Algoritmit 2. Luento 11 Ti Timo Männikkö

Koko: px
Aloita esitys sivulta:

Download "Algoritmit 2. Luento 11 Ti Timo Männikkö"

Transkriptio

1 Algoritmit 2 Luento 11 Ti Timo Männikkö

2 Luento 11 Peruutusmenetelmä Osajoukon summa Pelipuut Pelipuun läpikäynti Rajoitehaku Kapsäkkiongelma Algoritmit 2 Kevät 2017 Luento 11 Ti /29

3 Algoritmien suunnittelu Raa an voiman käyttö: Tutkitaan kaikki mahdolliset vaihtoehdot Nopeuttaminen: Rajataan pois vaihtoehdot, joiden joukosta ei voi enää löytyä parempaa ratkaisua Peruutus: Lähdetään liikkeelle tyhjästä osaratkaisusta Täydennetään osaratkaisua Perutaan huonoiksi osoittautuneita valintoja Algoritmit 2 Kevät 2017 Luento 11 Ti /29

4 Peruutusmenetelmä Aloitetaan tyhjästä osittaisesta ratkaisusta Yritetään täydentää osittaista ratkaisua komponentti kerrallaan Jos täydentäminen voidaan tehdä rikkomatta tehtävän rajoituksia, se suoritetaan Jos saadaan täydellinen vastaus, lopetetaan Jos täydentämistä ei voida tehdä, peruutetaan viimeksi tehty täydennys ja yritetään toista komponenttia Jos komponentteja ei ole jäljellä, peruutetaan edelleen Algoritmit 2 Kevät 2017 Luento 11 Ti /29

5 Peruutusmenetelmä vastaus peruuttava(tapaus x) { if (x on täydellinen vastaus) return x; else { for (kaikilla täydennyksillä e[i]) { y = peruuttava(x + täydennys e[i]); if (y on täydellinen vastaus) return y; } return virhe; } } Algoritmit 2 Kevät 2017 Luento 11 Ti /29

6 Osajoukon summa Annettu n kpl positiivisia kokonaislukuja a i Joukko A = {a 1,..., a n } Annettu positiivinen kokonaisluku d Tehtävä: Etsi sellainen osajoukko S, jonka alkioiden summa = d (jos olemassa) Osajoukkoja 2 n kpl Algoritmit 2 Kevät 2017 Luento 11 Ti /29

7 Osajoukon summa Järjestetään alkiot kasvavaan järjestykseen: a 1 a 2 a n Vaiheessa i joko otetaan a i mukaan tai ei oteta Pidetään yllä valittujen alkioiden summaa Jos seuraavan alkion lisääminen kasvattaisi summan yli d:n, sallittua täydennystä tämänhetkiselle osajoukolle ei ole Muuten molemmat vaihtoehdot ovat mahdollisia Edetään peruutusalgoritmin mukaisesti Algoritmit 2 Kevät 2017 Luento 11 Ti /29

8 Osajoukon summa osasumma(a, d, i, summa, n) { if (i > n) palauta false; if (summa + a[i] a[n] < d) palauta false; if (summa + a[i] > d) palauta false; if (summa + a[i] == d) { lisää alkio i ratkaisuun; palauta true; } if (osasumma(a, d, i+1, summa+a[i], n)) { lisää alkio i ratkaisuun; palauta true; } else palauta osasumma(a, d, i+1, summa, n); } Algoritmit 2 Kevät 2017 Luento 11 Ti /29

9 Osajoukon summa Algoritmin ensimmäinen kutsu: osasumma(a, d, 1, 0, n) Pahimmassa tapauksessa käydään läpi kaikki mahdolliset osajoukot Θ(2 n ) Algoritmit 2 Kevät 2017 Luento 11 Ti /29

10 Pelipuut Kaksi pelaajaa, x ja y Pelaajat tekevät vuorotellen siirtoja (valintoja) Pelipuu: Kukin solmu kuvaa yhtä pelitilannetta Juurisolmu kuvaa pelin alkutilannetta Siirto tarkoittaa siirtymistä solmusta johonkin sen lapsisolmuun Lehtisolmut kuvaavat pelin mahdollisia lopputilanteita Algoritmit 2 Kevät 2017 Luento 11 Ti /29

11 Esimerkki X X O X X O O X X O O X X O O X X O O X X O X O X X O X X O O O X O X X O O O X X O X X O O X O X X X O X X O X X O O O O X O X O X X O X O 3 X O X X O X O X X O O X X O X O X O X O X X O X O O O X X O X O X X O O X X O X O Algoritmit 2 Kevät 2017 Luento 11 Ti /29

12 Pelipuut Voittoarvo (payoff-arvo): Arvo, joka kuvaa solmun hyvyyttä pelaajan x kannalta Esimerkiksi payoff(t) 1, jos x:llä voittostrategia t:ssä 1, jos y:llä voittostrategia t:ssä = 0, jos kummallakaan ei ole voittostrategiaa t:ssä Algoritmit 2 Kevät 2017 Luento 11 Ti /29

13 Pelipuut Lopputilanteille voittoarvot on helppo laskea Muiden solmujen voittoarvot voidaan määrittää lapsisolmujen avulla (minmax-proseduuri): Jos vuorossa on x, on voittoarvo lapsisolmujen voittoarvojen maksimi Jos vuorossa on y, on voittoarvo lapsisolmujen voittoarvojen minimi Kaikkien solmujen voittoarvot voidaan määrittää käymällä läpi koko pelipuu lehtisolmuista juureen (jälkijärjestyksessä) Algoritmit 2 Kevät 2017 Luento 11 Ti /29

14 Esimerkki MAX MIN MAX MIN Algoritmit 2 Kevät 2017 Luento 11 Ti /29

15 Pelipuut Vähänkin mutkikkaammassa pelissä pelipuu on liian suuri, jotta kaikki voittoarvot voitaisiin määrittää lopputilanteista alkaen Käytännössä sovelletaan minmax-proseduuria k siirtoa eteenpäin ja arvioidaan pelitilanteiden hyvyyttä jollain heuristisella evaluointifunktiolla eval(t) Merkitään: x on MAX-pelaaja y on MIN-pelaaja Algoritmit 2 Kevät 2017 Luento 11 Ti /29

16 Pelipuun läpikäynti payoff(pelitilanne,siirtoraja,pelaaja) { if (siirtoraja == 0 tai pelitilanne lopputilanne) return eval(pelitilanne); else { if (pelaaja == MAX) arvo = -ääretön; else arvo = +ääretön; for (kaikilla pelitilanteen seuraajilla s) if (pelaaja == MAX) arvo = max(arvo,payoff(s,siirtoraja-1,min)); else arvo = min(arvo,payoff(s,siirtoraja-1,max)); return arvo; } } Algoritmit 2 Kevät 2017 Luento 11 Ti /29

17 Läpikäynnin tehostaminen α-β-karsinta: Kaikissa solmuissa ylläpidetään väliaikaista voittoarvoa MAX-pelaajalle väliaikainen voittoarvo on todellisen arvon alaraja MIN-pelaajalle väliaikainen voittoarvo on todellisen arvon yläraja Vertaamalla solmun väliaikaista voittoarvoa sen vanhemman väliaikaiseen voittoarvoon tiedetään, kannattaako jälkeläisten läpikäyntiä jatkaa Algoritmit 2 Kevät 2017 Luento 11 Ti /29

18 Läpikäynnin tehostaminen MAX-pelaajalle α = suurin tähän mennessä läpikäytyjen jälkeläisten voittoarvo MIN-pelaajalle β = pienin tähän mennessä läpikäytyjen jälkeläisten voittoarvo Solmu t on MAX-solmu: Jos α kasvaa suuremmaksi kuin sen vanhemman β, ei jälkeläisten läpikäyntiä kannata jatkaa Solmu t on MIN-solmu: Jos β menee pienemmäksi kuin sen vanhemman α, ei jälkeläisten läpikäyntiä kannata jatkaa Algoritmit 2 Kevät 2017 Luento 11 Ti /29

19 Pelipuun läpikäynti: α-β-karsinta payoff_ab(pelitilanne,siirtoraja,pelaaja,a,b) { if (siirtoraja == 0 tai pelitilanne lopputilanne) return eval(pelitilanne); else { if (pelaaja == MAX) arvo = -ääretön; else arvo = +ääretön; for (kaikilla pelitilanteen seuraajilla s) if (pelaaja == MAX) { arvo = max(arvo,payoff_ab(s,siirtoraja-1,min,a,b)); if (arvo => b) return arvo; else a = max(a,arvo); } else { arvo = min(arvo,payoff_ab(s,siirtoraja-1,max,a,b)); if (arvo <= a) return arvo; else b = min(b,arvo); } return arvo; } } Algoritmit 2 Kevät 2017 Luento 11 Ti /29

20 Esimerkki α 3 β 1 β 3 β MAX MIN MAX MIN Algoritmit 2 Kevät 2017 Luento 11 Ti /29

21 Esimerkki jatkuu MAX MIN MAX MIN Algoritmit 2 Kevät 2017 Luento 11 Ti /29

22 Rajoitehaku Käydään läpi kaikkien mahdollisten ratkaisujen muodostamaa ratkaisupuuta Jokaiselle uudelle osittaisratkaisulle lasketaan raja sille, miten hyviä ratkaisuja tätä osittaisratkaisua täydentämällä voidaan saavuttaa Jos aiemmin löydetty sallittu ratkaisu, joka on tätä rajaa parempi, tämän osittaisratkaisun täydennyksiä ei tarvitse tutkia Algoritmit 2 Kevät 2017 Luento 11 Ti /29

23 Kapsäkkiongelma Valittavana n kpl erilaisia tavaroita Tavaralle i tunnetaan hyötyarvo p i ja paino w i Tavaraa otetaan mukaan joko 0 tai 1 kpl Annettu kokonaispainoraja W Tehtävänä valita reppuun R tavarat siten, että niiden hyötyarvo on mahdollisimman suuri, mutta painoraja ei ylity max i R p i kun i R w i W Algoritmit 2 Kevät 2017 Luento 11 Ti /29

24 Kapsäkkiongelma Järjestetään tavarat laskevaan järjestykseen hyötyarvo-painosuhteen mukaan: p 1 /w 1 p 2 /w 2 p n /w n Osittaisratkaisu: Ensimmäisen i:n tavaran suhteen päätös on tehty Merkitään tämän osittaisratkaisun arvoa p:llä ja painoa w:llä Algoritmit 2 Kevät 2017 Luento 11 Ti /29

25 Kapsäkkiongelma Rajoitusheuristiikka: Lasketaan osittaisratkaisulle jäljellä olevan tilan täyttö parhaan jäljellä olevan tavaran hyötyarvo-painosuhteella Maksimihyöty eli yläraja u = p + (W w)(p i+1 /w i+1 ) Algoritmit 2 Kevät 2017 Luento 11 Ti /29

26 Kapsäkkiongelma Aluksi p = 0 ja w = 0 Muodostetaan kaksi osittaisratkaisua, joista toisessa tavara 1 on mukana, toisessa ei Näille muodostetaan osittaisratkaisut, joista toisessa tavara 2 on mukana, toisessa ei Jne. Jos osittaisratkaisun u on pienempi (huonompi) kuin parhaan tähän mennessä löydetyn ratkaisun u, ei ratkaisupuun kyseistä haaraa tarvitse tutkia Algoritmit 2 Kevät 2017 Luento 11 Ti /29

27 Esimerkki n = 4, W = p i w i Merkitään (esimerkiksi): [1,0,1,0] = osittaisratkaisu, jossa tavarat 1 ja 3 on valittu mukaan, tavaroita 2 ja 4 ei ole valittu Algoritmit 2 Kevät 2017 Luento 11 Ti /29

28 Esimerkki 1: [0,0,0,0] p=0 w=0 u=0+(10-0)(36/4)=90 2: [1,0,0,0] p=36 w=4 u=36+(10-4)(35/7)=66 3: [0,0,0,0] p=0 w=0 u=0+(10-0)(35/7)=50 4: [1,1,0,0] p=71 w=11 ei sallittu 5: [1,0,0,0] p=36 w=4 u=36+(10-4)(20/5)=60 6: [1,0,1,0] p=56 w=9 u=56+(10-9)(9/3)=59 7: [1,0,0,0] p=36 w=4 u=36+(10-4)(9/3)=54 8: [1,0,1,1] p=65 w=12 ei sallittu 9: [1,0,1,0] p=56 w=9 u=56 sallittu ratkaisu 3 ja 7 huonompia kuin 9 ei tarvitse tutkia Algoritmit 2 Kevät 2017 Luento 11 Ti /29

29 Esimerkki p=36, w=4, u=66 (p=71, w=11) ei sallittu p=56, w=9, u=59 (p=65, w=12) ei sallittu p=0, w=0, u= on 1 ei p=0, w=0, u= on 2 ei 3 huonompi kuin p=36, w=4, u=60 3 on 3 ei p=36, w=4, u= on 4 ei 7 huonompi kuin p=56, w=9, u=56 sallittu ratkaisu Algoritmit 2 Kevät 2017 Luento 11 Ti /29

Algoritmit 2. Luento 9 Ti Timo Männikkö

Algoritmit 2. Luento 9 Ti Timo Männikkö Algoritmit 2 Luento 9 Ti 19.4.2016 Timo Männikkö Luento 9 Merkkitiedon tiivistäminen LZW-menetelmä Taulukointi Editointietäisyys Peruutus Verkon 3-väritys Algoritmit 2 Kevät 2016 Luento 9 Ti 19.4.2016

Lisätiedot

Algoritmit 2. Luento 12 Ke Timo Männikkö

Algoritmit 2. Luento 12 Ke Timo Männikkö Algoritmit 2 Luento 12 Ke 26.4.2017 Timo Männikkö Luento 12 Rajoitehaku Kauppamatkustajan ongelma Lyhin virittävä puu Paikallinen etsintä Vaihtoalgoritmit Geneettiset algoritmit Simuloitu jäähdytys Algoritmit

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 28.3.2017 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot Algoritmit 2 Kevät 2017 Luento 5 Ti 28.3.2017 2/29 B-puu Algoritmit 2 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

Tietorakenteet, laskuharjoitus 7, ratkaisuja

Tietorakenteet, laskuharjoitus 7, ratkaisuja Tietorakenteet, laskuharjoitus, ratkaisuja. Seuraava kuvasarja näyttää B + -puun muutokset lisäysten jälkeen. Avaimet ja 5 mahtuvat lehtisolmuihin, joten niiden lisäys ei muuta puun rakennetta. Avain 9

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint.

v 1 v 2 v 3 v 4 d lapsisolmua d 1 avainta lapsen v i alipuun avaimet k i 1 ja k i k 0 =, k d = Sisäsolmuissa vähint. yksi avain vähint. Yleiset hakupuut 4 Monitiehakupuu: Binäärihakupuu 0 1 3 5 6 7 8 v k 1 k k 3 v v 3 v 4 k 1 k 3 k 1 k k k 3 d lapsisolmua d 1 avainta Yleinen hakupuu? Tietorakenteet, syksy 007 1 Esimerkki monitiehakupuusta

Lisätiedot

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia

58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, , vastauksia 58131 Tietorakenteet ja algoritmit (kevät 2014) Uusinta- ja erilliskoe, 10..2014, vastauksia 1. [9 pistettä] (a) Todistetaan 2n 2 + n + 5 = O(n 2 ): Kun n 1 on 2n 2 + n + 5 2n 2 + n 2 +5n 2 = 8n 2. Eli

Lisätiedot

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti.

2. Seuraavassa kuvassa on verkon solmujen topologinen järjestys: x t v q z u s y w r. Kuva 1: Tehtävän 2 solmut järjestettynä topologisesti. Tietorakenteet, laskuharjoitus 11, ratkaisuja 1. Leveyssuuntaisen läpikäynnin voi toteuttaa rekursiivisesti käsittelemällä jokaisella rekursiivisella kutsulla kaikki tietyllä tasolla olevat solmut. Rekursiivinen

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia

Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Pinot, jonot, yleisemmin sekvenssit: kokoelma peräkkäisiä alkioita (lineaarinen järjestys) Yleisempi tilanne: alkioiden hierarkia Kukin alkio (viite) talletettuna solmuun (node) vastaa paikan käsitettä

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] == T [i + 1] 4 return True 5 return

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 5, Ratkaisu 1312A Tietorakenteet ja algoritmit, 2016-2017, Harjoitus 5, Ratkaisu Harjoituksen aihe ovat hash-taulukot ja binääriset etsintäpuut Tehtävä 5.1 Tallenna avaimet 10,22,31,4,15,28,17 ja 59 hash-taulukkoon,

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU -1 0 1 PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu))!

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 11.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 11.2.2009 1 / 33 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto)

58131 Tietorakenteet (kevät 2009) Harjoitus 11, ratkaisuja (Topi Musto) 811 Tietorakenteet (kevät 9) Harjoitus 11, ratkaisuja (Topi Musto) 1. Bellmanin-Fordin algoritmin alustusvaiheen jälkeen aloitussolmussa on arvo ja muissa solmuissa on arvo ääretön. Kunkin solmun arvo

Lisätiedot

Ohjelmiston testaus ja laatu. Testausmenetelmiä

Ohjelmiston testaus ja laatu. Testausmenetelmiä Ohjelmiston testaus ja laatu Testausmenetelmiä Testausmenetelmiä - 1 Testauksen menetelmien päälähestymistapoina ovat black-box testi testaaja ei voi tutkia lähdekoodia testaus perustuu sovellukselle suunnitteluvaiheessa

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Optimointitehtävät, joissa muuttujat tai osa niistä voivat saada vain kokonaislukuarvoja Puhdas kokonaislukuoptimointitehtävä: Kaikki muuttujat kokonaislukuja Sekoitettu kokonaislukuoptimointitehtävä:

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU ACTIVATOR 1 ACTIVATOR 2 PELIPUU ACTIVATOR 1 ACTIVATOR 2 -1 0 1 PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu)) v = for each Lapsi in

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 10.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 10.2.2010 1 / 43 Kertausta: listat Tyhjä uusi lista luodaan kirjoittamalla esimerkiksi lampotilat = [] (jolloin

Lisätiedot

Kysymyksiä koko kurssista?

Kysymyksiä koko kurssista? Kysymyksiä koko kurssista? Lisää kysymyksesi osoitteessa slido.com syötä event code: #8777 Voit myös pyytää esimerkkiä jostain tietystä asiasta Vastailen kysymyksiin luennon loppupuolella Tätä luentoa

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

Algoritmit 1. Luento 6 Ke Timo Männikkö

Algoritmit 1. Luento 6 Ke Timo Männikkö Algoritmit 1 Luento 6 Ke 25.1.2017 Timo Männikkö Luento 6 Järjestetty lista Listan toteutus dynaamisesti Linkitetyn listan operaatiot Vaihtoehtoisia listarakenteita Puurakenteet Binääripuu Järjestetty

Lisätiedot

Miten käydä läpi puun alkiot (traversal)?

Miten käydä läpi puun alkiot (traversal)? inääripuut ieman lisää aidon binääripuun ominaisuuksia lehtisolmuja on yksi enemmän kuin sisäsolmuja inääripuut tasolla d on korkeintaan 2 d solmua pätee myös epäaidolle binääripuulle taso 0: 2 0 = 1 solmu

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 7.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 7.2.2011 1 / 39 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa:

Tietorakenteet, laskuharjoitus 10, ratkaisuja. 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: Tietorakenteet, laskuharjoitus 10, ratkaisuja 1. (a) Seuraava algoritmi tutkii, onko jokin luku taulukossa monta kertaa: SamaLuku(T ) 2 for i = 1 to T.length 1 3 if T [i] = = T [i + 1] 4 return True 5

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2011 1 / 46 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina

Hakupuut. tässä luvussa tarkastelemme puita tiedon tallennusrakenteina Hakupuut tässä luvussa tarkastelemme puita tiedon tallennusrakenteina hakupuun avulla voidaan toteuttaa kaikki joukko-tietotyypin operaatiot (myös succ ja pred) pahimman tapauksen aikavaativuus on tavallisella

Lisätiedot

Algoritmit 1. Luento 9 Ti Timo Männikkö

Algoritmit 1. Luento 9 Ti Timo Männikkö Algoritmit 1 Luento 9 Ti 7.2.2017 Timo Männikkö Luento 9 Graafit ja verkot Kaaritaulukko, bittimatriisi, pituusmatriisi Verkon lyhimmät polut Floydin menetelmä Lähtevien ja tulevien kaarien listat Forward

Lisätiedot

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat. JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 9.2.2009 T-106.1208 Ohjelmoinnin perusteet Y 9.2.2009 1 / 35 Listat Esimerkki: halutaan kirjoittaa ohjelma, joka lukee käyttäjältä 30 lämpötilaa. Kun lämpötilat

Lisätiedot

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria

Graafit ja verkot. Joukko solmuja ja joukko järjestämättömiä solmupareja. eli haaroja. Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Graafit ja verkot Suuntamaton graafi: eli haaroja Joukko solmuja ja joukko järjestämättömiä solmupareja Suunnattu graafi: Joukko solmuja ja joukko järjestettyjä solmupareja eli kaaria Haaran päätesolmut:

Lisätiedot

811312A Tietorakenteet ja algoritmit II Perustietorakenteet

811312A Tietorakenteet ja algoritmit II Perustietorakenteet 811312A Tietorakenteet ja algoritmit 2017-2018 II Perustietorakenteet Sisältö 1. Johdanto 2. Pino 3. Jono 4. Lista 811312A TRA, Perustietorakenteet 2 II.1. Johdanto Tietorakenne on tapa, jolla algoritmi

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (21.4.2015) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s. t. g(x) 0 h(x) = 0 x X olevan optimointitehtävän Lagrangen duaali on missä max θ(u, v) s. t.

Lisätiedot

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista

811312A Tietorakenteet ja algoritmit III Lajittelualgoritmeista 811312A Tietorakenteet ja algoritmit 2016-2017 III Lajittelualgoritmeista Sisältö 1. Johdanto 2. Pikalajittelu 3. Kekolajittelu 4. Lajittelualgoritmien suorituskyvyn rajoista 811312A TRA, Lajittelualgoritmeista

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS PELIPUU PELIPUU -1 0 1 PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU PELIPUU I -ARVO(Solmu) if LOPPUTILA(Solmu) return(arvo(solmu))

Lisätiedot

3.4 Peruutus (backtracking)

3.4 Peruutus (backtracking) 3.4 Peruutus (backtracking) Tarkastellaan kahta esimerkkiongelmaa: Kahdeksan kuningattaren ongelma: sijoitettava 8 8 ruudun pelilaudalle 8 nappulaa siten, että millekään vaaka-, pysty- tai viistoriville

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 6 24.4.2017 Tehtävä 1 Määritelmän (ks. luentomonisteen s. 107) mukaan yleisen muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on min θ(u,v)

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 4 ratkaisut Tehtävä 1. Määritä suurin aste k, johon saakka kuvan verkot G ja G ovat osittaisesti isomorfisia: Ratkaisu 1. Huomataan aluksi, että G =4 G : Ehrenfeucht-Fraïssé

Lisätiedot

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1

Peliteoria luento 1. May 25, 2015. Peliteoria luento 1 May 25, 2015 Tavoitteet Valmius muotoilla strategisesti ja yhteiskunnallisesti kiinnostavia tilanteita peleinä. Kyky ratkaista yksinkertaisia pelejä. Luentojen rakenne 1 Joitain pelejä ajanvietematematiikasta.

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen)

58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 58131 Tietorakenteet (kevät 2009) Harjoitus 9, ratkaisuja (Antti Laaksonen) 1. Lisäysjärjestämisessä järjestetään ensin taulukon kaksi ensimmäistä lukua, sitten kolme ensimmäistä lukua, sitten neljä ensimmäistä

Lisätiedot

joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ô ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Kauppias on ostanut

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 30.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 30.9.2015 1 / 27 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

Jäsennysaiheesta lisää Täydentäviä muistiinpanoja TIEA241 Automaatit ja kieliopit, syksy 2016

Jäsennysaiheesta lisää Täydentäviä muistiinpanoja TIEA241 Automaatit ja kieliopit, syksy 2016 Jäsennysaiheesta lisää Täydentäviä muistiinpanoja TIA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 4. lokakuuta 2016 1 simerkki arleyn algoritmin soveltamisesta Tämä esimerkki on laadittu

Lisätiedot

S BAB ABA A aas bba B bbs c

S BAB ABA A aas bba B bbs c T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama

Lisätiedot

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2013-2014 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2013-2014 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia

Lisätiedot

Sarjojen suppenemisesta

Sarjojen suppenemisesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja

58131 Tietorakenteet (kevät 2008) 1. kurssikoe, ratkaisuja 1 Tietorakenteet (kevät 08) 1. kurssikoe, ratkaisuja Tehtävän 1 korjasi Mikko Heimonen, tehtävän 2 Jaakko Sorri ja tehtävän Tomi Jylhä-Ollila. 1. (a) Tehdään linkitetty lista kaikista sukunimistä. Kuhunkin

Lisätiedot

Esimerkkejä kokonaislukuoptimointiongelmista

Esimerkkejä kokonaislukuoptimointiongelmista Esimerkkejä kokonaislukuoptimointiongelmista (eli mitä kaikkea kokonaisluvuilla voi mallintaa) 27. marraskuuta 2013 Pääoman budjetointiongelma Kulut Projekti Vuosi 1 Vuosi 2 Vuosi 3 Tuotto 1 5 1 8 20 2

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 3 7.3.07 Tehtävä Olkoon tilamuuttujat Tällöin saadaan rekursioyhtälö f n (x n ) = max yn {0,} ynwn xn f 0 ( ) = 0. x n = vaiheessa n jäljellä oleva paino, n =,...,N, esine n pakataan

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä?

Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? Ongelma 1: Ovatko kaikki tehtävät/ongelmat deterministisiä? 2012-2013 Lasse Lensu 2 Ongelma 2: Milloin ongelmat muuttuvat oikeasti hankaliksi? 2012-2013 Lasse Lensu 3 Ongelma 3: Miten hankalia ongelmia

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa

Lisätiedot

Neljän alkion kunta, solitaire-peli ja

Neljän alkion kunta, solitaire-peli ja Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 2.2.2011 1 / 37 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun:

(a) L on listan tunnussolmu, joten se ei voi olla null. Algoritmi lisäämiselle loppuun: Tietorakenteet ja algoritmit, kevät 201 Kurssikoe 1, ratkaisuja 1. Tehtävästä sai yhden pisteen per kohta. (a) Invariantteja voidaan käyttää algoritmin oikeellisuustodistuksissa Jokin väittämä osoitetaan

Lisätiedot

Johdatus tekoälyyn (T. Roos) Kurssikoe

Johdatus tekoälyyn (T. Roos) Kurssikoe 582216 Johdatus tekoälyyn (T. Roos) Kurssikoe 18.10.2013 Kokeessa saa pitää mukana käsinkirjoitettua A4-kokoista kaksipuolista lunttilappua, joka on palautettava koepaperin mukana. Huomaa että jokaisen

Lisätiedot

B-puu on tasapainoinen puurakenne, joka ottaa huomioon levymuistin erityispiirteet: lyhennetään polkuja lisäämällä solmujen kokoa.

B-puu on tasapainoinen puurakenne, joka ottaa huomioon levymuistin erityispiirteet: lyhennetään polkuja lisäämällä solmujen kokoa. B-puut AVL-puut soveltuvat hakemistorakenteeksi, kun kaikki data mahtuu keskusmuistiin: pienin osoitettava yksikkö on sana eli pari tavua mikä tahansa sana löytyy vakioajassa hakuaika alle mikrosekunti

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 3.2.2010 T-106.1208 Ohjelmoinnin perusteet Y 3.2.2010 1 / 36 Esimerkki: asunnon välityspalkkio Kirjoitetaan ohjelma, joka laskee kiinteistönvälittäjän asunnon

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

Othello-pelin evaluointifunktion kehittäminen

Othello-pelin evaluointifunktion kehittäminen Othello-pelin evaluointifunktion kehittäminen Samuli Siivonen Helsinki 5. elokuuta 2003 Pro gradu -tutkielma HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos i Othello-pelin evaluointifunktion kehittäminen

Lisätiedot

6.4. Järjestyssuhteet

6.4. Järjestyssuhteet 6.4. Järjestyssuhteet Joukon suhteilla voidaan kuvata myös alkioiden järjestystä tietyn ominaisuuden suhteen. Järjestys on myös kaksipaikkainen suhde (ja on monia erilaisia järjestyksiä). Suhde R joukossa

Lisätiedot

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen.

Oikeasta tosi-epätosi -väittämästä saa pisteen, ja hyvästä perustelusta toisen. Tietorakenteet, kevät 2012 Kurssikoe 2, mallivastaukset 2. (a) Järjestämistä ei voi missään tilanteessa suorittaa nopeammin kuin ajassa Θ(n log n), missä n on järjestettävän taulukon pituus. Epätosi: Yleisessä

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-.34 Lineaarinen ohjelmointi 9..7 Luento Kokonaislukuoptimoinnin algoritmeja (kirja.-.) Lineaarinen ohjelmointi - Syksy 7 / Luentorunko Gomoryn leikkaava taso Branch & Bound Branch & Cut Muita menetelmiä

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

2. M : T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 1. M :

2. M : T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 1. M : T-79.5101 kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 11 Ratkaisut 2. M : a 1. M : a c b, e b f,r c e a) M,a = A(U), sillä (esim.) (a,b,,,,...) on tilasta a alkava täysi polku, joka ei

Lisätiedot

Binäärihaun vertailujärjestys

Binäärihaun vertailujärjestys Järjestetyn sanakirjan tehokas toteutus: binäärihaku Binäärihaku (esimerkkikuassa aain = nimi) op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea 5 op 5 op op 8 op 5 6 7 8 op Eea

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Harjoitus 6 ( )

Harjoitus 6 ( ) Harjoitus 6 (30.4.2014) Tehtävä 1 Määritelmän (ks. luentomoniste s. 109) mukaan yleisen, muotoa min f(x) s.t. g(x) 0 h(x) = 0 x X (1) olevan optimointitehtävän Lagrangen duaali on max θ(u,v) s.t. u 0,

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 7. huhtikuuta 2017 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille. Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 ari.vesanen (at) oulu.fi 5. Rekursio ja induktio Rekursio tarkoittaa jonkin asian määrittelyä itseensä viittaamalla Tietojenkäsittelyssä algoritmin määrittely niin,

Lisätiedot