Talousmatematiikan perusteet, ORMS1030

Koko: px
Aloita esitys sivulta:

Download "Talousmatematiikan perusteet, ORMS1030"

Transkriptio

1 Tamprn ksäyliopisto, Talousmatmatiikan prustt, ORMS väliko, (ti ) Ratkais 3 thtävää. Kokssa saa olla mukana laskin (myös graafinn laskin on sallittu) ja taulukkokirja (MAOL tai vastaava). opttaja: Matti Laaksonn 1. a) (1p) Lask todllinn korko, kun kuukausijakson korkokanta on 0, (2p) Lask kuukausikorkokanta, kun todllinn korko on 6,15% c) (3p) Määritä tasarälainan kuukausirä, kun lainan määrä on uroa, laina-aika on 14 kuukautta, lainaa lyhnntään kuukausittain, ja todllinn korko on 4,75%. Ratkaisu: a) (1 + i tod ) 1, , jotn todllinn korko on 5,35% 1 + i 1,0615 1/12 1, , jotn kuukusikorkokanta on 0, c) tasara (1 + i) n [1,04751/12 1] 1, /12 (1, / ) 955,78 Vastaus: a) 5,35%, 0, , c) 955, Vuodssa raaka-ainvaraston läpi kulk kappaltavaraa D Yritys aikoo ulkoistaa raaka-aintilaustn ja raaka-ainvarastojn hoidon. Yritys on saanut tarjoukst kolmlta huolintayrityksltä (H1, H2 ja H3). Yhtnvto tarjoustn tidoista on suraavassa taulukossa. tilausrä Tilauskust. Yksikköyllä- Tilauskust. Ylläpiq K pitokust. h (/) tokust. () (/rä) (//kk) (/kk) H1 sop. mukaan H H (Maininta sopimuksn mukaan H1:n tarjouksssa mrkits sitä, ttä tilausrä voidaan sopia tilaajan haluamaksi.) a) (3p) Määritä optimaalinn tilausrän koko huolintaliikkn H1 tidoin ja lask vastaavat tilaus- ja ylläpitokustannukst kahtn viimisn sarakksn. (2p) Tarkista ja tarvittassa korjaa H2:n ja H3:n osalta tilaus- ja ylläpitokustannukst kahdssa viimisssä sarakkssa. c) (1p) Mikä tarjous on tilaajall dullisin?

2 Ratkaisu: a) Lasktaan nsimmäisn tarjouksn mukainn optimaalinn tilausrä. kysyntä D tilauskustannus K 20,00 yks.ylläpitokustannus h 0,080 kk 0,96 optimaalinn tilausrä on nyt , q 0 h 0,96 Tilauskustannus on silloin q 0 ja ylläpitokustannus on silloin 20, Kustannustaulukko täydntyy siis muotoon ,35, h q0 2 0,080 kk ,28 2 kk tilausrä Tilauskust. Yksikköyllä- Tilauskust. Ylläpiq K pitokust. h (/) tokust. () (/rä) (//kk) (/kk) H ,35 103,28 H H Tarkisttaan H2:n ja H3:n osalta tilauskustannuksn ja ylläpitokustannustn arvot taulukossa Tarjous H2: Tarjous H3: q 50, ,00, h q 2 0,050 kk ,00 2 kk, OK OK q 40, ,00, OK h q 2 0,075 kk ,00 2 kk, OK c) Valitaan tarjouksista dullisin laskmalla vuotuist kokonaiskustannukst TC H1 1239, , ,71 TC H2 1600, , ,00

3 TC H3 640,00 Ensimmäinn tarjous on siis dullisin , ,00 Vastaus: a) Ensimmäisn tarjouksn mukainn optimaalinn tilausrä on 2 582, Silloin vuotuinn tilauskustannus on 1239,35/ ja ylläpitokustannus on 103,28/kk ( 1239,36/) Toisn ja kolmannn tarjouksn kustannukst ovat taulukossa oikin c) Ensimmäinn tarjous on dullisin, koska siinä vuotuinn kokonaiskustannus on pinin. 3. Yritys valmistaa q tuottta viikossa. Kysyntäfunktio on p q ja vastaava kustannusfunktio on C(q) 0.1q q a) Millä tuotantomäärällä voitto on suurin? Mikä on voitto silloin? c) Mitn muuttuvat a- ja b-kohdan vastaukst, kun kiintät kustannukst nousvat 20%? Ratkaisu: a) Optimissa kysyntäfunktio p 100 0,15q tuottofunktio R(q) q p 100q 0,15q 2 rajatuotto MR R (q) 100 0,30q kustannusfunktio C(q) 0.1q q rajakustannus MC(q) C (q) 0.2q + 35 P(130) R(130) C(130) MC MR 0,2q ,30q 0,50q 65 q 130 ( , ) (0, ) ( ) ( ) 3525 c) Kun kiintät kustannukst kasvavat 20% niin uusi kiintidn kustannustn arvo on 1, Vakiotrmin arvon muutos i vaikuta rajakustannuksn, jotn a-kohdan vastaus i muutu. Optimi-tuotantomäärä on dlln 120. Silloin b-kohdassa tuoton arvo (R(130)) i muutu ja kustannustn kokonais-määrä (C(130)) kasvaa saman vrran kuin kiintä kustannus kasvoi, li 140. Siis b-kohdan vastaus pinn 140:llä. Vastaus: a) 120, c) a-kohdan vastaus i muutu ja b-kohdan vastaus pinn 140:llä.

4 4. a) (2p) Slitä lyhysti, mitä tarkoittaa y:n jousto x:n suhtn. (3p) Tuottn kysynnän hintajousto on 1.8. Tuottn hinta on nyt 5.00 uroa ja kysynta tuottta vuodssa. Mitn tuottn kysyntä muuttuu, kun hinta lasktaan 4.80 uroon? c) (1p) Lask arvio b-kohdan tuotannon rajatuotoll. Ratkaisu: a) y:n jousto x:n suhtn on y:n prosnttimuutos jattuna x:n prosnttimuutokslla. hinta nyt p 5,00/ kysyntä nyt q / hinnan muutos p 0,20/ kysynnän muutos q x kys. hintajousto kh j 1,8 x q p p q kh j x 0,20/ 5,00/ / 1,8 1,80 ( 0,20/) / / 5,00/ c) Rajatuotto on tuoton (R(q)) lisäys, kun tuotantoa lisätään yhdllä ( ). Arvioimm hinnan ja tuoton muutoksia silloin: hinta nyt p 5,00/ kysyntä nyt q / määrän muutos q +1/ hinnan muutos p y/ kys. hintajousto kh j 1,8 q p p q kh j +1/ y/ +1/ 1,8 5,00/ / 1,8 5,00/ / y/ y 0, / uusi tuotto R(250001) , ,222 tuotto nyt R(250000) , rajatuotto MR(250000) R q 2, ,22 Vastaus: Tuottn kysytä kasvaa :lla tuottlla. c) Rajatuotto on 2,22/.

5 Kaavoja: Jaksollist suoritukst Intrpolointi: Varastomallista prolongointitkijä s n,i (1 + i)n 1 i diskonttaustkijä a n,i (1 + i)n 1 kuoltuskrroin c n,i (1 + i) n 1 ŷ y 0 + x x 0 x 1 x 0 (y 1 y 0 ) y 0 + y 1 y 0 x x 0 (x 1 x 0 ) prusmalli q 0 puutmalli Drivaatta ja 2. astn yhtälö Korkokaavat 2 h h + s s q 1 q 0, M 1 q 0 s h + s, TC 1 (q) q + M2 h 2q + (q M)2 s 2q r r D tuotantomalli q 2 q 0 r D, M 2 q 0, r TC 2 (q) hq(r D) + q 2r d dx (axn ) nax n 1 ax 2 + bx + c 0 x b ± b 2 4ac 2a Yksinkrtainn: K t (1 + it)k 0 (1 + p 100 t)k 0, kun 0 < t < 1 Koronkorko: K t (1 + i) t K 0, kun t 1,2,3,... Jatkuva: K t (1 + i) t K 0 ρt K 0, kun t > 1 ja (1 + i) ρ Tasarälaina ja osamaksukauppa annuittti k c n,i K 0, osamaksurä k c n,i (H h + m) Aritmttinn- ja gomtrinn summa n k1 (a 1 + (k 1)d) n (a 1 + a n ), 2 n a 1 q k 1 a 1(1 q n ) k1 1 q

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kvät 206 Talousmatmatiikan prustt, ORMS030 3. harjoitus, viio 5. 5.2.206 Malliratkaisut. Yrityksn rään tuotlinjan kysyntäfunktio on p 20 0.030 ja vastaava kustannusfunktio on C 0.02 2

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasan yliopisto, kevät 2017 Talousmatematiikan perusteet, ORMS1030 6. harjoitus, viikko 6 (27.2. 3.3.2017) R1 ma 12 14 F249 R5 ti 14 16 F453 R2 ma 14 16 F453 R6 to 12 14 F104 R3 ti 08 10 F140 R7 pe 08

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tamprn ksäyliopisto, syksy 2016 Talousmatmatiikan prustt, ORMS1030 2. harjoitus, (p 4.11.2016) 1. Yritys valmistaa kappaltavaraa kappaltta viikossa. Yhdn kappaln matriaali- ja palkkakustannus on 7, jotn

Lisätiedot

Voitonmaksimointi esimerkkejä, L9

Voitonmaksimointi esimerkkejä, L9 Voitonmaksimointi esimerkkejä, L9 (1) Yritys Valmistaa kuukaudessa q tuotetta. Kysyntäfunktio on p = 15 0, 05q ja kustannusfunktio on C(q) = 350 + 2q + 0, 05q 2. a) Yritys valmistaa nyt tuotteita kuukaudessa

Lisätiedot

Rajatuotto ja -kustannus, L7

Rajatuotto ja -kustannus, L7 ja -kustannus, L7 1 Kun yritys valmistaa tuotetta jaksossa määrän q (kpl/jakso), niin kassaan kertyvä tuotto on R(q) = p q = p(q) q. Esimerkki. Jos kysyntäfunktio on p = 20 0.1q, niin tuotto funktio on

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe A1. välikoe torstaia 16.2.2017 A Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet

Lisätiedot

Voitonmaksimointi, L5

Voitonmaksimointi, L5 , L5 Seuraavassa tullaan systemaattisesti käyttämään seuraavia merkintöjä q = tuotannon määrä (quantity) (kpl/kk) p = tuotteen hinta (price) (e/kpl) R(q) = tuotto (revenue) R(q) = pq MR(q) = rajatuotto

Lisätiedot

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe A1. välikoe torstaia 16.2.2017 A Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet

Lisätiedot

p'ø):{. P: f (ù: 10 Thlousmatematiikan perusteet, orrvrs ro:o - 5) - O'\lq - 4x, kun g(x) :7x2l5x-3, kun ft(.r) :3x. (x2 f'(3), g'(*), h'(*),

p'ø):{. P: f (ù: 10 Thlousmatematiikan perusteet, orrvrs ro:o - 5) - O'\lq - 4x, kun g(x) :7x2l5x-3, kun ft(.r) :3x. (x2 f'(3), g'(*), h'(*), Tampereen kesäyliopisto, kevät 2015 Thlousmatematiikan perusteet, orrvrs ro:o 2. harjoitus, (pe27.11.2015) 1. Yritys valmistaa kappaletavaraa q kappaletta viikossa. Yhden kappaleen materiaali- ja palkkakustannus

Lisätiedot

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT

TALOUSTIETEEN LUENTOJEN TEHTÄVÄT TALOUSTIETEEN LUENTOJEN TEHTÄVÄT 1. Suhteellisen edun periaate 1. Maassa A: 1 maito ~ 3 leipää 1 leipä ~ 0,33 maitoa Maassa B: a. b. 3 maitoa ~ 5 leipää 1 maito ~ 1,67 leipää 1 leipä ~ 0,6 maitoa i. Maalla

Lisätiedot

Derivointikaavoja, interpolointi, jousto, rajatuotto, L4b

Derivointikaavoja, interpolointi, jousto, rajatuotto, L4b , interpolointi, jousto, rajatuotto, L4b Funktioita Potenssifunktio: x (axn ) = nax n 1 Eksponentin n ei tarvitse olla kokonaisluku, vaan se voi olla murtoluku tai esimaaliluku! Neliöjuuri: ax = x x (

Lisätiedot

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18

Panoskysyntä. Luku 26. Marita Laukkanen. November 15, Marita Laukkanen Panoskysyntä November 15, / 18 Panoskysyntä Luku 26 Marita Laukkanen November 15, 2016 Marita Laukkanen Panoskysyntä November 15, 2016 1 / 18 Monopolin panoskysyntä Kun yritys määrittää voitot maksimoivia panosten määriä, se haluaa

Lisätiedot

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV

Lisätiedot

KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo

KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo 1 KA 1 2009, tentti 14.10. 2009 (mikrotaloustieteen osuus), luennoitsija Mai Allo ÄLÄ IRROTA PAPEREITA TOISISTAAN! Ohjeet: Tenttikysymyksiä on kuusi (+ jokeri ohjeineen viimeisellä sivulla). Valitse tenttikysymyksistä

Lisätiedot

Nimi: Ratkaise tehtävät sivun alalaitaan. (paperi nro 1) 1. Valitse oikea toisen asteen yhtälön ratkaisukaava: (a) b ± b 4ac 2a. (b) b ± b 2 4ac 2a

Nimi: Ratkaise tehtävät sivun alalaitaan. (paperi nro 1) 1. Valitse oikea toisen asteen yhtälön ratkaisukaava: (a) b ± b 4ac 2a. (b) b ± b 2 4ac 2a paperi nro 0 a b ± b 2 4ac b b ± b 2 + 4ac c b ± b 4ac d b ± b 2 4ac 2. Ratkaise toisen asteen yhtälö x 2 + 7x 12 = 0. 3. Ratkaise epäyhtälö 3x 2 30x > 0 4. Ratkaise epäyhtälö 5x 2 + 5 < 0 paperi nro 1

Lisätiedot

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä

1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= P, missä A31C00100 Mikrotaloustiede Kevät 2017 1. Kuntosalilla on 8000 asiakasta, joilla kaikilla on sama salikäyntien kysyntä: q(p)= 18 1.5P, missä q on käyntejä kuukaudessa keskimäärin. Yhden käyntikerran rajakustannus

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Vuosi jaetaan

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät Olli Kauppi HARJOITUKSET 4

A31C00100 Mikrotaloustiede. Kevät Olli Kauppi HARJOITUKSET 4 A31C00100 Mikrotaloustiede Kevät 2016 Olli Kauppi HARJOITUKSET 4 1. Jukan yritys tarjoaa pikaruoka-annosten kotiinkuljetuspalvelua. Asiakkaat tekevät tilauksensa Jukan verkkosivuilla. Jukka ostaa tilatut

Lisätiedot

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan.

Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. 5. EPÄTÄYDELLINEN KILPAILU Täydellinen kilpailu: markkinoilla suuri määrä yrityksiä. ----> Yksi yritys ei vaikuta hyödykkeen markkinahintaan. Epätäydellinen kilpailu: markkinoilla yksi tai vain muutama

Lisätiedot

8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13)

8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13) 8 Yrityksen teoria: tuotanto ja kustannukset (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2 nd ed., ch 13) Tavaroiden ja palvelujen tuotanto tapahtuu yrityksissä Yritykset tuntevat niiden valmistukseen

Lisätiedot

4. www-harjoitusten mallivastaukset 2016

4. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6 A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a.

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät Olli Kauppi & Emmi Martikainen HARJOITUKSET 7

A31C00100 Mikrotaloustiede. Kevät Olli Kauppi & Emmi Martikainen HARJOITUKSET 7 A31C00100 Mikrotaloustiede Kevät 2016 Olli Kauppi & Emmi Martikainen HARJOITUKSET 7 1. Pesuainetta ostavat kuluttajat voidaan jakaa kahteen ryhmään. Ensimmäisen ryhmän kysyntä on Q H (P)=12-2P. Ryhmään

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Merkintöjä

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi

Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla

Lisätiedot

7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13)

7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13) 7 Yrityksen teoria: tuotanto ja kustannukset (Mankiw & Taylor, Ch 13) Tavaroiden ja palvelujen tuotanto tapahtuu yrityksissä Yritykset tuntevat niiden valmistukseen tarvittavan teknologian teknologia on

Lisätiedot

Jaksolliset suoritukset, L13

Jaksolliset suoritukset, L13 , L13 1 Jaksollinen talletus Tarkastellaan tilannetta, jossa asiakas tallettaa pankkitilille toistuvasti yhtäsuuren rahasumman k aina korkojakson lopussa. Asiakas suorittaa talletuksen n kertaa. Lasketaan

Lisätiedot

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali integraali 1 Matta-projekti(Aalto yliopisto): Integraali (http://matta.hut.fi/matta2/isom/html/isomli8.html ) Johdatus korkeakoulumatematiikkaan (Tampereen teknillinen korkeakoulu): Integraali (http://matwww.ee.tut.fi/jkkm/integraa/integ01.htm

Lisätiedot

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10 Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,

Lisätiedot

diskonttaus ja summamerkintä, L6

diskonttaus ja summamerkintä, L6 diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson

Lisätiedot

Osamaksukauppa, vakiotulovirran diskonttaus, L8

Osamaksukauppa, vakiotulovirran diskonttaus, L8 Osamaksukauppa, vakiotulovirran diskonttaus, L8 1 Kerrataan kaavoja s n;i = ((1 + i)n 1) i = prolongointitekijä a n;i = ((1 + i)n 1) i(1 + i) n = diskonttaustekijä c n;i = i(1 + i) n ((1 + i) n 1) = kuoletuskerroin

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ 06 www4 Page of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 06 Assignment: 06 www4. Mikä seuraavista alueista vastaa voittoa maksimoivan monopoliyrityksen ylisuuria

Lisätiedot

Y56 laskuharjoitukset 5

Y56 laskuharjoitukset 5 Y56 Keät 2010 1 Y56 laskuharjoitukset 5 Palautus joko luennolle/mappiin to 8.4. tai Katjan lokerolle (Koetilantie 5, 3. krs) to 8.4. klo 16 mennessä (purku luennolla ti 13.4.) Huom. Tehtäät eiät ole aikeusjärjestyksessä,

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.

Lisätiedot

Korkolasku ja diskonttaus, L6

Korkolasku ja diskonttaus, L6 Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mallivastaukset - Loppukoe 10.12. Monivalinnat: 1c 2a 3e 4a 5c 6b 7c 8e 9b 10a I (a) Sekaniputus

Lisätiedot

Luku 21 Kustannuskäyrät

Luku 21 Kustannuskäyrät Luku 2 Kustannuskärät Edellisessä luvussa johdimme ritksen kustannusfunktion minimoimalla ritksen tuotannon kokonaiskustannuksia. Kustannusfunktiota ja sen ominaisuuksia voidaan tarkastella graafisesti

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Talousmatematiikan perusteet

Talousmatematiikan perusteet Talousmatematiikan perusteet Mallintamisesta, esimerkkinä varastomallit Professori Ilkka Virtanen 10.4.001 1 Sisällysluettelo Varastomallit esimerkkinä mallintamisesta 1.Peruskäsitteet.Perusmalli (EOQ

Lisätiedot

Piiri K 1 K 2 K 3 K 4 R R

Piiri K 1 K 2 K 3 K 4 R R Lineaarinen optimointi vastaus, harj 1, Syksy 2016. 1. Teollisuuslaitos valmistaa piirejä R 1 ja R 2, joissa on neljää eri komponenttia seuraavat määrät: Piiri K 1 K 2 K 3 K 4 R 1 3 1 2 2 R 2 4 2 3 0 Päivittäistä

Lisätiedot

1 KAUPALLISIA SOVELLUKSIA 7. 1.1 Tulovero 8

1 KAUPALLISIA SOVELLUKSIA 7. 1.1 Tulovero 8 SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA 7 1.1 Tulovero 8 1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17 1.3 Indeksit 22 - Indeksin käsite 22

Lisätiedot

Malliratkaisut Demo 1

Malliratkaisut Demo 1 Malliratkaisut Demo 1 1. Merkitään x = kuinka monta viikkoa odotetaan ennen kuin perunat nostetaan. Nyt maksimoitavaksi kohdefunktioksi tulee f(x) = (60 5x)(300 + 50x). Funktio f on alaspäin aukeava paraaeli,

Lisätiedot

Symmetriaryhmät ja niiden esitykset. Symmetriaryhmät, 10.1.2013 1/26

Symmetriaryhmät ja niiden esitykset. Symmetriaryhmät, 10.1.2013 1/26 Symmetriaryhmät ja niiden esitykset Symmetriaryhmät, 10.1.2013 1/26 Osa I: Symmetriaryhmät Symmetriaryhmät, 10.1.2013 2/26 Peilisymmetria Symmetriaryhmät, 10.1.2013 3/26 Kiertosymmetria Symmetriaryhmät,

Lisätiedot

Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä

Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä Matemaattinen lisäys A. Derivaatta matematiikassa ja taloustieteessä Edellä rajakustannuksia MC(x) ja rajahyötyä MB(x) tarkasteltaessa käsiteltiin vain tapausta, jossa x on diskreetti suure (mahdollisia

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

* Hyödyn maksimointi on ihmisten toimintaa ja valintoja ohjaava periaate.

* Hyödyn maksimointi on ihmisten toimintaa ja valintoja ohjaava periaate. KANSANTALOUSTIETEEN PERUSTEET Yrityksen teoria (Economics luvut 13-14) 14) KTT Petri Kuosmanen Optimointiperiaate a) Yksilöt pyrkivät maksimoimaan hyötynsä. * Hyödyn maksimointi on ihmisten toimintaa ja

Lisätiedot

Tampere Seinäjoki-radan nopeuden nosto MELUSELVITYS

Tampere Seinäjoki-radan nopeuden nosto MELUSELVITYS Tampr Sinäjoki-radan nopudn nosto Ratahallintokskus Tampr Sinäjoki-radan nopudn nosto () ESIPUHE Tämä työ on thty Sito Oy:ssä Ratahallintokskuksn toimksiannosta. Työn tarkoituksna oli tutkia mluslvityksn

Lisätiedot

Kustannusten minimointi, kustannusfunktiot

Kustannusten minimointi, kustannusfunktiot Kustannusten minimointi, kustannusfunktiot Luvut 20 ja 21 Marita Laukkanen November 3, 2016 Marita Laukkanen Kustannusten minimointi, kustannusfunktiot November 3, 2016 1 / 17 Kustannusten minimointiongelma

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Eksponenttifunktio ja Logaritmit, L3b

Eksponenttifunktio ja Logaritmit, L3b ja Logaritmit, L3b eksponentti-funktio Eksponentti-funktio Linkkejä kurssi8, / Etälukio (edu.) kurssi8, logaritmifunktio / Etälukio (edu.) Potenssifunktio y = f (x) = 2 Vakiofunktion y = a kuvaaja on vaakasuora

Lisätiedot

12 Oligopoli ja monopolistinen kilpailu

12 Oligopoli ja monopolistinen kilpailu 12 Oligopoli ja monopolistinen kilpailu (Mankiw & Taylor, 2nd ed., chs 16-17; Taloustieteen oppikirja, s. 87-90) Oligopoli on markkinamuoto, jossa markkinoilla on muutamia yrityksiä, jotka uskovat tekemiensä

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

5 Markkinat, tehokkuus ja hyvinvointi

5 Markkinat, tehokkuus ja hyvinvointi 5 Markkinat, tehokkuus ja hyvinvointi Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja kuluttaa sellaisen määrän

Lisätiedot

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7)

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) 4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, 009-010 / ORMS1010 Matemaattinen Analyysi 7 harjoitus 1 Määritä seuraavien potenssisarjojen suppenemissäteet a) k k x 5)k b) k=1 k x 5)k = k k 1) k ) 1) Suppenemissäteen R käänteisarvo

Lisätiedot

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei. PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja

Lisätiedot

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä:

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä: 1 Luku 22 Yrityksen tarjonta Edellisissä luvuissa olemme yrityksen teoriasta tarkastelleet yrityksen tuotantopäätöstä, ts. panosten optimaalista valintaa, yrityksen voiton maksimoinnin ja kustannusten

Lisätiedot

ehdolla y = f(x1, X2)

ehdolla y = f(x1, X2) 3.3. Kustannusten minimointi * Voiton maksimointi: panosten määrän sopeuttaminen -----> tuotanto * Kustannusten minimointi: tiett tuotannon taso -----> etsitään optimaalisin panoskombinaatio tuottamaan

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tampereen kesäyliopisto, syksy 2016 Talousmatematiikan perusteet, ORMS1030 1. harjoitus, (la 29.10.2016) 1. Laske seuraavat laskut. Laske kukin lasku ensin käsin kynää ja paperia käyttäen. Anna vastaukset

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Y56 laskuharjoitukset 5 - mallivastaukset

Y56 laskuharjoitukset 5 - mallivastaukset Y56 Keät 010 1 Y56 laskuharjoitukset 5 - malliastaukset Harjoitus 1. Voiton maksimoia tuotannon taso & kiinteät kustannukset Taoitteena on ymmärtää kiinteiden kustannusten aikutus yrityksen tuotantopäätöksiin

Lisätiedot

1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17

1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17 SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA 7 1.1 Tulovero 8 1.2 Hintaan vaikuttavia tekijöitä 13 - Arvonlisävero 13 - Myyntipalkkio ja myyntikate 15 - Alennus ja hävikki 17 1.3 Indeksit 22 - Indeksin käsite 22

Lisätiedot

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden

Lisätiedot

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ LIITE 8A: RAKENNELUVUN 37 YHTÄLÖITÄ Raknnluvusta 37 on tämän työn yhtydssä syntynyt yli 00 yhtälöä, joista 00 yhtälöä on analysoitu. Näistä on osoittautunut 70 yhtälöä milnkiintoisiksi ja saman vrran otaksutaan

Lisätiedot

(Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15)

(Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15) 12 Monopoli (Taloustieteen oppikirja, luku 5; Mankiw & Taylor, 2nd ed., ch 15) Monopoli on tilanne, jossa markkinoilla on vain yksi myyjä, jonka valmistamalle tuotteelle ei ole läheistä substituuttia yritys

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa

Lisätiedot

Vakiomuotoiset eurooppalaiset kulutusluottotiedot

Vakiomuotoiset eurooppalaiset kulutusluottotiedot Vakiomuotoiset eurooppalaiset kulutusluottotiedot EU:ssa on laadittu vakiomuotoisten kulutusluottotietojen esittämiseen tarkoitettu lomake. Tiedot ilmaisevat oikein nykyisissä markkinaoloissa jättämämme

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

TU Kansantaloustieteen perusteet Syksy 2016

TU Kansantaloustieteen perusteet Syksy 2016 TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä

Lisätiedot

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Osa 11. Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista

Lisätiedot

Empiiriset sovellukset

Empiiriset sovellukset Empiirist sollukst Kotithtään ratkaisu.4. S ystmianalyysin Tknillinn korkakoulu Esitlmä # - Esitlmöijän nimi Optimointiopin sminaari - Kät Kotithtää Epäsymmtrisn tidon huutokauppa öljysiintymästä Piirrä

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan liopisto, kevät 2015 / ORMS1010 Matemaattinen Analsi 8. harjoitus, viikko 18 R1 ma 16 18 D115 (27.4.) R2 ke 12 14 B209 (29.4.) 1. Määritä funktion (x) MacLaurinin sarjan kertoimet, kun (0) = 2 ja

Lisätiedot

Pohjola, Matti (2008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy.

Pohjola, Matti (2008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy. Valtiotieteellinen tiedekunta Kansantaloustieteen valintakoe Arvosteluperusteet Kesä 010 Kirjallisuuskoe Pohjola, Matti (008): Taloustieteen oppikirja. ISBN 978-951-0-34550-4. WSOY Oppimateriaalit Oy.

Lisätiedot

Taloustieteen perusteet 31A00110 19.02.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus

Taloustieteen perusteet 31A00110 19.02.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Taloustieteen perusteet 31A00110 19.02.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi

Lisätiedot

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)

1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a) Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Ratkaisuehdotukset Kesäyliopisto 2014. 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio.

Ratkaisuehdotukset Kesäyliopisto 2014. 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio. Harjoitukset 2 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio. a) Mikä on kysynnän hintajousto 12 :n ja 6 :n välillä?

Lisätiedot

Osa 4 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4 ja Pohjolan luennot)

Osa 4 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4 ja Pohjolan luennot) Osa 4 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4 ja Pohjolan luennot) Opimme tässä osiossa ja myöhemmissä luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 206 Talousmatematiika perusteet, ORMS030 5. harjoitus, viikko 7 5. 9.2.206 R ma 0 2 F455 R5 ti 0 2 F9 R2 ma 4 6 F455 R6 to 2 4 F455 R3 ti 08 0 F455 R7 pe 08 0 F455 R4 ti 2 4 F455

Lisätiedot

MIKROTEORIA, HARJOITUS 5 YRITYKSEN VOITON MAKSIMOINTI JA KUSTANNUSTEN MINIMOINTI

MIKROTEORIA, HARJOITUS 5 YRITYKSEN VOITON MAKSIMOINTI JA KUSTANNUSTEN MINIMOINTI MIKROTEORIA, HARJOITUS 5 RITKSEN VOITON MAKSIMOINTI JA KUSTANNUSTEN MINIMOINTI Olkoon ritksen kustannusfunktio c ( F a ritksen rajakustannukset kertovat, paljonko ritksen kustannukset muuttuvan kun tuotantoa

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 04 Talousmatematiika perusteet, ORMS030 6. harjoitus, viikko 0 3. 7.3.04 R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0 D5. Laske

Lisätiedot