisut Harjoitus -- Ratkaisut 1 Ei kommenttia. Tutkittava funktio: In[15]:= f x : x 1 x Sin x ; Plot f x, x, 0, 3 Π, PlotRange All Out[159]= Luodaan tasavälinen pisteistö välille 0 x 3 Π. Tehdään se ensin kiinnitetyllä

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

16. Ohjelmoinnin tekniikkaa 16.1

16. Ohjelmoinnin tekniikkaa 16.1 16. Ohjelmoinnin tekniikkaa 16.1 Sisällys For-lause lyhemmin. Vaihtoehtoisia merkintöjä aritmeettisille lauseille. Useiden muuttujien esittely ja alustaminen yhdellä lauseella. If-else-lause vaihtoehtoisesti

Lisätiedot

= = = 1 3.

= = = 1 3. 9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala

Lisätiedot

Sisällys. 17. Ohjelmoinnin tekniikkaa. Aritmetiikkaa toisin merkiten. for-lause lyhemmin

Sisällys. 17. Ohjelmoinnin tekniikkaa. Aritmetiikkaa toisin merkiten. for-lause lyhemmin Sisällys 17. Ohjelmoinnin tekniikkaa for-lause lyhemmin. Vaihtoehtoisia merkintöjä aritmeettisille lauseille. Useiden muuttujien esittely ja alustaminen yhdellä lauseella. if-else-lause vaihtoehtoisesti

Lisätiedot

Tietorakenteet (syksy 2013)

Tietorakenteet (syksy 2013) Tietorakenteet (syksy 2013) Harjoitus 1 (6.9.2013) Huom. Sinun on osallistuttava perjantain laskuharjoitustilaisuuteen ja tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. Näiden laskuharjoitusten

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Luvuilla laskeminen. Esim. 1 Laske 6 21 7

Luvuilla laskeminen. Esim. 1 Laske 6 21 7 Luvuilla laskeminen TI-84 Plus käyttää laskujen suorittamiseen ns. yhtälönkäsittelyjärjestelmää (EOS TM, Equation Operating System), jonka avulla lausekkeiden syöttö tapahtuu matemaattisessa kirjoitusjärjestyksessä.

Lisätiedot

Taulukot. Taulukon määrittely ja käyttö. Taulukko metodin parametrina. Taulukon sisällön kopiointi toiseen taulukkoon. Taulukon lajittelu

Taulukot. Taulukon määrittely ja käyttö. Taulukko metodin parametrina. Taulukon sisällön kopiointi toiseen taulukkoon. Taulukon lajittelu Taulukot Taulukon määrittely ja käyttö Taulukko metodin parametrina Taulukon sisällön kopiointi toiseen taulukkoon Taulukon lajittelu esimerkki 2-ulottoisesta taulukosta 1 Mikä on taulukko? Taulukko on

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

Zeon PDF Driver Trial

Zeon PDF Driver Trial Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 2. Lukujen esittäminen ja aritmetiikka 2.1 Kantajärjestelmät ja lukujen esittäminen Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,... } Positiiviset kokonaisluvut

Lisätiedot

Ohjelmointi 1 C#, kevät 2014, 2. uusintatentti NIMI:

Ohjelmointi 1 C#, kevät 2014, 2. uusintatentti NIMI: ITKP102 Ohjelmointi 1 C# 13.6.2014 1 / 5 Ohjelmointi 1 C#, kevät 2014, 2. uusintatentti Tentaattori Antti-Jussi Lakanen Valitse neljä tehtävää ja vastaa niihin. Keväällä 2014 kurssin tehneille lasketaan

Lisätiedot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat ja operaatiot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat ja operaatiot 3. Muuttujat ja operaatiot Sisällys Muuttujat. Nimi ja arvo. Algoritmin tila. Muuttujan nimeäminen. Muuttujan tyyppi. Muuttuja ja tietokone. Operaattorit. Operandit. Arvon sijoitus muuttujaan. Aritmeetiikka.

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Java-kielen perusteita

Java-kielen perusteita Java-kielen perusteita Toistorakenne (while, do-while, for) 1 While- lause while-lauseen rakenne on seuraava: while (ehtolauseke) lause Kun ehtolausekkeen arvo on totta, lause suoritetaan. Lause suoritetaan

Lisätiedot

Luku 8. Aluekyselyt. 8.1 Summataulukko

Luku 8. Aluekyselyt. 8.1 Summataulukko Luku 8 Aluekyselyt Aluekysely on tiettyä taulukon väliä koskeva kysely. Tyypillisiä aluekyselyitä ovat, mikä on taulukon välin lukujen summa tai pienin luku välillä. Esimerkiksi seuraavassa taulukossa

Lisätiedot

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016

Lisätiedot

1 Erilaisia tapoja järjestää

1 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi

Lisätiedot

1. Mitä tehdään ensiksi?

1. Mitä tehdään ensiksi? 1. Mitä tehdään ensiksi? Antti Jussi i Lakanen Ohjelmointi 1, kevät 2010/ Jyväskylän yliopisto a) Etsitään Googlesta valmis algoritmi b) Mietitään miten itse tehtäisiin sama homma kynällä ja paperilla

Lisätiedot

4. Algoritmien tehokkuus

4. Algoritmien tehokkuus 4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

ELEC-A4010 Sähköpaja Arduinon ohjelmointi. Jukka Helle

ELEC-A4010 Sähköpaja Arduinon ohjelmointi. Jukka Helle ELEC-A4010 Sähköpaja Arduinon ohjelmointi Jukka Helle Arduino UNO R3 6-20VDC 5VDC muunnin 16 MHz kideoskillaattori USB-sarjamuunnin (ATmega16U2) ATmega328 -mikro-ohjain 14 digitaalista I/O väylää 6 kpl

Lisätiedot

7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy

7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy 212 7. Aikavaativuus Edellä tarkasteltiin ongelmien ratkeavuutta kiinnittämättä huomiota ongelman ratkaisun vaatimaan aikaan Nyt siirrytään tarkastelemaan ratkeavien ongelmien aikavaativuutta Periaatteessa

Lisätiedot

a b c d

a b c d 1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on

Lisätiedot

Tietorakenteet, laskuharjoitus 1,

Tietorakenteet, laskuharjoitus 1, Tietorakenteet, laskuharjoitus 1, 19.-22.1 Huom: laskarit alkavat jo ensimmäisellä luentoviikolla 1. Taustaa http://wiki.helsinki.fi/display/mathstatkurssit/matukurssisivu Halutaan todistaa, että oletuksesta

Lisätiedot

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja.

n! k!(n k)! n = Binomikerroin voidaan laskea pelkästään yhteenlaskun avulla käyttäen allaolevia ns. palautuskaavoja. IsoInt Tietokoneiden muisti koostuu yksittäisistä muistisanoista, jotka nykyaikaisissa koneissa ovat 64 bitin pituisia. Muistisanan koko asettaa teknisen rajoituksen sille, kuinka suuria lukuja tietokone

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2011 1 / 46 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot