Algoritmit 2. Luento 1 Ti Timo Männikkö

Koko: px
Aloita esitys sivulta:

Download "Algoritmit 2. Luento 1 Ti Timo Männikkö"

Transkriptio

1 Algoritmit 2 Luento 1 Ti Timo Männikkö

2 Luento 1 Algoritmi Algoritmin valinta Algoritmin analysointi Algoritmin suoritusaika Peruskertaluokkia Kertaluokkamerkinnät Kertaluokkien ominaisuuksia Algoritmit 2 Kevät 2017 Luento 1 Ti /24

3 Algoritmi Askel askeleelta suoritettava menetelmä, tekniikka tai ohje jonkin tehtävän suorittamiseksi tai jonkin ongelman ratkaisemiseksi Algoritmin vaatimuksia: Askelmäärä äärellinen Antaa oikean vastauksen Riittävän tehokas Algoritmit 2 Kevät 2017 Luento 1 Ti /24

4 Ongelman ratkaiseminen Ongelman esiintymä: Ongelma tietyillä lähtötiedoilla Samalla ongelmalla eri esiintymiä Voidaan haluta: Paras ratkaisu useiden mahdollisten ratkaisujen joukosta Hyvä ratkaisu, vaikka ei välttämättä paras Parempi kuin tunnetut ratkaisut Algoritmit 2 Kevät 2017 Luento 1 Ti /24

5 Algoritmin tehokkuus Algoritmin tarvitsemat resurssit: Muistitila, kaistanleveys jne. Erityisesti suoritusaika Algoritmin analysointi: Tehokkuuden selvittäminen Muutama pieni esiintymä Resursseilla ei suurta merkitystä Suuri tai vaikea ongelma, useita esiintymiä Algoritmi valittava huolella Algoritmit 2 Kevät 2017 Luento 1 Ti /24

6 Algoritmin valinta Halutaan valita paras tai riittävän hyvä algoritmi Empiirisesti: Toteutetaan (ohjelmoidaan) algoritmit Mitataan suoritusaikaa tai jonkin muun resurssin käyttöä Teoreettisesti: Määritellään matemaattisesti suoritusaika tai jonkin muun resurssin käyttö Resurssin käyttö esitetään syöttötiedon koon funktiona Algoritmit 2 Kevät 2017 Luento 1 Ti /24

7 Algoritmin valinta Empiirinen tapa: Voidaan tehdä tarkkoja mittauksia Käytännössä hankalaa/työlästä/mahdotonta Teoreettinen tapa: Riippumaton käytetystä tietokoneesta, ohjelmointikielestä, toteutusympäristöstä, ohjelmointitaidosta jne. Tehokkuutta ei kuitenkaan voida mitata esim. sekunneissa Algoritmit 2 Kevät 2017 Luento 1 Ti /24

8 Algoritmin analysointi Suoritusajan vaativuus: Lasketaan/arvioidaan algoritmin askelien/operaatioiden lukumääriä Perusoperaationa useimmin suoritettava operaatio, aikaa vievin operaatio tms. Esimerkiksi sijoitus, vertailu jne. Määrätään perusoperaatioiden lukumäärät syöttötiedon koon funktiona Algoritmit 2 Kevät 2017 Luento 1 Ti /24

9 Algoritmin suoritusaika Paras mahdollinen suoritusaika: Ei yleensä kiinnostava Huonoin mahdollinen suoritusaika: Tarpeellinen, usein helposti laskettavissa Keskimääräinen suoritusaika: Usein kiinnostavin, voi olla vaikea laskea Algoritmit 2 Kevät 2017 Luento 1 Ti /24

10 Algoritmin suoritusaika Invarianssiperiaate: Saman algoritmin eri toteutukset eroavat tehokkuudeltaan toisistaan korkeintaan vakiokertoimisen tekijän verran Algoritmin suoritusajan kertaluokka on g(n), jos on olemassa vakio c > 0 ja algoritmin toteutus, joka kykenee ratkaisemaan jokaisen kokoa n olevan tehtävän esiintymän ajassa cg(n) aikayksikköä Kertaluokka g(n) kuvaa suoritusajan kasvunopeutta Algoritmit 2 Kevät 2017 Luento 1 Ti /24

11 Algoritmin suoritusaika Suoritusajan kasvunopeuden mukaan voidaan verrata algoritmien suhteellisia tehokkuuksia Kun syöttötiedon koko kasvaa tarpeeksi suureksi, kasvunopeus tulee merkittäväksi Puhutaan algoritmin suoritusajan asymptoottisesta tehokkuudesta Algoritmit 2 Kevät 2017 Luento 1 Ti /24

12 Peruskertaluokkia log n n n log n n 2 n 3 2 n Algoritmit 2 Kevät 2017 Luento 1 Ti /24

13 Ongelman ratkeavuus Käyttökelpoisia vain algoritmit, joiden suoritusaika ongelman koon n suhteen kasvaa korkeintaan yhtä nopeasti kuin jokin n:n polynomi Jos algoritmin suoritusaika kasvaa eksponentiaalisesti, se soveltuu vain pienten ongelmien ratkaisuun Ratkeava ongelma: Löytyy algoritmi, jonka pahimman tapauksen suoritusaika polynominen Ratkeamaton tai huonosti ratkeava ongelma: Tunnetaan vain algoritmeja, joiden suoritusaika eksponentiaalinen Algoritmit 2 Kevät 2017 Luento 1 Ti /24

14 Kertaluokkamerkintöjä Asymptoottinen yläraja: O(g(n)) = {f (n) : N R + c, n 0 > 0 : 0 f (n) cg(n) n n 0 } Asymptoottinen alaraja: Ω(g(n)) = {f (n) : N R + c, n 0 > 0 : 0 cg(n) f (n) n n 0 } Algoritmit 2 Kevät 2017 Luento 1 Ti /24

15 Kertaluokkamerkintöjä Asymptoottinen aito yläraja: o(g(n)) = {f (n) : N R + c > 0 n 0 > 0 : 0 f (n) < cg(n) n n 0 } Asymptoottinen aito alaraja: ω(g(n)) = {f (n) : N R + c > 0 n 0 > 0 : 0 cg(n) < f (n) n n 0 } Algoritmit 2 Kevät 2017 Luento 1 Ti /24

16 Kertaluokkamerkintöjä Asymptoottinen tarkka raja: Θ(g(n)) = {f (n) : N R + c 1, c 2, n 0 > 0 : 0 c 1 g(n) f (n) c 2 g(n) n n 0 } Usein merkitään f (n) = Θ(g(n)) oikean merkinnän f (n) Θ(g(n)) sijaan Algoritmit 2 Kevät 2017 Luento 1 Ti /24

17 Esimerkki 2n 2 O(n 3 ) c, n 0 > 0 : 0 2n 2 cn 3 n n 0 2n 2 cn 3 2 cn Tosi kun valitaan esimerkiksi c = 2 ja n 0 = 1 2n 2 o(n 3 ) c > 0 n 0 > 0 : 0 2n 2 < cn 3 n n 0 2n 2 < cn 3 2 < cn n > 2/c Tosi kun n 0 valitaan siten että n 0 > 2/c Algoritmit 2 Kevät 2017 Luento 1 Ti /24

18 Esimerkki jatkuu 2n 2 Θ(n 2 ) c 1, c 2, n 0 > 0 : 0 c 1 n 2 2n 2 c 2 n 2 n n 0 c 1 n 2 2n 2 c 2 n 2 c 1 2 c 2 Tosi kun valitaan esimerkiksi c 1 = c 2 = 2 ja n 0 = 1 Algoritmit 2 Kevät 2017 Luento 1 Ti /24

19 Kertaluokkamerkinnät f (n) O(g(n)) f on samaa tai alempaa kertaluokkaa kuin g f (n) Ω(g(n)) f on samaa tai ylempää kertaluokkaa kuin g f (n) Θ(g(n)) f on samaa kertaluokkaa kuin g Algoritmit 2 Kevät 2017 Luento 1 Ti /24

20 Kertaluokkien ominaisuuksia f (n) Θ(g(n)) f (n) O(g(n)) ja g(n) O(f (n)) f (n) Ω(g(n)) ja g(n) Ω(f (n)) f (n) Θ(g(n)) ja g(n) Θ(h(n)) f (n) Θ(h(n)) f (n) Θ(g(n)) g(n) Θ(f (n)) f (n) O(g(n)) g(n) Ω(f (n)) Algoritmit 2 Kevät 2017 Luento 1 Ti /24

21 Kertaluokkien ominaisuuksia lim n f (n) g(n) lim n f (n) g(n) = 0 lim n f (n) g(n) = = C > 0 f (n) Θ(g(n)) { { f (n) O(g(n)) f (n) / Θ(g(n)) f (n) Ω(g(n)) f (n) / Θ(g(n)) Jos raja-arvoa ei ole määritelty, kertaluokkapäätelmiä ei voi tehdä Algoritmit 2 Kevät 2017 Luento 1 Ti /24

22 Esimerkki f (n) = 50n n + 10 lim n 50n n + 10 n 2 = 50 f (n) Θ(n 2 ) lim n 50n n + 10 n 3 = 0 f (n) O(n 3 ) lim n 50n n + 10 n = f (n) Ω(n) Algoritmit 2 Kevät 2017 Luento 1 Ti /24

23 Raja-arvojen laskeminen Määrittelemätön raja-arvo muotoa 0 0 tai L Hôpitalin sääntö: Jos lim f (n) = lim g(n) = 0 tai, mutta f (n) ja g (n) ovat olemassa ja g (n) 0 kaikilla riittävän suurilla n, niin lim n f (n) g(n) = lim n f (n) g (n) jos jälkimmäinen raja-arvo on olemassa Algoritmit 2 Kevät 2017 Luento 1 Ti /24

24 Esimerkki lim n n 2 2 n =? f (n) = n 2, g(n) = 2 n lim f (n) = lim g(n) = f (n) = 2n, g (n) = 2 n ln 2 lim f (n) = lim g (n) = f (n) = 2, g (n) = 2 n (ln 2) 2 lim n n 2 2 n = lim n n 2 O(2 n ), n 2 / Θ(2 n ) 2 2 n (ln 2) 2 = 0 Algoritmit 2 Kevät 2017 Luento 1 Ti /24

Algoritmit 1. Luento 2 Ke Timo Männikkö

Algoritmit 1. Luento 2 Ke Timo Männikkö Algoritmit 1 Luento 2 Ke 11.1.2017 Timo Männikkö Luento 2 Algoritmin esitys Algoritmien analysointi Suoritusaika Asymptoottinen kertaluokka Peruskertaluokkia NP-täydelliset ongelmat Algoritmit 1 Kevät

Lisätiedot

Algoritmit 1. Luento 1 Ti Timo Männikkö

Algoritmit 1. Luento 1 Ti Timo Männikkö Algoritmit 1 Luento 1 Ti 10.1.2017 Timo Männikkö Luento 1 Algoritmi Algoritmin toteutus Ongelman ratkaiseminen Algoritmin tehokkuus Algoritmin suoritusaika Algoritmin analysointi Algoritmit 1 Kevät 2017

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 8.5.2018 Timo Männikkö Luento 13 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys Kertaus ja tenttivinkit Algoritmit 2 Kevät

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 1 27.-28.3.2019 Timo Männikkö Tehtävä 1 (a) 4n 2 + n + 4 = O(n 2 ) c, n 0 > 0 : 0 4n 2 + n + 4 cn 2 n n 0 Vasen aina tosi Oikea tosi, jos (c 4)n 2 n 4 0, joten oltava c > 4 Kokeillaan

Lisätiedot

Algoritmit 2. Luento 14 To Timo Männikkö

Algoritmit 2. Luento 14 To Timo Männikkö Algoritmit 2 Luento 14 To 2.5.2019 Timo Männikkö Luento 14 Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydelliset ongelmat Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 25.-26.1.2017 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka laskee kahden kokonaisluvun välisen jakojäännöksen käyttämättä lainkaan jakolaskuja Jaettava m, jakaja n Vähennetään luku

Lisätiedot

1.4 Funktioiden kertaluokat

1.4 Funktioiden kertaluokat 1.4 Funktioiden kertaluokat f on kertaluokkaa O(g), merk. f = O(g), jos joillain c > 0, m N pätee f(n) cg(n) aina kun n m f on samaa kertaluokkaa kuin g, merk. f = Θ(g), jos joillain a, b > 0, m N pätee

Lisätiedot

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö

Algoritmit 1. Luento 14 Ke 25.2.2015. Timo Männikkö Algoritmit 1 Luento 14 Ke 25.2.2015 Timo Männikkö Luento 14 Heuristiset menetelmät Heuristiikkoja kapsäkkiongelmalle Kauppamatkustajan ongelma Lähimmän naapurin menetelmä Kertaus ja tenttivinkit Algoritmit

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 1 31.1.-1.2.2018 Timo Männikkö Tehtävä 1 (a) Algoritmi, joka tutkii onko kokonaisluku tasan jaollinen jollain toisella kokonaisluvulla siten, että ei käytetä lainkaan jakolaskuja Jaettava

Lisätiedot

5 Kertaluokkamerkinnät

5 Kertaluokkamerkinnät TIE-20100 Tietorakenteet ja algoritmit 75 5 Kertaluokkamerkinnät Tässä luvussa käsitellään asymptoottisessa analyysissa käytettyjä matemaattisia merkintätapoja Määritellään tarkemmin Θ, sekä kaksi muuta

Lisätiedot

3. Laskennan vaativuusteoriaa

3. Laskennan vaativuusteoriaa 3. Laskennan vaativuusteoriaa tähän asti puhuttu siitä, mitä on mahdollista laskea äärellisessä ajassa siirrytään tarkastelemaan laskemista kohtuullisessa ajassa vaihtoehtoisesti voidaan laskenta-ajan

Lisätiedot

Algoritmit 2. Luento 8 To Timo Männikkö

Algoritmit 2. Luento 8 To Timo Männikkö Algoritmit 2 Luento 8 To 4.4.2019 Timo Männikkö Luento 8 Algoritmien analysointi Algoritmien suunnittelu Rekursio Osittaminen Rekursioyhtälöt Rekursioyhtälön ratkaiseminen Master-lause Algoritmit 2 Kevät

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 2.5.2017 Timo Männikkö Luento 13 Merkkijonon sovitus Horspoolin algoritmi Laskennallinen vaativuus Päätösongelmat Epädeterministinen algoritmi Vaativuusluokat NP-täydellisyys

Lisätiedot

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö

Algoritmit 1. Luento 10 Ke 11.2.2015. Timo Männikkö Algoritmit 1 Luento 10 Ke 11.2.2015 Timo Männikkö Luento 10 Algoritminen ongelman ratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Väliinsijoituslajittelu Valintalajittelu

Lisätiedot

Algoritmit 1. Luento 10 Ke Timo Männikkö

Algoritmit 1. Luento 10 Ke Timo Männikkö Algoritmit 1 Luento 10 Ke 14.2.2018 Timo Männikkö Luento 10 Algoritminen ongelmanratkaisu Suunnittelumenetelmät Raaka voima Järjestäminen eli lajittelu Kuplalajittelu Lisäyslajittelu Valintalajittelu Permutaatiot

Lisätiedot

4 Tehokkuus ja algoritmien suunnittelu

4 Tehokkuus ja algoritmien suunnittelu TIE-20100 Tietorakenteet ja algoritmit 52 4 Tehokkuus ja algoritmien suunnittelu Tässä luvussa pohditaan tehokkuuden käsitettä ja esitellään kurssilla käytetty kertaluokkanotaatio, jolla kuvataan algoritmin

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Algoritmit 2. Luento 2 Ke Timo Männikkö

Algoritmit 2. Luento 2 Ke Timo Männikkö Algoritmit 2 Luento 2 Ke 15.3.2017 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2017 Luento

Lisätiedot

Algoritmit 2. Luento 2 To Timo Männikkö

Algoritmit 2. Luento 2 To Timo Männikkö Algoritmit 2 Luento 2 To 14.3.2019 Timo Männikkö Luento 2 Tietorakenteet Lineaarinen lista, binääripuu Prioriteettijono Kekorakenne Keko-operaatiot Keon toteutus taulukolla Algoritmit 2 Kevät 2019 Luento

Lisätiedot

4. Algoritmien tehokkuus

4. Algoritmien tehokkuus 4. Algoritmien tehokkuus (Harel luku 6) vastaa jo minulle! [Psalmi 69:18] Kuinka paljon suoritusaikaa tai -tilaa algoritmin suoritus vaatii? Keskitymme lähinnä aikavaativuuden tarkasteluun. Myös algoritmien

Lisätiedot

7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy

7. Aikavaativuus. Ohjelmistotekniikan laitos OHJ-2300 Johdatus tietojenkäsittelyteoriaan, syksy 212 7. Aikavaativuus Edellä tarkasteltiin ongelmien ratkeavuutta kiinnittämättä huomiota ongelman ratkaisun vaatimaan aikaan Nyt siirrytään tarkastelemaan ratkeavien ongelmien aikavaativuutta Periaatteessa

Lisätiedot

Algoritmit 1 Syksy 2008

Algoritmit 1 Syksy 2008 Algoritmit 1 Syksy 2008 Algoritmit 1 1 1 Algoritmit ja algoritmien analysointi Algoritmilla tarkoitetaan askel askeleelta suoritettavaa ohjetta jonkin tehtävän suorittamiseksi tai jonkun ongelman ratkaisemiseksi.

Lisätiedot

Tutkimusmenetelmät-kurssi, s-2004

Tutkimusmenetelmät-kurssi, s-2004 Algoritmitutkimuksen menetelmistä Tutkimusmenetelmät-kurssi, s-2004 Pekka Kilpeläinen Kuopion yliopisto Tietojenkäsittelytieteen laitos Algoritmitutkimuksen menetelmistä p.1/20 Sisällys Tänään Tietojenkäsittelytiede

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

6.1 Rekursiiviset palautukset

6.1 Rekursiiviset palautukset 6.1 Rekursiiviset palautukset Olk. = (Q, Σ, Γ, δ, q 0, q acc, q rej ) mv. standardimallinen Turingin kone ääritellään koneen laskema osittaisfunktio f : Σ Γ seur. u, jos q 0 w u q av, f (w) = q { q acc,

Lisätiedot

Algoritmit 1. Luento 5 Ti Timo Männikkö

Algoritmit 1. Luento 5 Ti Timo Männikkö Algoritmit 1 Luento 5 Ti 24.1.2017 Timo Männikkö Luento 5 Järjestetty lista Järjestetyn listan operaatiot Listan toteutus taulukolla Binäärihaku Binäärihaun vaativuus Algoritmit 1 Kevät 2017 Luento 5 Ti

Lisätiedot

Algoritmit 1. Luento 11 Ti Timo Männikkö

Algoritmit 1. Luento 11 Ti Timo Männikkö Algoritmit 1 Luento 11 Ti 14.2.2017 Timo Männikkö Luento 11 Algoritminen ongelmanratkaisu Osittaminen Lomituslajittelu Lomituslajittelun vaativuus Rekursioyhtälöt Pikalajittelu Algoritmit 1 Kevät 2017

Lisätiedot

Algoritmianalyysin perusteet

Algoritmianalyysin perusteet Tietorakenteet ja algoritmit Algoritmianalyysin perusteet Ari Korhonen 1 5. ALGORITMIANALYYSI 5.1 Johdanto 5.2 Tavoitteet 5.3 Algoritmien luokittelu 5.4 Kertaluokkamerkinnät (Big Oh Notation) 5.5 Kertaluokkamerkinnöillä

Lisätiedot

A274101 TIETORAKENTEET JA ALGORITMIT

A274101 TIETORAKENTEET JA ALGORITMIT A274101 TIETORAKENTEET JA ALGORITMIT ALGORITMIEN ANALYYSISTÄ 1.ratkaisu Laskentaaika hakkeri - optimoitu ALGORITMIANALYYSIÄ hyvä algoritmi hakkeri -optimoitu hyvä algoritmi Tehtävän koko Kuva mukailtu

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

2. Algoritmien analysointimenetelmistä

2. Algoritmien analysointimenetelmistä Kokeelliset tutkimukset 2. Algoritmien analysointimenetelmistä Tietokoneohjelmien suoritusaika on usein tärkeä kysymys, erityisesti käsiteltäessä paljon tietoa tai prosessin ollessa monimutkainen, so.

Lisätiedot

Algoritmit 2. Luento 11 Ti Timo Männikkö

Algoritmit 2. Luento 11 Ti Timo Männikkö Algoritmit 2 Luento 11 Ti 24.4.2018 Timo Männikkö Luento 11 Rajoitehaku Kapsäkkiongelma Kauppamatkustajan ongelma Paikallinen etsintä Lyhin virittävä puu Vaihtoalgoritmit Algoritmit 2 Kevät 2018 Luento

Lisätiedot

Tietorakenteet ja algoritmit - syksy 2015 1

Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 1 Tietorakenteet ja algoritmit - syksy 2015 2 Tietorakenteet ja algoritmit Johdanto Ari Korhonen Tietorakenteet ja algoritmit - syksy 2015 1. JOHDANTO 1.1 Määritelmiä

Lisätiedot

Algoritmit 1. Luento 12 Ti Timo Männikkö

Algoritmit 1. Luento 12 Ti Timo Männikkö Algoritmit 1 Luento 12 Ti 19.2.2019 Timo Männikkö Luento 12 Osittamisen tasapainoisuus Pikalajittelun vaativuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu Algoritmit

Lisätiedot

Muita vaativuusluokkia

Muita vaativuusluokkia Muita vaativuusluokkia Käydään lyhyesti läpi tärkeimpiä vaativuusluokkiin liittyviä tuloksia. Monet tunnetuista tuloksista ovat vaikeita todistaa, ja monet kysymykset ovat vielä auki. Lause (Ladner 1975):

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot

Lisätiedot

Algoritmit 1. Luento 12 Ke Timo Männikkö

Algoritmit 1. Luento 12 Ke Timo Männikkö Algoritmit 1 Luento 12 Ke 15.2.2017 Timo Männikkö Luento 12 Pikalajittelu Pikalajittelun vaativuus Osittamisen tasapainoisuus Lajittelumenetelmien vaativuus Laskentalajittelu Lokerolajittelu Kantalukulajittelu

Lisätiedot

Esimerkkejä polynomisista ja ei-polynomisista ongelmista

Esimerkkejä polynomisista ja ei-polynomisista ongelmista Esimerkkejä polynomisista ja ei-polynomisista ongelmista Ennen yleisempiä teoriatarkasteluja katsotaan joitain tyypillisiä esimerkkejä ongelmista ja niiden vaativuudesta kaikki nämä ongelmat ratkeavia

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu 811312A Tietorakenteet ja algoritmit, 2018-2019, Harjoitus 3, Ratkaisu Harjoituksessa käsitellään algoritmien aikakompleksisuutta. Tehtävä 3.1 Kuvitteelliset algoritmit A ja B lajittelevat syötteenään

Lisätiedot

1 Erilaisia tapoja järjestää

1 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 1 1 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi. Lisäksi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 21.3.2017 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2017 Luento 3 Ti 21.3.2017

Lisätiedot

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö

Algoritmit 1. Luento 13 Ti 23.2.2016. Timo Männikkö Algoritmit 1 Luento 13 Ti 23.2.2016 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007 Kurssiesittely Tietojenkäsittelytieteiden laitos Tampereen yliopisto A215 Tietorakenteet Periodit I-II, syksy 2007 Luennot/vastuuhenkilö: Heikki Hyyrö Sähköposti: heikki.hyyro@cs.uta.fi Kurssin kotisivu:

Lisätiedot

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen

Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari Korhonen Tietorakenteet ja algoritmit Johdanto Lauri Malmi / Ari 1 1. JOHDANTO 1.1 Määritelmiä 1.2 Tietorakenteen ja algoritmin valinta 1.3 Algoritmit ja tiedon määrä 1.4 Tietorakenteet ja toiminnot 1.5 Esimerkki:

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet

MS-A0401 Diskreetin matematiikan perusteet MS-A0401 Diskreetin matematiikan perusteet Osa 2: Relaatiot ja funktiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma

Lisätiedot

Algoritmit 1. Luento 13 Ma Timo Männikkö

Algoritmit 1. Luento 13 Ma Timo Männikkö Algoritmit 1 Luento 13 Ma 26.2.2018 Timo Männikkö Luento 13 Suunnittelumenetelmät Taulukointi Kapsäkkiongelma Ahne menetelmä Verkon lyhimmät polut Dijkstran menetelmä Verkon lyhin virittävä puu Kruskalin

Lisätiedot

Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen.

Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen. 261 Lause (Cook-Levin) Kieli SAT = { on toteutuva lausekalkyylin kaava } on NP-täydellinen. Pitää osoittaa siis, että A mp SAT mielivaltaisella A NP Ainoa, mitä A:sta tiedetään on, että sillä on polynomisessa

Lisätiedot

Algoritmit 2. Luento 3 Ti Timo Männikkö

Algoritmit 2. Luento 3 Ti Timo Männikkö Algoritmit 2 Luento 3 Ti 20.3.2018 Timo Männikkö Luento 3 Järjestäminen eli lajittelu Kekorakenne Kekolajittelu Hajautus Yhteentörmäysten käsittely Ketjutus Algoritmit 2 Kevät 2018 Luento 3 Ti 20.3.2018

Lisätiedot

Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista).

Olkoon S(n) kutsun merge-sort(a, p, q) tilavaativuus kun p q + 1 = n. Oletetaan merge toteutetuksi vakiotyötilassa (ei-triviaalia mutta mahdollista). Esimerkki Lomitusjärjestäminen merge-sort(a, p, q): var k % paikallinen muuttuja, vakiotila 1. if p < q then 2. r := (p + q)/2 3. merge-sort(a, p, r) 4. merge-sort(a, r + 1, q) 5. merge(a, p, r, q) Olkoon

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

58131 Tietorakenteet ja algoritmit (syksy 2015)

58131 Tietorakenteet ja algoritmit (syksy 2015) 58131 Tietorakenteet ja algoritmit (syksy 2015) Harjoitus 2 (14. 18.9.2015) Huom. Sinun on tehtävä vähintään kaksi tehtävää, jotta voit jatkaa kurssilla. 1. Erään algoritmin suoritus vie 1 ms, kun syötteen

Lisätiedot

Algoritmit 2. Demot Timo Männikkö

Algoritmit 2. Demot Timo Männikkö Algoritmit 2 Demot 4 24.-25.4.2019 Timo Männikkö Tehtävä 1 (a) int laske(n) { if (n

Lisätiedot

9 Erilaisia tapoja järjestää

9 Erilaisia tapoja järjestää TIE-20100 Tietorakenteet ja algoritmit 198 9 Erilaisia tapoja järjestää Käsitellään seuraavaksi järjestämisalgoritmeja, jotka perustuvat muihin kuin vertailuun alkioiden oikean järjestyksen saamiseksi.

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 7.-8.2.2018 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: etsipienin(t, n) { pnn = t[0]; for (i = 1; i < n; i++) { pnn = min(pnn, t[i]); return pnn; Silmukka suoritetaan

Lisätiedot

Algoritmit 1. Luento 8 Ke Timo Männikkö

Algoritmit 1. Luento 8 Ke Timo Männikkö Algoritmit 1 Luento 8 Ke 1.2.2017 Timo Männikkö Luento 8 Järjestetty binääripuu Solmujen läpikäynti Binääripuun korkeus Binääripuun tasapainottaminen Graafit ja verkot Verkon lyhimmät polut Fordin ja Fulkersonin

Lisätiedot

Laskennan vaativuus ja NP-täydelliset ongelmat

Laskennan vaativuus ja NP-täydelliset ongelmat Laskennan vaativuus ja NP-täydelliset ongelmat TRAK-vierailuluento 13.4.2010 Petteri Kaski Tietojenkäsittelytieteen laitos Tietojenkäsittelytiede Tietojenkäsittelytiede tutkii 1. mitä tehtäviä voidaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2016-2017 Kertausta kurssin alkuosasta II Algoritmien analyysi: oikeellisuus Algoritmin täydellinen oikeellisuus = Algoritmi päättyy ja tuottaa määritellyn tuloksen

Lisätiedot

Algoritmit 1. Luento 4 Ke Timo Männikkö

Algoritmit 1. Luento 4 Ke Timo Männikkö Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,

Lisätiedot

C C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva:

C C. x 2. x 3 x 3. Lause 3SAT p m VC Todistus. Olk. φ = C 1 C 2 C m 3-cnf-kaava, jossa esiintyvät muuttujat. φ toteutuva: Lause 3SAT p m VC Todistus. Olk. φ = C 1 C C m 3-cnf-kaava, jossa esiintyvät muuttujat x 1,..., x n. Vastaava solmupeiteongelman tapaus G, k muodostetaan seuraavasti. G:ssä on solmu kutakin literaalia

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

2. Algoritmien analysointimenetelmistä

2. Algoritmien analysointimenetelmistä 2. Algoritmien analysointimenetelmistä Tietokoneohjelmien suoritusaika on usein tärkeä kysymys, erityisesti käsiteltäessä paljon tietoa tai prosessin ollessa monimutkainen, so. runsaasti aikaavievä. Monesti

Lisätiedot

2. Algoritmien analysointimenetelmistä

2. Algoritmien analysointimenetelmistä Kokeelliset tutkimukset 2. Algoritmien analysointimenetelmistä Tietokoneohjelmien suoritusaika on usein tärkeä kysymys, erityisesti käsiteltäessä paljon tietoa tai prosessin ollessa monimutkainen, so.

Lisätiedot

Tietorakenteet, laskuharjoitus 3, ratkaisuja

Tietorakenteet, laskuharjoitus 3, ratkaisuja Tietorakenteet, laskuharjoitus 3, ratkaisuja 1. (a) Toistolauseen runko-osassa tehdään yksi laskuoperaatio, runko on siis vakioaikainen. Jos syöte on n, suoritetaan runko n kertaa, eli aikavaativuus kokonaisuudessaan

Lisätiedot

2.2.1 Ratkaiseminen arvausta sovittamalla

2.2.1 Ratkaiseminen arvausta sovittamalla 2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu

Lisätiedot

Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali

Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali Talousmatematiikan perusteet: Luento 18 Määrätty integraali Epäoleellinen integraali Motivointi Viime luennoilla opimme integrointisääntöjä: Tavalliset funktiotyypit (potenssi-, polynomi- ja eksponenttifunktiot)

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

Algoritmit 2. Luento 5 Ti Timo Männikkö

Algoritmit 2. Luento 5 Ti Timo Männikkö Algoritmit 2 Luento 5 Ti 26.3.2019 Timo Männikkö Luento 5 Puurakenteet B-puu B-puun korkeus B-puun operaatiot B-puun muunnelmia Algoritmit 2 Kevät 2019 Luento 5 Ti 26.3.2019 2/34 B-puu B-puut ovat tasapainoisia

Lisätiedot

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007

A215 Tietorakenteet. Tietojenkäsittelytieteiden laitos Tampereen yliopisto. Periodit I-II, syksy 2007 Kurssiesittely Tietojenkäsittelytieteiden laitos Tampereen yliopisto 25 Tietorakenteet Periodit I-II, syksy 2007 Luennot/vastuuhenkilö: Heikki Hyyrö Sähköposti: heikki.hyyro@cs.uta.fi Kurssin kotisivu:

Lisätiedot

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin

3 Yleistä estimointiteoriaa. Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3 Yleistä estimointiteoriaa Olemme perehtuneet jo piste-estimointiin su-estimoinnin kautta Tässä luvussa tarkastellaan piste-estimointiin yleisemmin 3.1 Johdanto Tähän mennessä olemme tarkastelleet estimointia

Lisätiedot

Algoritmit 2. Luento 13 Ti Timo Männikkö

Algoritmit 2. Luento 13 Ti Timo Männikkö Algoritmit 2 Luento 13 Ti 30.4.2019 Timo Männikkö Luento 13 Simuloitu jäähdytys Merkkijonon sovitus Horspoolin algoritmi Ositus ja rekursio Rekursion toteutus Algoritmit 2 Kevät 2019 Luento 13 Ti 30.4.2019

Lisätiedot

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) = BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot

Lisätiedot

Algoritmit 2. Luento 4 Ke Timo Männikkö

Algoritmit 2. Luento 4 Ke Timo Männikkö Algoritmit 2 Luento 4 Ke 22.3.2017 Timo Männikkö Luento 4 Hajautus Yhteentörmäysten käsittely Avoin osoitteenmuodostus Hajautusfunktiot Puurakenteet Solmujen läpikäynti Algoritmit 2 Kevät 2017 Luento 4

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

Tietorakenteet ja algoritmit I TRAI 29.8.2011/SJ Luentomuistiinpanoja

Tietorakenteet ja algoritmit I TRAI 29.8.2011/SJ Luentomuistiinpanoja Tietorakenteet ja algoritmit I Luentomuistiinpanoja Simo Juvaste Asko Niemeläinen Itä-Suomen yliopisto Tietojenkäsittelytiede Alkusanat Tämä moniste perustuu valtaosaltaan aiemman Tietorakenteet ja algoritmit

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Johnson, A Theoretician's Guide to the Experimental Analysis of Algorithms.

Johnson, A Theoretician's Guide to the Experimental Analysis of Algorithms. Kokeellinen algoritmiikka (3 ov) syventäviä opintoja edeltävät opinnot: ainakin Tietorakenteet hyödyllisiä opintoja: ASA, Algoritmiohjelmointi suoritus harjoitustyöllä (ei tenttiä) Kirjallisuutta: Johnson,

Lisätiedot

6.8 Erityisfunktioiden sovelluksia

6.8 Erityisfunktioiden sovelluksia 6.8 Erityisfunktioiden sovelluksia Tässä luvussa esitellään muutama esimerkki, joissa käytetään hyväksi eksponentti-, logaritmi- sekä trigonometrisia funktioita. Ensimmäinen esimerkki juontaa juurensa

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 13 Ti 18.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 13 Ti 18.10.2011 p. 1/43 p. 1/43 Nopeat Fourier-muunnokset Fourier-sarja: Jaksollisen funktion esitys

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä30.

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 0. syyskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä0. ym.,

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 0. syyskuuta 0 Joukko-oppi ja logiikka Todistukset logiikassa Predikaattilogiikka Induktioperiaate Relaatiot

Lisätiedot

Algoritmit 1. Luento 7 Ti Timo Männikkö

Algoritmit 1. Luento 7 Ti Timo Männikkö Algoritmit 1 Luento 7 Ti 31.1.2017 Timo Männikkö Luento 7 Järjestetty binääripuu Binääripuiden termejä Binääripuiden operaatiot Solmun haku, lisäys, poisto Algoritmit 1 Kevät 2017 Luento 7 Ti 31.1.2017

Lisätiedot

Rinnakkaistietokoneet luento S

Rinnakkaistietokoneet luento S Rinnakkaistietokoneet luento 3 521475S Rinnakkaiset Numeeriset Algoritmit Silmukattomat algoritmit Eivät sisällä silmukka lauseita kuten DO,FOR tai WHILE Nopea suorittaa Yleisimmässä muodossa koostuu peräkkäisistä

Lisätiedot

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin: Määrittelyjoukot Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:, 0 ; log, > 0 ;, 0 (parilliset juuret) ; tan, π + nπ Potenssisäännöt Ole tarkkana kantaluvun kanssa 3 3

Lisätiedot

Onko algoritmiselle ongelmalle löydetty ratkaisualgoritmi riittävän hyvä?

Onko algoritmiselle ongelmalle löydetty ratkaisualgoritmi riittävän hyvä? Ongelman vaativuuden rajat Onko algoritmiselle ongelmalle löydetty ratkaisualgoritmi riittävän hyvä? Olisiko mahdollista löytää asymptoottisesti tehokkaampi ratkaisu, vai onko algoritmi optimaalinen? Kysymyksiin

Lisätiedot

Tietorakenteet, laskuharjoitus 2,

Tietorakenteet, laskuharjoitus 2, Tietorakenteet, laskuharjoitus, 6.-9.1 Muista TRAKLA-tehtävien deadline 31.1. 1. Tarkastellaan ensin tehtävää yleisellä tasolla. Jos funktion T vaativuusluokka on O(f), niin funktio T on muotoa T (n) =

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot