Luku 10: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H

Koko: px
Aloita esitys sivulta:

Download "Luku 10: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H"

Transkriptio

1 Luku 10: Molekyylien rakenne Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H + 2 ja muut kaksiatomiset molekyylit Hückel approksimaatio 1

2 Molekyylien elektronirakennetta kuvaavat teoriat lähtevät liikkeelle Bornin ja Oppenheimerin approksimaatiosta: Elektronien liike on hyvin paljon nopeampaa kuin ytimien ytimien voidaan olettaa olevan paikallaan, ja elektronit liikkuvat ytimien potentiaalikentässä B-O:n mukaan elektronisen energian laskemisessa ydinten etäisyyttä voidaan pitää parametrina potentiaalienergia käyrä (tai pinta) Tasapainosidospituus dissosiaatioenergia 2

3 Valenssisidosteoriassa sidos muodostuu kahden elektronin (vastakkaiset spinnit) pariutuessa ydisten välisellä alueella. Tarkastellaan sitoutumista vetymolekyylissä: - lähtökohtana kaksi vetyatomia, kullakin 1s elektroni - annetaan elektroneille leimat 1 ja 2 ja atomiorbitaaleille A ja B aaltofunktio: ψ = A(1)B(2) atomien ollessa lähekkäin emme pysty erottamaan kumpi el. on 1 ja 2 ψ = A(2)B(1) myös hyvä aaltofunktio Kumpi valitaan? 3

4 Kvanttimekaniikan mukaan systeemi voi olla samanaikaisesti useammassa tilassa, joten muodostamme kaksi superpositiota kahdesta aaltofunktiosta: ψ = A(1)B(2) ± A(2)B(1) Kombinaatio ψ = A(1)B(2) + A(2)B(1) johtaa elektronitiheyden kasvamiseen ydinten välillä sidos 4

5 N: He2s 2 2p x1 2p y1 2p z 1 2p z orbitaalit muodostavat σ sidoksen: σ sidoksella on sylinterisymmetria sidosakselin suhteen 2p y ja 2p x orbitaalit muodostavat 2 kpl π sidoksia N N ei sylinterisymmetriaa 5

6 Havaitsimme, että alinta energiaa vastaavan konfiguraation atomiorbitaalit toimivat hyvänä kantana kaksi-atomisten molekyylien sidosorbitaaleille Moniatomisille molekyyleille sidosten muodostuminen on paljon monimutkaisempi prosessi eikä oikeaa sidosten lukumäärää ja/tai geometriaa saada, jos kantana käytetään perustilaisten atomien konfiguraatiota vastaavia atomiorbitaaleja esim. ennustettu veden rakenne, jos kantana vedyn 1s ja hapen 2p atomiorbitaalit Oikea geometria on 104,5 happiatomin konfiguraatio: 1s 2 2s 2 2p x2 2p y1 2p z 1 6

7 Vastaavasti, hiiliatomin konfiguraatio 1s 2 2s 2 2p x1 2p y1 2p z 0 viitaisi siihen, että hiili muodostaa vain kaksi sidosta? Ongelma liittyy 2p x1 2p y 1 kantaan Viritystilainen C atomi olisi: 1s 2 2s 1 2p x1 2p y1 2p z 1 jolloin sen AO kanta sitoutumiselle olisi paljon laajempi: 2s 1 2p x1 2p y1 2p z 1 4 ortogonaalisesta (toisistaan riippumattomasta) AO:sta voidaan muodostaa 4 ortogonaalista lineaarikombinaatiota h 1 = s + p x + p y + p z h 2 = s p x p y + p z h 3 = s p x + p y p z sp 3 hybridiorbitaalit h 4 = s + p x p y p z hybridiorbitaalit ennustavat 4 σ-sidosta ja 109,47 valenssikulman 7

8 kolme σ sidosta tasossa Vastaavasti voidaan muodostaa 3 sp 2 hybridiorbitaalia kuvaamaan σ sitoutumista C=C sidoksissa h 1 = s + 2p y h 2 = s + 3/2p x 1/2 p y hybridisaatioon h 3 = s 3/2p x 1/2 p y osallistumaton p z orbitaali muodostaa π sidoksen 8

9 sp 2 hybridiorbitaalien aiheuttama σ sidos ei-hybridisoituneiden p z orb aiheuttama π sidos σ sidos muihin atomeihin sp hybridiorbitaalit kuvaavat σ sidoksen muodostumista C C sidoksissa: h 1 = s + p z sp -hybridiorbitaalit σ-sidos h 2 = s p z π π π sidokset muodostuvat p x ja p y orbitaaleista 9

10 Hybridisaatio on matemaattinen temppu joka joudutaan tekemään siitä syystä, että perustilaisten atomien ao:t eivät ole riittävä kanta sellaisenaan kuvaamaan kemiallisten sidosten muodostumista molekyyleissä Molekyyliorbitaali (MO) teoriassa ei tarkastella elektronien lokalisoitumista sidoksiin. Elektronipilvi jakautuu koko molekyylin alueelle. Teoria on huomattavasti tarkempi kuin valenssisidos teoria, mutta se ei ole yhtä havainnollinen kemiallisen sidoksen tapauksessa. e- H 2 + on ainoa molekyyli, jonka Schrödingerin yhtälö ratkeaa analyyttisesti H ˆ = V 2m e & V = e ) ( + 4πε 0 ' r A1 r B1 R* 10

11 Ominaisarvoyhtälön: ˆ H ψ = Eψ ratkaisuja kutsutaan molekyyliorbitaaleiksi = MO Tarkat ratkaisut eivät juurikaan ole sovellettavissa muille molekyyleille, joten yleispätevämpää likimääräistä ratkaisutapaa: LCAO Linear combination of atomic orbitals Clemens Roothaan ratkaisuna likimääräiset molekyyliorbitaalit LCAO-MO H 2 + molekyylille ψ ± = N(A ± B) kantana vetyatomien 1s atomiorbitaalit A ja B; N=normitusvakio Sitova MO: ψ + = N(A + B) on ns. σ-mo (1σ) sylinterisymmetria ei pyörimismäärää sidosakselin suunnassa 11

12 Bornin todennäköisyystulkinnan mukaan aaltofunktion itseisarvon neliö kuvaa todennäköisyystiheyttä ψ + 2 = N 2 (A 2 + B 2 + 2AB) A 2 on todennäköisyystiheys sille, että elektroni sijaitsee atomin A atomiorbitaalilla B 2 on todennäköisyystiheys sille, että elektroni sijaitsee atomin B atomiorbitaalilla AB on todennäköisyys sille, että elektroni sijaitsee aluessa, jossa atomiorbitaalit peittävät toisiaan (ydinten välinen alue) 12

13 1σ orbitaalin energia saadaan: E 1σ = E H1s + e 2 4πε 0 R j + k 1+ S ) S = ABdτ = 1+ r 2 + # R & - + * % (. e R / a 0, + a 0 $ a 0 ' / + peittointegraali A = e r A / a 0 3 ( πa 0 ) 1/ 2 B = e r B / a 0 3 ( πa 0 ) 1/ 2 { } 1/ 2 r B = r A 2 + R 2 2r A Rcosθ j = e2 A 2 4πε 0 r B dτ = e 2, 4πε 0 R 1 & 1+ R ) / ( + e 2r / a 0-0. ' a 0 * 1 vuorovaikutus ytimen ja siihen liittyvän elektronitiheyden välillä k = e2 4πε 0 AB dτ = r B e 2 & 1+ R ) ( + e R / a 0 vuorovaikutus ytimen ja ydinten 4πε 0 a 0 ' a 0 * välisen elektronitiheyden välillä e 2 4πε 0 R ydinten välinen hylkivä vuorovaikutus 13

14 Lineaarikombinaatio ψ = N(A B) ψ 2 = N 2 ( A 2 + B 2 2AB) on hajottava eli antibonding 2σ MO pienentää todennäköisyystiheyttä ydinten välisellä alueella 2σ MO solmutaso 2σ MO:n todennäkäisyystiheys 14

15 E 2σ = E H1s + e 2 4πε 0 R j k 1 S 2σ MO:n hajottava vaikutus on suurempi kuin 1 2σ MO:n sitova vaikutus Samaytimisten kaksiatomisten molekyylien tapauksessa käytetään yleensä pariteettiin liittyviä leimoja g (gerade, parillinen) ja u (ungerade, pariton) 15

16 u ja g leimat saadaan tarkastelemalla MO:n inversiosymmetriaa atomien välisen etäisyyden keskipisteen suhteen 1σ = 1σ g 2σ = 1σ u Huom! Eriytimisillä 2 atomisilla molekyyleillä ei ole inversiopistettä Seuraavassa tarkastelemme samaytimisten 2 atomisten molekyylien MO:n muodostumista AO:sta diagrammien avulla hajottava MO AO AO vetymolekyyli sitova MO 16

17 elektroneja yhtä paljon hajottavalla ja sitovalla MO:lla, ei sidosta MO muodostettaessa pitää huomioida kaikki valenssi AO:t joilla on MO:ta vastaava symmetria tarkastellaan MO:n muodostamista 2. jakson alkuaineiden muodostamissa samaytimisissä 2 atomisissa molekyyleissä Kantana 2s ja 2p AO:t σ MO:t: ψ = c A 2s χ A 2s + c B 2s χ B 2s + c A 2 pz χ A 2 pz + c B 2 pz χ B 2 pz 17

18 Saadaan 4 kpl σ orbitaaleja: ψ = c A 2s χ A 2s ± c B 2s χ B 2s 1σ g ja 1σ u ψ = c A 2 pz χ A 2 pz ± c B 2 pz χ 2 pz 2σ g ja 2σ u Sidosakselia kohtisuoraan sijaitsevat p x ja p y AO:t muodostavat 4 kpl π MO:ta (sitova u ja hajottava g): MO:n miehittyminen O 2 molekyylissä molempien degeneraatio = 2 (voivat muodostua p x tai p y orbitaaleista) 18

19 Jos huomioidaan se, että kaikki neljä AO:ta muodostaa MO:n, havaitaan että orbitaalien energiajärjestys ei ole vakio N 2 19

20 Sidoksen lujuutta kuvaa ns. sidoskertaluku (bond order): b = 1 2 n n * ( ) n = el. lukumäärä sidotuilla MO:eilla n* = el. lukumäärä hajoittavilla MO:eilla 20

21 Orbitaalienergioita voidaan mitata fotoelektronispektroskopialla Koopmannin teoreema: orbitaalienergia on se energia, mikä tarvitaan elektronin poistamiseksi orbitaalilta Kokeessa ionisoidaan molekyyli fotonilla E = hν ja mitataan syntyvien elektronien kineettinen energia E K Ionisaatioenergia: I i = hν E K = ε i 21

22 Eriytimisten kaksiatomisten molekyylien sidokset ovat polaarisia δ + H δ F δ ± osittaisvarauksia σ-sidos muodostuu vedyn 1s ja fluorin 2p z atomiorbitaaleista: lähes puhdas 1s lähes puhdas 2p z 22

23 Polaarisen sidoksen tarkastelussa käytetään hyödyksi atomien elektronegatiivisuutta (kyky vetää elektroneja puoleensa) Atomien A ja B elektronegatiivisuusero määritellään: χ A χ B = 0,102 D(A B) 1 2 { [ D(A A) + D(B B) ]} 1/ 2 D = dissosiaatio- χ A ja χ B ovat ns. Paulingin elektronegatiivisuuksia energia Linus Pauling ( ) 23

24 Ongelmana on löytää atomiorbitaalien (=kanta) kertoimet aaltofunktiossa ψ = c A A + c B B Koska emme voi ratkaista molekyylin Schrödingerin yhtälöä tarkasti, kutsumme aaltofunktiota ψ yriteaaltofunktioksi (trial wavefunction) Yriteaaltofunktiolle pätee ns. variaatioperiaate: E = ψ * H ˆ ψdτ E 0 ψ *ψdτ E 0 = tarkkaa ratkaisua vastaava energia (jota emme tiedä) atomiorbitaalien kertoimet ovat parhaat silloin kun energia saavuttaa alimman arvon. Tämä on paras mahdollinen ratkaisu joka saadaan valitulla kantajoukolla (tässä A ja B) matemaattisesti kriteerit parhaalle ratkaisulle: E c A = 0 E c B = 0 24

25 ψ 2 dτ = c A A + c B B ( ) 2 2 dτ = c A A 2 2 dτ + c B B 2 dτ + 2c A c B ABdτ 1 1 S = c A 2 + c B 2 + 2c A c B S ψ ˆ H ψdτ = ( c A A + c B B) H ˆ 2 ( c A A + c B B)dτ = c A A H ˆ Adτ + c 2 B H ˆ Bdτ + c c A H ˆ Bdτ + c B A B A c B BH ˆ Adτ merkitään: α A = AH ˆ Adτ α B = BH ˆ Bdτ Coulombin integraalit β = A ˆ H Bdτ = B ˆ H Adτ ψh ˆ 2 ψdτ = c A α A + c 2 B α B + 2c A c B β E = c 2 A α A + c 2 B α B + 2c A c B β c 2 A + c 2 B + 2c A c B S resonanssi integraali paras ratkaisu löydetään derivoimalla E kertoimien suhteen: ( ) E = 2 c Aα A c A E + c B β c B SE c A c 2 A + c 2 B + 2c A c B S ( ) E = 2 c Bα B c B E + c A β c A SE c B c 2 A + c 2 B + 2c A c B S = 0 = 0 25

26 Derivaatat = 0 kun: c A α A c A E + c B β c B SE = ( α A E)c A + ( β ES)c B = 0 c A β c A ES + c B α B c B E = ( β ES)c A + ( α B E)c B = 0 sekulaariyhtälöt Yhtälöryhmän ratkaisu liittyy sekulaarideterminantin nollakohtiin: α A E β ES β ES α B E = 0 Samaytimiselle 2-atomiselle molekyylille Ratkaistaan determinantti kertomalla ristiin : α E E± = α ± β 1± S + = sitova MO - = hajottava MO α A = α B = α ( ) 2 ( β ES) 2 = 0 Kertoimet saadaan sijoittamalla E:n arvot takaisin sekulaariyhtälöihin: E + = α + β 1+ S = c 2 A α + c 2 B α + 2c A c B β c 2 A + c 2 B + 2c A c B S = c 2 A α + c 2 B α + 2c A c B β = (c 2 A + c 2 B )α + 2c A c B β 1 c A 2 + c B 2 = 2c A c B = 1 1+ S 1 c A = c { 2(1+ S} 1/ 2 A = c B 26

27 Vastaavalla tavalla voidaan ratkaista hajottavan MO:n kertoimet: E = α β 1 S = c 2 2 ( A + c B )α + 2c A c B β c A 2 + c B 2 = 2c A c B = 1 1 S 1 c A = c { 2(1+ S} 1/ 2 B = c A MO:t ovat siis: ψ + = A + B ψ { 2(1+ S} 1/ 2 = A B Huom! atomit A { 2(1 S} 1/ 2 ja B identtisiä 27

28 Molekyylien elektronirakenteen selvittäminen kuuluu laskennallisen kemian alaan, jossa molekyyliorbitaalit ratkaistaan tietokoneohjelmistojen avulla numeerisesti. Yleisimmin käytetyt menetelmät: 1. Ab initio ja semiempiiriset menetelmät 2. Tiheysfunktionaalimenetelmät Tyydyttämättömien hiilivetyjen π-elektronirakennetta voidaan tarkastella kvalitatiivisesti Hückelin menetelmän avulla. Ns. π-elektroniapproksimaation mukaan π elektronit liikkuvat σ elektronien muodostamassa kentässä ja ovat konjugoituneissa molekyyleissä delokalisoituneet koko molekyylin alueelle (esim. bentseeni) eteenillä on 2 π elektronia 28

29 Eteenin π MO muodostetaan hiilen 2p atomiorbitaaleista: ψ = c A A + c B B variaatioperiaatteen mukaisesti saamme sekulaarideterminaatin α E β ES β ES α E = 0 α = α A = α H determinantin juuret ratkaistiin variaatioperiaatteen yhteydessä. Hückelin approksimaatiot: 1. Kaikki peittointegraalit S = 0 2. Resonanssi-integraalit muiden kuin lähinaapureiden kesken = 0 3. Kaikkien lähinaapureiden (vierekkäisten) atomien väliset resonanssiintegraalit ovat saman suuruisia (=β). sekulaarideterminantti yksinkertaistuu: 1. Kaikki diagonaalielementit = α-e 2. off-diagonaalielementit vierekkäisten atomien välillä = β 3. muut elementit determinantissa = 0 29

30 Eteenin tapauksessa α E β β α E = 0 E ± = α ± β hajottava MO ns LUMO (lowest unfilled molecular orbital) sitova MO ns. HOMO (highest occupied molecular orbital) HOMO ja LUMO ovat molekyylin ns. rajaorbitaalit (frontier orbitals) spektroskooppisesti voidaan mitata π*(=2π) π absorption energia β:n arvo voidaan määrittää = (α β) (α + β) = 2β 30

31 Tarkastellaan π-elektronirakennetta butadieenissa (4 π elektronia) Hückelin approksimaation mukainen sekulaarideterminantti: α E β 0 0 β α E β 0 0 β α E β 0 0 β α E = 0 merkitään x = α E β x x 1 0 β = x x kehitetään 3x3 determinanteiksi 1. sarakkeen mukaan: 31

32 A 1,1 = ( 1) 1+1 x x x A 1,3 = ( 1) x x A 1,2 = ( 1) x x A 1,4 = ( 1) x x 1 x x 1 0 β 0 1 x x = xa 11 +1A A A 14 = xa 11 + A 12 = 0 ratkaisemalla 3x3 determinantit A 11 ja A 12 saadaan polynomiyhtälö: x 4 3x 2 +1= 0 x = 3± 5 2 x = ±1.618, x = ±

33 E = α xβ ja β < 0 4 π-mo: LUMO α HOMO ψ 1 = p z p z p z p z4 Atomiorbitaalien kertoimet MO:ssa ψ 1 ψ 4 saadaan sijoittamalla energia-arvot takaisin sekulaariyhtälöihin...työlästä 33

34 Butadieenin π-elektronienergia on E π = 2( α β) + 2( α β) = 4α β Konjugaatioon liityvän elektronien delokalisoitumisen vaikutusta voidaan arvioida vertaamalla tätä energiaa kahden eteeni molekyylin π-elektronienergiaan: E deloc = E π (butadieeni) 2E π (eteeni) = 4α β 4α 4β = 0.472β < 0 π elektronien delokalisoituminen stabiloi molekyyliä 34

35 Käsin laskemisen asemasta Hückel MO:t voidaan ratkaista tietokoneella jos määrittelemme ongelman matriisien ja vektoreiden avulla Tarkastellaan eteenin tapausta, jossa siis kaksi π elektronia (kantana 2 kpl 2p z AO:ta (A ja B)) " H = H AA $ # H BA H AB H BB % ' hamiltonin matriisi, matriisielementit H ij = ψ i * H ˆ ψ j dτ & $ Hückel approksimaation mukainen hamiltonin matriisi H = α β ' & ) % β α( " S = S AA $ # S BA S AB S BB % ' & peittomatriisi S ij = ψ i ψ j dτ " Hückel approksimaation mukainen peittomatriisi S = 1 0 % $ ' # 0 1& (yksikkömatriisi) Atomiorbitaalien kertoimien muodostama vektori MO:ssa i (i = 1 tai 2) " c i = c % i,a $ ' ja matriisi, joka sisältää kaikki MO:t: C = c # c i,b & 1 c 2 " % ' # c 1,B c 2,B & ( ) = c 1,A c 2,A $ 35

36 Määritellään diagonaalinen matriisi E siten, että sen alkiot ovat orbitaalienergiat: " E = E 1 0 % $ ' # 0 E 2 & Sekulaariyhtälöpari (eteenin tapauksessa) voidaan nyt kirjoittaa muodossa: ( H E i S)c i = 0 tai Hc i = Sc i E i Koko yhtälöryhmän ratkaisu voidaan muotoilla matriisien avulla: HC = SCE = CE (Hückelissä S = yksikkömatriisi) matriisioperaatio C 1 HC = E diagonalisoi hamiltonin matriisin, siten että diagonaalielementeiksi saadaan orbitaalienergiat C 1 C = 1 Jos siis voidaan löytää matriisi C, saadaan sekä orbitaalienergiat, että AO:en kertoimet MO:ssa ratkaistua 36

37 Diagonalisointiin on olemassa tehokkaita tietokonemenetelmiä (esim. Matlab paketissa). Esim. butadieeni: H = α β 0 0 α +1.62β α β 0 0 E = 0 0 α 0,62β α 1.62β β α β , C = 0 β α β β α Bentseenillä on 6 π-elektronia: α β β β α β β α β 0 0 H = 0 0 β α β β α β β β α E = α ± 2β;α ± β;α ± β 37

Luku 11: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H

Luku 11: Molekyylien rakenne. Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H Luku 11: Molekyylien rakenne Valenssisidosteoria Kaksiatomiset ja moniatomiset molekyylit Molekyyliorbitaaliteoria H + 2 ja muut kaksiatomiset molekyylit Hückel approksimaatio 1 Elektronien liike on hyvin

Lisätiedot

Laskennalinen kemia. Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka

Laskennalinen kemia. Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka Laskennalinen kemia Menetelmien hierarkia: Molekyyligeometria Molekyylimekaniikka Molekyylidynamiikka Molekyyligeometria ja elektronirakenteet Empiiriset menetelmät (Hückel, Extended Hückel) Semi-empiiriset

Lisätiedot

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien

Lisätiedot

Molekyylit. Atomien välisten sidosten muodostuminen

Molekyylit. Atomien välisten sidosten muodostuminen Molekyylit. Johdanto. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit 6. Orgaaniset

Lisätiedot

KEMS448 Fysikaalisen kemian syventävät harjoitustyöt

KEMS448 Fysikaalisen kemian syventävät harjoitustyöt KEMS448 Fysikaalisen kemian syventävät harjoitustyöt Hückelin molekyyliorbitaalimenetelmä 1 Johdanto Kvanttikemisti turvautuu usein raskaisiin tietokonelaskuihin ratkaistaakseen haluamansa molekyylin Schrödingerin

Lisätiedot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot

Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan

Lisätiedot

Atomin elektronikonfiguraatiot (1)

Atomin elektronikonfiguraatiot (1) Atomin elektronikonfiguraatiot (1) Atomiin sidotun elektronin tilaa kuvataan neljällä kvanttiluvulla: n pääkvattiluku - aaltofunktion eli orbitaalin energia, keskimääräinen etäisyys ytimestä, saa arvot

Lisätiedot

Kvanttimekaaninen atomimalli. "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman

Kvanttimekaaninen atomimalli. Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman Kvanttimekaaninen atomimalli "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman Tunnin sisältö 1. 2. 3. 4. 5. 6. 7. Kvanttimekaaninen atomimalli Orbitaalit Kvanttiluvut Täyttymisjärjestys

Lisätiedot

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien

Lisätiedot

MOLEKYYLIT Johdanto Vetymolekyyli-ioni Kaksiatomiset molekyylit...239

MOLEKYYLIT Johdanto Vetymolekyyli-ioni Kaksiatomiset molekyylit...239 MOLEKYYLIT... 8 6.1 Johdanto...8 6. Vetymolekyyli-ioni...9 6.3 Kaksiatomiset molekyylit...39 6.4 Kaksiatomisten molekyylien elektronikonfiguraatioita...43 6.5 Moniatomiset molekyylit...5 6.6 Orgaaniset

Lisätiedot

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit

Lisätiedot

S Fysiikka III (EST) Tentti ja välikoeuusinta

S Fysiikka III (EST) Tentti ja välikoeuusinta S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.

Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu

Lisätiedot

Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit

Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit Luku 10: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit 1 n 1 = 3 n 1 = 4 n 1 = 2 n 1 =1 Vetyatomin spektri koostuu viivoista Viivojen sijainti

Lisätiedot

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen CHEM-A1200 Kemiallinen rakenne ja sitoutuminen Orgaaninen reaktio Opettava tutkija Pekka M Joensuu Orgaaniset reaktiot Syyt Pelkkä törmäys ei riitä Varaukset (myös osittaisvaraukset) houkuttelevat molekyylejä

Lisätiedot

Käänteismatriisi 1 / 14

Käänteismatriisi 1 / 14 1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella

Lisätiedot

Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy

Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy z 2 y 2 x 2 z y x Tilavuusintegroin. f(x,y,z)dxdydz z 2 y 2 x 2 = f(x,y,z)dx dy dz z y x Tyypillises. kemian sovelluksissa f(x,y,z) on massa.heys, jolloin integraalin arvo on massa alueella jota integroin.rajat

Lisätiedot

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

ULKOELEKTRONIRAKENNE JA METALLILUONNE

ULKOELEKTRONIRAKENNE JA METALLILUONNE ULKOELEKTRONIRAKENNE JA METALLILUONNE Palautetaan mieleen jaksollinen järjestelmä ja mitä siitä saa- Kertausta daan irti. H RYHMÄT OVAT SARAKKEITA Mitä sarakkeen numero kertoo? JAKSOT OVAT RIVEJÄ Mitä

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

6.2 Vetymolekyyli-ioni Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 238

6.2 Vetymolekyyli-ioni Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 238 MOLEKYYLIT 6.1 Johdanto 7 6. Vetymolekyyli-ioni 8 6.3 Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 38 6.4 Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 4 6.5 Moniatomiset molekyylit

Lisätiedot

9. Elektronirakenteen laskeminen

9. Elektronirakenteen laskeminen 9. Elektronirakenteen laskeminen MNQT, sl 2015 165 MNQT, sl 2015 166 Tarkastellaan vielä eri menetelmiä seuraavan jaottelun mukaisesti. Elektronirakenteen laskeminen tarkoittaa tavallisesti tarkasteltavan

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

7. Atomien rakenne ja spektrit

7. Atomien rakenne ja spektrit 7. Atomien rakenne ja spektrit Atomien rakenteella tarkoitetaan niiden elektroniverhojen rakennetta, erilaisia jakautumia ja erityisesti elektronien energiatiloja. Atomien spektreillä taas tarkoitetaan

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria

1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.

Lisätiedot

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering. Atomien väliset sidokset

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering. Atomien väliset sidokset Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Hiilen ja vedyn reaktioita (1)

Hiilen ja vedyn reaktioita (1) Hiilen ja vedyn reaktioita (1) Hiilivetyjen tuotanto alkaa joko säteilevällä yhdistymisellä tai protoninvaihtoreaktiolla C + + H 2 CH + 2 + hν C + H + 3 CH+ + H 2 Huom. Reaktio C + + H 2 CH + + H on endoterminen,

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

Lämpö- eli termokemiaa

Lämpö- eli termokemiaa Lämpö- eli termokemiaa Endoterminen reaktio sitoo ympäristöstä lämpöenergiaa. Eksoterminen reaktio vapauttaa lämpöenergiaa ympäristöön. Entalpia H kuvaa systeemin sisäenergiaa vakiopaineessa. Entalpiamuutos

Lisätiedot

FYSA234 Potentiaalikuoppa, selkkarityö

FYSA234 Potentiaalikuoppa, selkkarityö FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan

Lisätiedot

FYSA234 Potentiaalikuoppa, selkkarityö

FYSA234 Potentiaalikuoppa, selkkarityö FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan

Lisätiedot

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme

(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

11. MOLEKYYLIT. Kvanttimekaniikka on käyttökelpoinen molekyyleille, jos se pystyy selittämään atomien välisten sidosten syntymisen.

11. MOLEKYYLIT. Kvanttimekaniikka on käyttökelpoinen molekyyleille, jos se pystyy selittämään atomien välisten sidosten syntymisen. 11. MOLEKYYLIT Vain harvat alkuaineet esiintyvät luonnossa atomeina (jalokaasut). Useimmiten alkuaineet esiintyvät yhdisteinä: pieninä tai isoina molekyyleinä, klustereina, nesteinä, kiinteänä aineena.

Lisätiedot

Orgaanisten yhdisteiden rakenne ja ominaisuudet

Orgaanisten yhdisteiden rakenne ja ominaisuudet Orgaanisten yhdisteiden rakenne ja ominaisuudet 1 2 KOVALENTTISET SIDOKSET ORGAANISISSA YHDISTEISSÄ 3 4 5 6 7 Orgaanisissa molekyyleissä hiiliatomit muodostavat aina neljä kovalenttista sidosta Hiiliketju

Lisätiedot

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op

780392A/782631S Fysikaalinen kemia II, 5 op / 4 op 78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto

Lisätiedot

Luku 2: Atomisidokset ja ominaisuudet

Luku 2: Atomisidokset ja ominaisuudet Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja

Lisätiedot

d) Klooria valmistetaan hapettamalla vetykloridia kaliumpermanganaatilla. (Syntyy Mn 2+ -ioneja)

d) Klooria valmistetaan hapettamalla vetykloridia kaliumpermanganaatilla. (Syntyy Mn 2+ -ioneja) Helsingin yliopiston kemian valintakoe: Mallivastaukset. Maanantaina 29.5.2017 klo 14-17 1 Avogadron vakio NA = 6,022 10 23 mol -1 Yleinen kaasuvakio R = 8,314 J mol -1 K -1 = 0,08314 bar dm 3 mol -1 K

Lisätiedot

FYSA2031 Potentiaalikuoppa

FYSA2031 Potentiaalikuoppa FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

J 2 = J 2 x + J 2 y + J 2 z.

J 2 = J 2 x + J 2 y + J 2 z. FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,

Lisätiedot

Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne.

Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiteinen aine Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiteinen aine on hyvä erottaa kiinteästä aineesta, johon kuuluu myös

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Aikariippuva Schrödingerin yhtälö

Aikariippuva Schrödingerin yhtälö Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin

Lisätiedot

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)

Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen) Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Aineaaltodynamiikkaa

Aineaaltodynamiikkaa Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28

Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28 Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

MUUTOKSET ELEKTRONI- RAKENTEESSA

MUUTOKSET ELEKTRONI- RAKENTEESSA MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.

Lisätiedot

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Lisätiedot

4. Liikemäärämomentti

4. Liikemäärämomentti 4. Liikemäärämomentti Jatkossa tarkastellaan toisaalta yleisiä (ja tarkkoja) menetelmiä, sellaisia kuin liikemäärämomenttialgebra ja ryhmäteoria, sekä toisaalta approksimointimenetelmiä, sellaisia kuin

Lisätiedot

MITÄ SIDOKSILLE TAPAHTUU KEMIALLISESSA REAKTIOSSA

MITÄ SIDOKSILLE TAPAHTUU KEMIALLISESSA REAKTIOSSA MITÄ SIDOKSILLE TAPAHTUU KEMIALLISESSA REAKTIOSSA REAKTIOT JA ENERGIA, KE3 Kaikissa kemiallisissa reaktioissa atomit törmäilevät toisiinsa siten, että sekä atomit että sidoselektronit järjestyvät uudelleen.

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,

, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n, S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion

Lisätiedot

Korkeammat derivaatat

Korkeammat derivaatat Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-

Lisätiedot

Vedynkaltaiset radiaaliaaltofunktiot Roothaan Hall- ja CI-menetelmissä

Vedynkaltaiset radiaaliaaltofunktiot Roothaan Hall- ja CI-menetelmissä Vedynkaltaiset radiaaliaaltofunktiot Roothaan Hall- ja CI-menetelmissä Pro Gradu -tutkielma Henrik Kurkela henrik.kurkela@gmail.com Oulun Yliopisto Luonnontieteellinen tiedekunta Fysiikan koulutusohjelma

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11

S-114.1327 Fysiikka III (Est, 6,0 op) Viikko 11 S-114.1327 Fysiikka III (Est, 6,0 op) LUENTOSUUNNITELMA KEVÄT 2007, 2. PUOLILUKUKAUSI Toisen puolilukukauden aikana käydään läpi keskeiset kohdat Kvanttifysiikan opetusmonisteen luvuista 3-7. Laskuharjoituksia

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Paulin spinorit ja spinorioperaattorit

Paulin spinorit ja spinorioperaattorit Paulin spinorit ja spinorioperaattorit Spinoreita on useita erilaisia. Esimerkiksi Paulin, Dirackin ja Weyelin spinorit. Yhteisenä piirteenä eri spinoreilla on se, että kukin liittyy tavallisesti johonkin

Lisätiedot

9. Elektronirakenteen laskeminen

9. Elektronirakenteen laskeminen 9. Elektronirakenteen laskeminen MNQT, sl 2013 159 MNQT, sl 2013 160 Tarkastellaan vielä eri menetelmiä seuraavan jaottelun mukaisesti. Elektronirakenteen laskeminen tarkoittaa tavallisesti tarkasteltavan

Lisätiedot

Ionisidos syntyy, kun elektronegatiivisuusero on tarpeeksi suuri (yli 1,7). Yleensä epämetallin (suuri el.neg.) ja metallin (pieni el.neg.) välille.

Ionisidos syntyy, kun elektronegatiivisuusero on tarpeeksi suuri (yli 1,7). Yleensä epämetallin (suuri el.neg.) ja metallin (pieni el.neg.) välille. 2.1 Vahvat sidokset 1. Ionisidokset 2. 3. Kovalenttiset sidokset Metallisidokset Ionisidos syntyy, kun elektronegatiivisuusero on tarpeeksi suuri (yli 1,7). Yleensä epämetallin (suuri el.neg.) ja metallin

Lisätiedot

S Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä)

S Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä) S-.7 Fysiikka III (st), VK 8.5.008 Malliratkaisut (Arvosteluperusteita täydennetään vielä). Näytä, että sekä symmetrinen aaltofunktio ψn( x ) ψn ( x) + ψn( x) ψn, että antisymmetrinen aaltofunktioψn( x)

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori

1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa

Lisätiedot

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa

Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,

Lisätiedot

Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R),

Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R), Tiukan sidoksen malli Tarkastellaan sellaisia kiderakenteita, joissa atomien elektronien aaltofunktiot ovat lokalisoituneet isäntäionien läheisyyteen. Jos unohdetaan periodisuuden vaikutukset, elektronien

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

1 Aaltofunktio, todennäköisyystulkinta ja normitus

1 Aaltofunktio, todennäköisyystulkinta ja normitus KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

1 Rajoittamaton optimointi

1 Rajoittamaton optimointi Taloustieteen matemaattiset menetelmät 7 materiaali 5 Rajoittamaton optimointi Yhden muuttujan tapaus f R! R Muistutetaan mieleen maksimin määritelmä. Funktiolla f on maksimi pisteessä x jos kaikille y

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Kertaus. Tehtävä: Kumpi reagoi kiivaammin kaliumin kanssa, fluori vai kloori? Perustele.

Kertaus. Tehtävä: Kumpi reagoi kiivaammin kaliumin kanssa, fluori vai kloori? Perustele. Kertaus 1. Atomin elektronirakenteet ja jaksollinen järjestelmä kvanttimekaaninen atomimalli, atomiorbitaalit virittyminen, ionisoituminen, liekkikokeet jaksollisen järjestelmän rakentuminen alkuaineiden

Lisätiedot

Lineaariset kongruenssiyhtälöryhmät

Lineaariset kongruenssiyhtälöryhmät Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................

Lisätiedot

pääkiertoakseli #$%%ä 2C 2 C 2!"

pääkiertoakseli #$%%ä 2C 2 C 2! Tehtävä 1 Määritä seuraavien molekyylien pisteryhmät: (a) H 3 N H 3 N l o l NH 3 + NH 3 urataan lohkokaaviota: lineaari!"!" suuri symmetria 2s v #$%%ä 2v!" pääkiertoakseli #$%%ä 2 2 2!" s h Vastaavasti:

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

KEMA211 EPÄORGAANINEN KEMIA 1 (4 op)

KEMA211 EPÄORGAANINEN KEMIA 1 (4 op) KEMA211 EPÄORGAANINEN KEMIA 1 (4 op) Luennot 16.3. - 5.5., ti 1215 ja ke 1015, salissa YlistöKem 1 Loppukoe 6.5., klo 1200-1500, salissa MaA 103 Kirjallisuus C.E. Housecroft, A.G. Sharpe Inorganic Chemistry,

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1

Odotusarvoparien vertailu. Vilkkumaa / Kuusinen 1 Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,

Lisätiedot

S Fysiikka III (Est) 2 VK

S Fysiikka III (Est) 2 VK S-37 Fysiikka III (Est) VK 500 Tarkastellaan vedyn p energiatasoa a) Mikä on tämän tason energia Bohrin mallissa? b) Oletetaan että spinratavuorovaikutus voidaan jättää huomiotta Kirjoita kaikki tähän

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot