Suora. Hannu Lehto. Lahden Lyseon lukio
|
|
- Ilmari Kouki
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 Suora Hannu Lehto Lahden Lyseon lukio
2 Suuntavektori Normaalivektori Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 2 / 12
3 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin k = 2 3 α 2 tanα = 2 3, α suuntakulma 3 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 3 / 12
4 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin k = 2 3 α 3 i 2 j tanα = 2 3, α suuntakulma eräs suuntavektori s = 3 i + 2 j Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 3 / 12
5 Suuntavektori Suuntavektori Normaalivektori Määritelmä 1. Olkoot pisteet A ja B kaksi suoran l eri pistettä. Silloin s = AB on suoran l eräs suuntavektori. l A s B Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 4 / 12
6 Suuntavektori Suuntavektori Normaalivektori Määritelmä 1. Olkoot pisteet A ja B kaksi suoran l eri pistettä. Silloin s = AB on suoran l eräs suuntavektori. l A s B Lause 1. Jos s = s x i + s y j, s x 0 on eräs suoran suuntavektori, niin suoran kulmakerroin on k = s y s x. Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 4 / 12
7 Suuntavektori Suuntavektori Normaalivektori Määritelmä 1. Olkoot pisteet A ja B kaksi suoran l eri pistettä. Silloin s = AB on suoran l eräs suuntavektori. l A s B Lause 1. Jos s = s x i + s y j, s x 0 on eräs suoran suuntavektori, niin suoran kulmakerroin on k = s y s x. s x i s s y j Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 4 / 12
8 Suuntavektori Suuntavektori Normaalivektori Määritelmä 1. Olkoot pisteet A ja B kaksi suoran l eri pistettä. Silloin s = AB on suoran l eräs suuntavektori. l A s B Lause 1. Jos s = s x i + s y j, s x 0 on eräs suoran suuntavektori, niin suoran kulmakerroin on k = s y s x. s x i s s y j Lause 2. l 1 l 2 s 1 s 2 s 1 = t s 2 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 4 / 12
9 Suuntavektori Suuntavektori Normaalivektori Määritelmä 1. Olkoot pisteet A ja B kaksi suoran l eri pistettä. Silloin s = AB on suoran l eräs suuntavektori. l A s B Lause 1. Jos s = s x i + s y j, s x 0 on eräs suoran suuntavektori, niin suoran kulmakerroin on k = s y s x. s x i s s y j Lause 2. l 1 l 2 s 1 s 2 s 1 = t s 2 Lause 3. l 1 l 2 s 1 s 2 s 1 s 2 = 0 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 4 / 12
10 Suuntavektori Suuntavektori Normaalivektori Lause 4. (l 1, l 2 ) = { ( s1, s 2 ), jos ( s 1, s 2 ) ( s 1, s 2 ), jos ( s 1, s 2 ) > 90 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 5 / 12
11 Suuntavektori Suuntavektori Normaalivektori Lause 4. (l 1, l 2 ) = { ( s1, s 2 ), jos ( s 1, s 2 ) ( s 1, s 2 ), jos ( s 1, s 2 ) > 90 l 1 (l 1,l 2 )= ( s 1, s 2 ) l 1 ( s 1, s 2 ) (l 1,l 2 ) l 2 l 2 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 5 / 12
12 Suuntavektori Suuntavektori Normaalivektori Lause 4. (l 1, l 2 ) = { ( s1, s 2 ), jos ( s 1, s 2 ) ( s 1, s 2 ), jos ( s 1, s 2 ) > 90 l 1 (l 1,l 2 )= ( s 1, s 2 ) l 1 ( s 1, s 2 ) (l 1,l 2 ) l 2 l 2 cos ( ( s 1, s 2 )) = s 1 s 2 s 1 s 1 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 5 / 12
13 Esimerkki Suuntavektori Normaalivektori 3x 5y + 10 = 0 (suoran normaalimuoto) Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 6 / 12
14 Esimerkki Suuntavektori Normaalivektori 3x 5y + 10 = 0 (suoran normaalimuoto) y = 3 x + 2 (ratkaistu muoto) 5 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 6 / 12
15 Esimerkki Suuntavektori Normaalivektori 3x 5y + 10 = 0 (suoran normaalimuoto) y = 3 5 x + 2 (ratkaistu muoto) Eräs suoran suuntavektori on Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 6 / 12
16 Esimerkki Suuntavektori Normaalivektori 3x 5y + 10 = 0 (suoran normaalimuoto) y = 3 5 x + 2 (ratkaistu muoto) Eräs suoran suuntavektori on s = 5 i + 3 j. Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 6 / 12
17 Esimerkki Suuntavektori Normaalivektori 3x 5y + 10 = 0 (suoran normaalimuoto) y = 3 5 x + 2 (ratkaistu muoto) Eräs suoran suuntavektori on s = 5 i + 3 j. Eräs suoran normaalivektori on Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 6 / 12
18 Esimerkki Suuntavektori Normaalivektori 3x 5y + 10 = 0 (suoran normaalimuoto) y = 3 5 x + 2 (ratkaistu muoto) Eräs suoran suuntavektori on s = 5 i + 3 j. Eräs suoran normaalivektori on n = 3 i 5 j, koska s n = ( 5) = 0. Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 6 / 12
19 Esimerkki Suuntavektori Normaalivektori 3x 5y + 10 = 0 (suoran normaalimuoto) y = 3 x + 2 (ratkaistu muoto) 5 Eräs suoran suuntavektori on s = 5 i + 3 j. Eräs suoran normaalivektori on n = 3 i 5 j, koska s n = ( 5) = 0. s s 3x 5y+10=0 n Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 6 / 12
20 Normaalivektori Suuntavektori Normaalivektori Lause 5. Suoran ax + by + c = 0 eräs normaalivektori on n = a i + b j. Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 7 / 12
21 Normaalivektori Suuntavektori Normaalivektori Lause 5. Suoran ax + by + c = 0 eräs normaalivektori on n = a i + b j. Suorien välinen kulma on normaalivektoreiden välinen kulma tai sen suplementtikulma. Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 7 / 12
22 Normaalivektori Suuntavektori Normaalivektori Lause 5. Suoran ax + by + c = 0 eräs normaalivektori on n = a i + b j. Suorien välinen kulma on normaalivektoreiden välinen kulma tai sen suplementtikulma. s α l 1 l 2 α n 2 n 1 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 7 / 12
23 Normaalivektori Suuntavektori Normaalivektori Lause 5. Suoran ax + by + c = 0 eräs normaalivektori on n = a i + b j. Suorien välinen kulma on normaalivektoreiden välinen kulma tai sen suplementtikulma. s α l 1 l 2 α n 2 n 1 l 1 l 2 n 1 n 2 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 7 / 12
24 Normaalivektori Suuntavektori Normaalivektori Lause 5. Suoran ax + by + c = 0 eräs normaalivektori on n = a i + b j. Suorien välinen kulma on normaalivektoreiden välinen kulma tai sen suplementtikulma. s α l 1 l 2 α n 2 n 1 l 1 l 2 n 1 n 2 l 1 l 2 n 1 n 2 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 7 / 12
25 vektorimuoto parametrimuoto Suorien keskinäinen asema Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 8 / 12
26 Suoran yhtälö: vektorimuoto vektorimuoto parametrimuoto Suorien keskinäinen asema Suuntavektori s ja piste P 0 määräävät suoran. s P 0 (x 0,y 0,x 0 ) O Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 9 / 12
27 Suoran yhtälö: vektorimuoto vektorimuoto parametrimuoto Suorien keskinäinen asema Suuntavektori s ja piste P 0 määräävät suoran. P(x,y,z) s P 0 (x 0,y 0,z 0 ) O Piste P on suoralla, joss Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 9 / 12
28 Suoran yhtälö: vektorimuoto vektorimuoto parametrimuoto Suorien keskinäinen asema Suuntavektori s ja piste P 0 määräävät suoran. P(x,y,z) s P 0 (x 0,y 0,z 0 ) O Piste P on suoralla, joss OP = OP 0 + t s, t R Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 9 / 12
29 Suoran yhtälö: parametrimuoto vektorimuoto parametrimuoto Suorien keskinäinen asema P(x,y,z) s=s x i+s y j+s z k P 0 (x 0,y 0,z 0 ) O Piste P on suoralla, joss Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 10 / 12
30 Suoran yhtälö: parametrimuoto vektorimuoto parametrimuoto Suorien keskinäinen asema P(x,y,z) s=s x i+s y j+s z k P 0 (x 0,y 0,z 0 ) O Piste P on suoralla, joss x i + y j + z k = x 0 i + y 0 j + z 0 k + t ( s x i + s y j + s z k ), t R Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 10 / 12
31 Suoran yhtälö: parametrimuoto vektorimuoto parametrimuoto Suorien keskinäinen asema P(x,y,z) s=s x i+s y j+s z k P 0 (x 0,y 0,z 0 ) O Piste P on suoralla, joss x i + y j + z k = x 0 i + y 0 j + z 0 k + t ( s x i + s y j + s z k ), t R x = x 0 + ts x y = y 0 + ts y z = z 0 + ts z Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 10 / 12
32 Suoran yhtälö: parametrimuoto vektorimuoto parametrimuoto Suorien keskinäinen asema P(x,y,z) s=s x i+s y j+s z k P 0 (x 0,y 0,z 0 ) O Piste P on suoralla, joss x i + y j + z k = x 0 i + y 0 j + z 0 k + t ( s x i + s y j + s z k ), t R x = x 0 + ts x y = y 0 + ts y z = z 0 + ts z x x 0 s x = y y 0 s y = z z 0 s z, s x, s y, s z 0 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 10 / 12
33 Esimerkki vektorimuoto parametrimuoto Suorien keskinäinen asema Suora kulkee pisteiden A(2, 2, 2) ja B( 2, 3, 3) kautta. Määritä suoran yhtälö sekä vektorimuodossa että parametrimuodossa. Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 11 / 12
34 Esimerkki vektorimuoto parametrimuoto Suorien keskinäinen asema Suora kulkee pisteiden A(2, 2, 2) ja B( 2, 3, 3) kautta. Määritä suoran yhtälö sekä vektorimuodossa että parametrimuodossa. z P(x,y,z) A(2, 2,2) B( 2,3,3) y x Suoran suuntavektori s = Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 11 / 12
35 Esimerkki vektorimuoto parametrimuoto Suorien keskinäinen asema Suora kulkee pisteiden A(2, 2, 2) ja B( 2, 3, 3) kautta. Määritä suoran yhtälö sekä vektorimuodossa että parametrimuodossa. z P(x,y,z) A(2, 2,2) B( 2,3,3) y x Suoran suuntavektori s = AB = Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 11 / 12
36 Esimerkki vektorimuoto parametrimuoto Suorien keskinäinen asema Suora kulkee pisteiden A(2, 2, 2) ja B( 2, 3, 3) kautta. Määritä suoran yhtälö sekä vektorimuodossa että parametrimuodossa. z P(x,y,z) A(2, 2,2) B( 2,3,3) y x Suoran suuntavektori s = AB = 4 i + 5 j + k Vektorimuoto: OP = Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 11 / 12
37 Esimerkki vektorimuoto parametrimuoto Suorien keskinäinen asema Suora kulkee pisteiden A(2, 2, 2) ja B( 2, 3, 3) kautta. Määritä suoran yhtälö sekä vektorimuodossa että parametrimuodossa. z P(x,y,z) A(2, 2,2) B( 2,3,3) y x Suoran suuntavektori s = AB = 4 i + 5 j + k Vektorimuoto: OP = OA + t s = Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 11 / 12
38 Esimerkki vektorimuoto parametrimuoto Suorien keskinäinen asema Suora kulkee pisteiden A(2, 2, 2) ja B( 2, 3, 3) kautta. Määritä suoran yhtälö sekä vektorimuodossa että parametrimuodossa. z P(x,y,z) A(2, 2,2) B( 2,3,3) y x Suoran suuntavektori s = AB = 4 i + 5 j + k Vektorimuoto: OP = OA + t s = 2 i 2 j + 2 ( k + t 4 i + 5 j + ) k Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 11 / 12
39 Esimerkki vektorimuoto parametrimuoto Suorien keskinäinen asema Suora kulkee pisteiden A(2, 2, 2) ja B( 2, 3, 3) kautta. Määritä suoran yhtälö sekä vektorimuodossa että parametrimuodossa. z P(x,y,z) A(2, 2,2) B( 2,3,3) y x Suoran suuntavektori s = AB = 4 i + 5 j + k Vektorimuoto: OP = OA + t s = 2 i 2 j + 2 k + t Parametrimuoto: x = 2 4t y = 2 + 5t z = 2 + t ( 4 i + 5 j + k Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 11 / 12 )
40 Suorien keskinäinen asema vektorimuoto parametrimuoto Suorien keskinäinen asema yhdensuuntaiset l 1 l 2 s 1 s 2 s 1 = t s 2, t R ritikkäiset leikkaavat Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 12 / 12
41 Suorien keskinäinen asema vektorimuoto parametrimuoto Suorien keskinäinen asema yhdensuuntaiset l 1 l 2 s 1 s 2 s 1 = t s 2, t R ritikkäiset leikkaavat Esimerkki. Ovatko suorat x = 1 + 2t y = 2 3t z = 3 + t yhdensuuntaiset?, t R ja x = 7 6s y = 2 + 9s z = 1 3s, s R Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 12 / 12
42 Suorien keskinäinen asema vektorimuoto parametrimuoto Suorien keskinäinen asema yhdensuuntaiset l 1 l 2 s 1 s 2 s 1 = t s 2, t R ritikkäiset leikkaavat Esimerkki. Ovatko suorat x = 1 + 2t y = 2 3t z = 3 + t yhdensuuntaiset?, t R ja x = 7 6s y = 2 + 9s z = 1 3s, s R Suuntavektorit ovat s 1 = Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 12 / 12
43 Suorien keskinäinen asema vektorimuoto parametrimuoto Suorien keskinäinen asema yhdensuuntaiset l 1 l 2 s 1 s 2 s 1 = t s 2, t R ritikkäiset leikkaavat Esimerkki. Ovatko suorat x = 1 + 2t y = 2 3t z = 3 + t yhdensuuntaiset?, t R ja x = 7 6s y = 2 + 9s z = 1 3s, s R Suuntavektorit ovat s 1 = 2 i 3 j + k ja s 2 = Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 12 / 12
44 Suorien keskinäinen asema vektorimuoto parametrimuoto Suorien keskinäinen asema yhdensuuntaiset l 1 l 2 s 1 s 2 s 1 = t s 2, t R ritikkäiset leikkaavat Esimerkki. Ovatko suorat x = 1 + 2t y = 2 3t z = 3 + t yhdensuuntaiset?, t R ja x = 7 6s y = 2 + 9s z = 1 3s, s R Suuntavektorit ovat s 1 = 2 i 3 j + k ja s 2 = 6 i + 9 j 3 k. Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 12 / 12
45 Suorien keskinäinen asema vektorimuoto parametrimuoto Suorien keskinäinen asema yhdensuuntaiset l 1 l 2 s 1 s 2 s 1 = t s 2, t R ritikkäiset leikkaavat Esimerkki. Ovatko suorat x = 1 + 2t y = 2 3t z = 3 + t yhdensuuntaiset?, t R ja x = 7 6s y = 2 + 9s z = 1 3s, s R Suuntavektorit ovat s 1 = 2 i 3 j + k ja s 2 = 6 i + 9 j 3 k. Koska s 2 = 6 i + 9 j 3 ( k = 3 2 i 3 j + ) k = 3 s 1, niin Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 12 / 12
46 Suorien keskinäinen asema vektorimuoto parametrimuoto Suorien keskinäinen asema yhdensuuntaiset l 1 l 2 s 1 s 2 s 1 = t s 2, t R ritikkäiset leikkaavat Esimerkki. Ovatko suorat x = 1 + 2t y = 2 3t z = 3 + t yhdensuuntaiset?, t R ja x = 7 6s y = 2 + 9s z = 1 3s, s R Suuntavektorit ovat s 1 = 2 i 3 j + k ja s 2 = 6 i + 9 j 3 k. Koska s 2 = 6 i + 9 j 3 ( k = 3 2 i 3 j + ) k = 3 s 1, niin s1 s 2 Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 12 / 12
47 Suorien keskinäinen asema vektorimuoto parametrimuoto Suorien keskinäinen asema yhdensuuntaiset l 1 l 2 s 1 s 2 s 1 = t s 2, t R ritikkäiset leikkaavat Esimerkki. Ovatko suorat x = 1 + 2t y = 2 3t z = 3 + t yhdensuuntaiset?, t R ja x = 7 6s y = 2 + 9s z = 1 3s, s R Suuntavektorit ovat s 1 = 2 i 3 j + k ja s 2 = 6 i + 9 j 3 k. Koska s 2 = 6 i + 9 j 3 ( k = 3 2 i 3 j + ) k = 3 s 1, niin s1 s 2 ja suorat ovat yhdensuuntaiset. Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 12 / 12
Taso. Hannu Lehto. Lahden Lyseon lukio
Taso Hannu Lehto Lahden Lyseon lukio Taso avaruudessa Piste P 0 ja tason normaalivektori n määräävät tason. n=a i+b j+c k P 0 (x 0,y 0,z 0 ) Hannu Lehto 17. syyskuuta 2010 Lahden Lyseon lukio 2 / 7 Taso
LisätiedotVEKTORIT paikkavektori OA
paikkavektori OA Piste A = (2, -1) Paikkavektori OA = 2i j 3D: kuvan piirtäminen hankalaa Piste A = (2, -3, 4) Paikkavektori OA = 2i 3j + 4k Piste A = (a 1, a 2, a 3 ) Paikkavektori OA = a 1 i + a 2 j
LisätiedotAvaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät
11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit
LisätiedotSuorista ja tasoista LaMa 1 syksyllä 2009
Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden
LisätiedotSuora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste
Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa
LisätiedotSuorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.
Suorat ja tasot, L6 Suora xyz-koordinaatistossa Taso xyz-koordinaatistossa stä stä 1 Näillä kalvoilla käsittelemme kolmen laisia olioita. Suora xyz-avaruudessa. Taso xyz-avaruudessa. Emme nyt ryhdy pohtimaan,
LisätiedotSuora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},
Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
LisätiedotBM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
Lisätiedot1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.
Matematiikan kurssikoe, Maa4 Vektorit RATKAISUT Sievin lukio Keskiviikko 12.4.2017 VASTAA YHTEENSÄ VIITEEN TEHTÄVÄÄN! MAOL JA LASKIN/LAS- KINOHJELMAT OVAT SALLITTUJA! 1. Olkoot vektorit a, b ja c seuraavasti
LisätiedotVinokulmainen kolmio. Hannu Lehto. Lahden Lyseon lukio
Vinokulmainen kolmio Hannu Lehto Lahden Lyseon lukio Yksikköympyrä ja suunnattu kulma Yksikköympyrä 1 y 0 x -1-1 0 1 Hannu Lehto 18. maaliskuuta 2008 Lahden Lyseon lukio 2 / 8 Yksikköympyrä ja suunnattu
LisätiedotKahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
Lisätiedot4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
LisätiedotSolmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:
Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman
LisätiedotVektorit, suorat ja tasot
, suorat ja tasot 1 / 22 Koulussa vektori oli nuoli, jolla oli suunta ja suuruus eli pituus. Siirretään vektori siten, että sen alkupää on origossa. Tällöin sen kärki on pisteessä (x 1, x 2 ). Jos vektorin
LisätiedotTASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.
TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste
LisätiedotEnsimmäisen asteen polynomifunktio
Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()
LisätiedotTekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
LisätiedotTaso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora
Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen
LisätiedotOta tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta
MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)
Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori
LisätiedotSuorien ja tasojen geometriaa Suorien ja tasojen yhtälöt
6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran
LisätiedotPyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien
LisätiedotJuuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Vektorit. Vektori LUVUN. YDINTEHTÄVÄT 0. Piste P jakaa janan BC suhteessa : eli kahteen yhtä suureen osaan. Siten CP CB u ja DP DC CP DC CBv u u v. Vastaavasti DQ DA AQ DA ABu v. 7 7 0. a) Pisteen koordinaatit
LisätiedotLaudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
LisätiedotSuoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on
Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin
Lisätiedot102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.
Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
LisätiedotLauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:
Simo K. Kivelä, 13.7.004 Frégier'n lause Toisen asteen käyrillä ellipseillä, paraabeleilla, hyperbeleillä ja niiden erikoistapauksilla on melkoinen määrä yksinkertaisia säännöllisyysominaisuuksia. Eräs
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
LisätiedotTekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
LisätiedotYmpyrän yhtälö
Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka
Lisätiedot1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)
Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)
LisätiedotMb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4
Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
LisätiedotYhteenlaskun ja skalaarilla kertomisen ominaisuuksia
Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella
LisätiedotLauselogiikka Tautologia
Lauselogiikka Tautologia Hannu Lehto Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
Lisätiedot3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.
3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
LisätiedotMatikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81
Matikkapaja keskiviikkoisin klo 14-16 Lineaarialgebra (muut ko) p. 1/81 Lineaarialgebra (muut ko) p. 2/81 Operaatiot Vektoreille u = (u 1,u 2 ) ja v = (v 1,v 2 ) Yhteenlasku: u+v = (u 1 +v 1,u 2 +v 2 )
Lisätiedot3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset
31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita
Lisätiedotdx = L2 (x + 1) 2 dx x ln x + 1 = L 2 1 L + 1 L ( = 1 ((L + 1)ln(L + 1) L) L k + 1 xk+1 = 1 k + 2 xk+2 = 1 10k+1 k + 2 = 7.
BM2A582 - Integraalilaskenta ja sovellukset Harjoitus 5, Kevät 26. a Lumikuiorman massa-alkio kohdassa on λd L2 + 2 d, joten kokonaismassa on Momentti suoran suhteen on L L 2 L m d L2 + 2 d + 2 / L L 2
Lisätiedotyleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
LisätiedotVektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
Lisätiedot802120P Matriisilaskenta (5 op)
802120P Matriisilaskenta (5 op) Tero Vedenjuoksu Matemaattiset tieteet Syksy 2015 1 / 159 Luennoitsija: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi M321 Kurssilla käytetään Noppaa (noppa.oulu.fi) sekäoptimaa
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotYmpyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora
Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen
LisätiedotLineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotLukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]
Lukuväleistä MB Funktio - < < tai ]-,] < tai ]-,] Yksikäsitteisyys Täytyy tuntea/arvata tyyppi T 0. (sivu ) f() = a) f () = = 9 = 4 T 0. (sivu ) T 0. (sivu ) f() = f() = b) f(k) = k c) f(t + ) = (t + )
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
LisätiedotGEOMETRIA MAA3 Geometrian perusobjekteja ja suureita
GEOMETRI M3 Geometrian perusobjekteja ja suureita Piste ja suora: Piste, suora ja taso ovat geometrian peruskäsitteitä, joita ei määritellä. Voidaan ajatella, että kaikki geometriset kuviot koostuvat pisteistä.
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
LisätiedotMb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2
Mb8 Koe 0.11.015 Kuopion Lyseon lukio (KK) sivu 1/ Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
Lisätiedot203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.
Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C
LisätiedotHarjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.
MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö
LisätiedotPyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 352 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 5 Päivitett 9..7 Pramidi 4 Luku 8..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 865 ratkaisua. 8..7 Korjattu tehtävässä 85 luku 5 luvuksi
LisätiedotMAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.
MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise
Lisätiedot3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h
HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)
Lisätiedotc) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan
LisätiedotKertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,
Kertausosa. a),6 60 576 Peruuttaessa pyörähdyssuunta on vastapäivään. Kulma on siis,4 60 864 a) 576 864 0,88m. a) α b 0,6769... 0,68 (rad) r,m 8cm β,90...,9 (rad) 4cm a) α 0,68 (rad) β,9 (rad). a) 5,0
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen
LisätiedotA-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.
MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään
LisätiedotMAA15 Vektorilaskennan jatkokurssi, tehtävämoniste
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.
Lisätiedot( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.
Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y
Lisätiedot= 9 = 3 2 = 2( ) = = 2
Ratkaisut 1.1. (a) + 5 +5 5 4 5 15 15 (b) 5 5 5 5 15 16 15 (c) 100 99 5 100 99 5 4 5 5 4 (d) 100 99 5 100 ( ) 5 1 99 100 4 99 5 1.. (a) ( 100 99 5 ) ( ( 4 ( ) ) 4 1 ( ) ) 4 9 4 16 (b) 100 99 ( 5 ) 1 100
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
Lisätiedotb 4i j k ovat yhdensuuntaiset.
MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä
LisätiedotMb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3
Mb8 Koe 4.11.015 Kuopion Lyseon lukio (KK) sivu 1/3 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
Lisätiedot! 7! = N! x 8. x x 4 x + 1 = 6.
9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun
LisätiedotYleistä vektoreista GeoGebralla
Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti
LisätiedotRATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
LisätiedotParaabeli suuntaisia suoria.
15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki
LisätiedotRatkaisut vuosien tehtäviin
Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on
LisätiedotLineaarialgebran laskumoniste Osa1 : vektorit
Lineaarialgebran laskumoniste Osa1 : vektorit A. Sinin, kosinin ja tangentin laajennetut määritelmät 1. Määritä ao. yksikköympyrän avulla a) sin(120 o ) b) cos(180 o ) (piirrä kulman kylki, ja lue kuvasta
LisätiedotPyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa
Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja
Lisätiedot= = = 1 3.
9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala
Lisätiedot5.3 Suoran ja toisen asteen käyrän yhteiset pisteet
.3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina
LisätiedotTekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.
Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (
LisätiedotMATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
LisätiedotMAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5
Lisätiedot3 Skalaari ja vektori
3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,
Lisätiedotorigo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
LisätiedotHelsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13
Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3
LisätiedotJATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.
JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva
Lisätiedot