Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko
|
|
- Martta Toivonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko
2 Kiteinen aine Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiinteisiin aineisiin kuuluu myös amorfisessa muodossa oleva aine (ei säännöllistä rakennetta). Tiiviillä aineella taas tarkoitetaan yhteisesti kiteistä ja amorfista ainetta sekä nestettä ja näiden lisäksi eräitä kompleksisia aineen tiiviitä olomuotoja kuten nestekiteet ja erilaiset biomateriaaleissa tavattavat kompleksiset olomuodot.
3 Atomien väliset sidokset Kaikki atomien väliset sidokset aiheutuvat ytimien ja elektronien välisistä sähköstaattisista vuorovaikutuksista. Sidosten tyyppi ja voimakkuus määräytyy ko. atomien elektronirakenteesta. Stabiilissa sidoksessa ytimien ja elektronien välisellä avaruudellisella konfiguraatiolla on pienempi kokonaisenergia kuin millään muulla konfiguraatiolla. Yksittäisten atomien ja sidotun konfiguraation (kiteen) välistä energiaeroa kutsutaan koheesioenergiaksi (molekyylin tapauksessa puhutaan dissosiaatioenergiasta).
4 Sidostyypit Atomien väliset sidokset jaotellaan seuraaviin luokkiin: 1. Ionisidos (suolat, NaCl) 2. Kovalenttinen sidos (timantti, pii) 3. Metallisidos (metallit) 4. Van der Waals sidos (jalokaasukiteet) 5. Vetysidos (orgaaniset aineet, jää) Koheesioenergia vaihtelee välillä 0,1 ev/atomi (heikot van der Waals kiteet) - 7 ev /atomi (kovalentit kiteet). Sidostyypeistä tehdyt johtopäätökset soveltuvat myös kiteisiin.
5 Keskeisiä käsitteitä Ionisaatioenergia: Energia, joka tarvitaan irrottamaan ylimmällä orbitaalilla oleva elektroni neutraalista atomista. Elektroniaffiniteetti: Energia, joka tarvitaan irrottamaan negatiivisesti varatusta yksiarvoisesta ionista ylin elektroni (lopputuloksena neutraali atomi ja vapaa elektroni). Dissosiaatioenergia (koheesioenergia): Energia, joka tarvitaan hajottamaan molekyyli (kide) erillisiksi neutraaleiksi atomeiksi.
6 Ionisidos Syntyy positiivisesti ja negatiivisesti varattujen ionien välisestä vetävästä vuorovaikutuksesta (metallien ja epämetallien välillä). Ionit muodostuvat elektronien siirtyessä atomilta toiselle. Tämä on edullista johtuen suuresta erosta elektronegatiivisuudessa (atomin kyvystä sitoa ylimääräinen elektroni) Kaikki ioniyhdisteet ovat kiteitä huoneen lämpötilassa. NaCl on tyypillinen esimerkki ionisidoksesta.
7 NaCl-ionisidos Metallinen atomi luovuttaa elektronin, joten siitä tulee positiivinen ioni. Elektronegatiivisempi atomi (epämetalli) vastaanottaa ylimääräisen elektronin muuttuen negatiiviseksi ioniksi. Natriumin luovuttaessa elektronin kloorille natriumionin elektronikonfiguraatioksi tulee 1s 2s 2p (neonin elektronikonfiguraatio) ja negatiivisen kloori-ionin konfiguraatioksi 1s 2s 2p 3s 3p (argonin elektronikonfigraatio). Jalokaasujen konfiguraatiot ovat energeettisesti erittäin edullisia.
8 Kun natriumatomi menettää elektronin, sen koko pienenee. Vastaavasti klooriatomi kasvaa vastaanottaessaan ylimääräisen elektronin. Elektronin siirtymisreaktion jälkeen Na + ja Cl - -ionit pysyvät yhdessä sähköstaattisen voiman ansiosta muodostaen ionisidoksen.
9 Jos Na + ja Cl - -ionit ovat hyvin lähellä toisiaan, niiden elektroniorbitaalit menevät limittäin ja elektronit hylkivät toisiaan (Coulombin voima). Tällöin systeemin potentiaalienergia kasvaa nopeasti, jos ionit edelleen lähestyvät toisiaan. Potentiaalienergian nopea kasvu estää Paulin kieltosäännön rikkomisen.
10 Ionisidoksen muodostuminen I Elektronikuorten täydentyminen II Ionisidoksen muodostuminen Huomaa, että tämä tarkastelu unohtaa repulsiivisen termin osuuden tasapainoetäisyydellä! (ks seuraavat kalvot)
11 Natriumkloridimolekyylin dissosiaatioenergiat neutraaleiksi Na- ja Cl-atomeiksi ja toisaalta Na + - ja Cl - - ioneiksi eroavat natriumin ionisaatio-energian ja kloorin elektroniaffiniteetin erotuksen verran. Kuvaa esittää skemaattisesti, miten neutraalien atomien vuorovaikutus käyttäytyy atomien etäisyyden funktiona. Todellisuudessa varauksen siirto natriumilta kloorille ei ole täydellinen vaan ainoastaan 75% alkeisvarauksesta.
12 Potentiaalimalli ionisidokselle Kaksiatomisen molekyylin ionisidokselle voidaan käyttää semiempiiristä mallia: E ( r) missä ensimmäinen termi kuvaa Coulombin energiaa ja jälkimmäinen suljettujen kuorten repulsiota (estää molekyylin romahtamisen). Tasapainoetäisyydelle p 2 = e 4πε r + r 0 pätee 0 0 b 9 r 2 dep e b = 2 10 dr 4πε r r 0r0 r = 0, 9, mistä b= e r / (36 πε ) D i. Vastaava potentiaalienergian arvo 2 8 e = 9 4πε r 0 0 on dissosiaatioenergia ioneiksi (ei neutraaleiksi atomeiksi).
13
14 Ionisidoksen ominaisuuksia Ominaisuus Sulamis- ja kiehumispiste Sähkönjohtavuus Kovuus Hauraus Selitys Ioniyhdisteiden kiehumis- ja sulamispisteet ovat korkeat, koska ionien välisen voimakkaan sähköstaattisen vuorovaikutuksen rikkomiseen tarvitaan suuri terminen energia. Kiinteät ioniyhdisteet eivät johda sähköä, koska kiteessä ei ole vapaita elektroneita. Suurin osa ioniyhdisteistä on kovia (kiteen pinta ei naarmuunnu), koska ionit ovat sitoutuneet voimakkaasti hilaan eivätkä siirry paikaltaan helposti. Suurin osa ioniyhdisteistä on hauraita (kide pirstoutuu). Kiteen vääntämisen seurauksena samanmerkkiset ionit siirtyvät lähekkäin, mistä aiheutuu voimakas hylkivä vuorovaikutus. Tämä johtaa kiteen pirstoutumiseen.
15 Kovalenttinen sidos Kovalenttinen sidos muodostuu, kun elektronegatiivisuusero on pieni ja atomit ovat jaksollisessa järjestelmässä lähekkäin (kahden epämetallin välille). Atomit jakavat uloimman kuoren elektronit keskenään (elektronit kuuluvat molempiin atomeihin). Jakamalla elektroneja, atomit saavuttavat jalokaasujen elektronikonfiguraation. Kumpikin ydin vetää jaettuja elektroneja puoleensa.
16 Kovalenttisen sidoksen ominaisuuksia Ominaisuus Sulamis- ja kiehumispiste Selitys Korkeat sulamispisteet, koska atomit ovat sitoutuneet toisiinsa vahvoilla kovalenttisilla sidoksilla. Sulaminen vaatii monen sidoksen rikkoutumisen, mikä edellyttää suurta termistä energiaa. Sähkönjohtavuus Elektronit ovat joko ytimien tai kovalenttistensidosten vangitsemia eivätkä pääse liikkumaan hilassa, joten sähkönjohtavuus on huono. Kovuus Hauraus Kovalenttisetsidokset ovat voimakkaita, joten kovalenttistensidosten muodostamat aineet ovat kovia. Ovat hauraita, koska kovalenttistensidosten muodostama hila pirstoutuu helpommin kuin muuttaa muotoaan.
17 Sidosten vertailua
18 Metallisidos Metalleissa esiintyvä sidostyyppi. Sidoksen muodostaa positiivisten ydinten ja delokalisoituneitten vapaiden elektronien välinen vetävä sähköstaattinen vuorovaikutus. Atomeista irronneet elektronit muodostavat elektronikaasun positiivisten ionien väliin. Vapaa elektronikaasu -approksimaatiossa positiivisten ionien muodostama potentiaali oletetaan likimain vakioksi. Kiteen reunalla ionien potentiaali häviää, joten elektronien potentiaalienergia kasvaa. Tämä johtaa potentiaalikynnyksen muodostumiseen.
19 Metallin uloimman vyön (johtovyön tai johtavuusvyön) elektronit muodostavat elektronikaasun, joka voi liikkua vapaasti ydinten välissä. Nämä elektronit pitävät positiiviset ytimet yhdessä. Vapaat elektronit toimivat ytimien liimana. Metallisidos on ionisidosta ja kovalenttista sidosta heikompi. suuri sähkönjohtavuus suuri lämmönjohtavuus Metallisidokset ovat suunnattomia ja riippumattomia rakenteen geometriasta: metallit venyvät ja ovat taottavissa sidokset eivät hajoa, kun metalleja muovataan
20 Heikko sidos, tyypillisesti 0,2 ev/atomi Neutraalien atomien ja molekyylien välinen sidos Van der Waals -sidos Heikot vetovoimat syntyvät, kun molekyylien elektronitiheys fluktuoi aiheuttaen pieniä tilapäisiä dipoleita. Nämä dipolit vetävät toisiaan puoleensa. Näin syntyviä voimia kutsutaan Van der Waals voimiksi. Van der Waals voimat ovat suuruusluokaltaan 1 % kovalenttisen sidoksen voimakkuudesta.
21 Dipoli-dipoli vuorovaikutus Sähködipolin muodostama kenttä on Suurilla etäisyyksillä E d ( pr ) 1 p 3 = r, 3 5 4πε 0 r r 1 qa Ed = r >> a 3 4πε r 0 ( ) Dipolin 2 energia dipolin 1 kentässä on. Tämä pienenee asymptoottisesti kuten. Vastaava voima on attraktiivinen. 1/ r ja vaimenee kuten. 4 E p = p 3 1/r F = de / dr p 2 E d
22 Vetysidos Jos permanentteja dipoleja sisältävään sidokseen kuuluu vetyatomi, sidosta sanotaan vetysidokseksi. Vety voi muodostaa sähköstaattisen sidoksen (voimakkaasti elektronegatiivisen (esim. F ja O) atomin kanssa. Tällöin muodostuu voimakkaita dipoleja. Vetysidoksen suuruusluokka on 0,1-0,5 ev/atomi. Vetysidos sitoo jään vesimolekyylit esiintyy proteiineissa ja nukleiinihapoissa
23 Jään kiderakenne Vesimolekyylit sijoittuvat tetraedrin kärkiin. Vety- ja happiatomien välillä on vetysidos. Tetraedrikonfiguraatio määrää lumihiutaleen muodon
24 Yhteenveto sidostyypeistä Sidostyypit Ionisidos Van der Waals sidos Metallisidos Kovalenttinen -sidos Vetysidos Korkea sulamispiste Kova ja hauras Sähköä johtamaton kiinteä aine NaCl, CsCl, ZnS Matala sulamispiste Pehmeä ja hauras Sähköä johtamaton Ne, Ar, Kr, Xe Vaihteleva sulamispiste Vaihteleva lujuus Sähköä johtava Fe, Cu, Ag Todella korkea sulamispiste Todella kova Ei yleensä johda sähköä Timantti, grafiitti Matala sulamispiste Pehmeä ja hauras Ei yleensä johda sähköä Jää, orgaaniset kiinteät aineet
25 Vetymolekyylin muodostuminen Molekyyliorbitaalien muodostuminen: Vetyatomiin kuuluva spinorbitaali lähestyy paljasta protonia. Orbitaali jakautuu kahden isäntäatomin kesken. Symmetrinen kombinaatio johtaa suureen elektronitiheyteen protonien välissä. Antisymmetriseen tilaan liittyvä elektronitiheys = 0 keskipisteessä. Protonien hylkivän vuorovaikutuksen varjostus vähäistä.
26 Varaustiheys ja tilan pariteetti Parittomassa tilassa ytimien hylkivä potentiaalienergia dominoi eikä stabiilia kemiallista sidosta voi muodostua Parillisessa tilassa elektronin negatiivinen varaustiheys toimii liimana positiivisten ytimien välissä.
27 Symmetrinen ja antisymmetrinen orbitaali s * (1 s) = y - y u A B Energia kasvaa y A y B D E s (1 s) = y + y g A B Antisymmetrisen (hylkivä, antibonding ) orbitaalin energia on korkeampi kuin vapaan atomin elektronitilan energia, kun taas symmetrisen (sitova, bonding ) orbitaalin energia on matalampi kuin vapaan atomin elektroniorbitaalin energia. Molemmat elektronit sijoittuvat tälle sitovalle orbitaalille. Molekyylin sidosenergia on kuitenkin pienempi kuin 2D E sillä samalla kun elektronit menettävän energiaa tämän verran ytimien repulsio kasvaa ja pienentää dissosiaatioenergiaa.
28 Atomiketju Eräs tapa ajatella kiteen muodostumista on lähteä liikkeelle atomien lineaarisesta ketjusta. Kahdeksan s-symmetrisen atomiorbitaalin LCAO-orbitaalit Kuva esittää kahdeksan natrium-atomin ketjua ja sitä minkälaisia molekyyliorbitaaleja voidaan muodostaa vaikkapa ketjun atomien 3s-atomiorbitaaleista ns. LCAO-periaatteella (linear combination of atomic orbitals). Energeettisesti edullisimmalla tilalla on maksimisymmetria ja epäedullisimmalla maksimiantisymmetria
29 8 Na-atomin LCAO-tilat Kahdeksan Na-atomin 3s-orbitaaleista voidaan muodostaa 8 riippumatonta LCAO-tilaa. Niiden energiat muodostavat oheisen tilaharavan, jonka leveys muuttuu atomien etäisyyden funktiona. Jos Na-atomeja on enemmän kuin 8 haravan leveys suurenee hieman. Samalla sen tiheys kasvaa suoraan verrannollisesti atomien lukumäärään. Jos atomeja on ääretön määrä saamme energiaharavan sijasta energiajatkumon eli energiavyön, jonka leveys on likimain sama kuin kuvan energiaharavan!
30 Elektronien potentiaalienergia kiteessä Kiteessä elektronien potentiaalienergia on periodinen funktio, jossa on minimi kunkin atomin ytimen kohdalla. Lähellä kunkin kiteen atomin ydintä elektronien potentiaalienergia on varsin samanlainen kuin vapaassa yksittäisessä atomissa. Kuvassa atomien ytimet sijaitsevat potentiaalienergian minimikohdissa.
31 Naapuriatomien aaltofunktioiden alkaessa peittää toisiaan ominaisenergiat muuttuvat siten, että yksittäisen 2p-tilan energian sijaan saadaan tämän energian läheisyydessä oleva energiatilajatkumo. Näin muodostuneita elektronin sallittujen energioiden alueita kutsutaan energiavöiksi. Energiavöiden välisiä alueita kutsutaan energia-aukoiksi (eng. band gap). Energiavöiden muodostuminen
32 Kiteessä vapaiden atomien diskreeteistä energiatiloista tulee energiavöitä. Lähellä ydintä olevien elektronien energiatilat säilyvät lähes ennallaan. Uloimpien elektronien energiavyöt ovat leveitä ja peittävät usein toisiaan. Energiavöiden muodostuminen Johtovyö Energia-aukko Valenssivyö
33 Energiavyöt metallissa skemaattinen todellinen Metalleissa ylin elektronien osittain miehittämä vyö on puoliksi täynnä. Valenssivyö ei aina erotu aukolla johtovyöstä.
34 Irrotustyö ja Fermi-energia Elektronitilat metallissa Elektronin energia Fermi-pinnalla on irrotustyön φ 0 verran pienempi kuin elektronin potentiaalienergia tyhjössä metallikappaleen ulkopuolella.
35 Energiavyöt eristeessä Eristeissä (esim. timantti) ja hyvin täydellisissä puolijohteissa ylin elektronien miehittämä vyö (valenssivyö) on alhaisissa lämpötiloissa täynnä ja sen yläpuolella lähinnä oleva vyö (johtovyö) on tyhjä. Lämpöliike voi virittää elektroneja johtovyöhön, mutta suuren energiaaukon takia virittyminen on vähäistä.
36 Energiavyöt puolijohteessa Itseispuolijohteessa ei ole epäpuhtausatomeja (donoreja tai akseptoreita) Itseispuolijohteessa on 0K lämpötilassa valenssivyö täysi ja johtovyö tyhjä. Äärellisessä lämpötilassa elektroneja virittyy termisesti johtovyöhön. Jos energia-aukko on suuri terminen virittyminen on hyvin vähäistä ja materiaali on eriste tai puolieriste. Jokaista johtovyön elektronia kohden jää valenssivyöhön yksi aukko.
Kiteinen aine. Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne.
Kiteinen aine Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiteinen aine on hyvä erottaa kiinteästä aineesta, johon kuuluu myös
LisätiedotMolekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset
Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit
LisätiedotMolekyylit. Helsinki University of Technology, Laboratory of Computational Engineering. Atomien väliset sidokset
Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit
LisätiedotAlikuoret eli orbitaalit
Alkuaineiden jaksollinen järjestelmä Alkuaineen kemialliset ominaisuudet määräytyvät sen ulkokuoren elektronirakenteesta. Seuraus: Samanlaisen ulkokuorirakenteen omaavat alkuaineen ovat kemiallisesti sukulaisia
LisätiedotMolekyylit. Atomien välisten sidosten muodostuminen
Molekyylit. Johdanto. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit 6. Orgaaniset
LisätiedotLuku 2: Atomisidokset ja ominaisuudet
Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja
LisätiedotKaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka
Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Kertausta IONIEN MUODOSTUMISESTA Jos atomi luovuttaa tai
LisätiedotJaksollinen järjestelmä ja sidokset
Booriryhmä Hiiliryhmä Typpiryhmä Happiryhmä Halogeenit Jalokaasut Jaksollinen järjestelmä ja sidokset 13 Jaksollinen järjestelmä on tärkeä kemian työkalu. Sen avulla saadaan tietoa alkuaineiden rakenteista
LisätiedotKovalenttinen sidos ja molekyyliyhdisteiden ominaisuuksia
Kovalenttinen sidos ja molekyyliyhdisteiden ominaisuuksia 16. helmikuuta 2014/S.. Mikä on kovalenttinen sidos? Kun atomit jakavat ulkoelektronejaan, syntyy kovalenttinen sidos. Kovalenttinen sidos on siis
LisätiedotMääritelmä, metallisidos, metallihila:
ALKUAINEET KEMIAA KAIK- KIALLA, KE1 Metalleilla on tyypillisesti 1-3 valenssielektronia. Yksittäisten metalliatomien sitoutuessa toisiinsa jokaisen atomin valenssielektronit tulevat yhteiseen käyttöön
LisätiedotULKOELEKTRONIRAKENNE JA METALLILUONNE
ULKOELEKTRONIRAKENNE JA METALLILUONNE Palautetaan mieleen jaksollinen järjestelmä ja mitä siitä saa- Kertausta daan irti. H RYHMÄT OVAT SARAKKEITA Mitä sarakkeen numero kertoo? JAKSOT OVAT RIVEJÄ Mitä
LisätiedotHEIKOT VUOROVAIKUTUKSET MOLEKYYLIEN VÄLISET SIDOKSET
HEIKOT VUOROVAIKUTUKSET MOLEKYYLIEN VÄLISET SIDOKSET Tunnin sisältö 2. Heikot vuorovaikutukset Millaisia erilaisia? Missä esiintyvät? Biologinen/lääketieteellinen merkitys Heikot sidokset Dipoli-dipolisidos
LisätiedotIonisidos ja ionihila:
YHDISTEET KEMIAA KAIK- KIALLA, KE1 Ionisidos ja ionihila: Ionisidos syntyy kun metalli (pienempi elek.neg.) luovuttaa ulkoelektronin tai elektroneja epämetallille (elektronegatiivisempi). Ionisidos on
LisätiedotMUUTOKSET ELEKTRONI- RAKENTEESSA
MUUTOKSET ELEKTRONI- RAKENTEESSA KEMIAA KAIK- KIALLA, KE1 Ulkoelektronit ja oktettisääntö Alkuaineen korkeimmalla energiatasolla olevia elektroneja sanotaan ulkoelektroneiksi eli valenssielektroneiksi.
LisätiedotHEIKOT SIDOKSET. Heikot sidokset ovat rakenneosasten välisiä sidoksia.
HEIKOT SIDOKSET KEMIAN MIKRO- MAAILMA, KE2 Palautetaan mieleen (on tärkeää ymmärtää ero sisäisten ja ulkoisten voimien välillä): Vahvat sidokset ovat rakenneosasten sisäisiä sidoksia. Heikot sidokset ovat
Lisätiedot1. Materiaalien rakenne
1. Materiaalien rakenne 1.1 Johdanto 1. Luento 2.11.2010 1.1 Johdanto Materiaalit voidaan luokitella useilla eri tavoilla Kemiallisen sidoksen mukaan: metallit, keraamit, polymeerit Käytön mukaan: komposiitit,
Lisätiedot9. JAKSOLLINEN JÄRJESTELMÄ
9. JAKSOLLINEN JÄRJESTELMÄ Jo vuonna 1869 venäläinen kemisti Dmitri Mendeleev muotoili ajatuksen alkuaineiden jaksollisesta laista: Jos alkuaineet laitetaan järjestykseen atomiluvun mukaan, alkuaineet,
Lisätiedot11. MOLEKYYLIT. Kvanttimekaniikka on käyttökelpoinen molekyyleille, jos se pystyy selittämään atomien välisten sidosten syntymisen.
11. MOLEKYYLIT Vain harvat alkuaineet esiintyvät luonnossa atomeina (jalokaasut). Useimmiten alkuaineet esiintyvät yhdisteinä: pieninä tai isoina molekyyleinä, klustereina, nesteinä, kiinteänä aineena.
Lisätiedot1. a) Selitä kemian käsitteet lyhyesti muutamalla sanalla ja/tai piirrä kuva ja/tai kirjoita kaava/symboli.
Kemian kurssikoe, Ke1 Kemiaa kaikkialla RATKAISUT Maanantai 14.11.2016 VASTAA TEHTÄVÄÄN 1 JA KOLMEEN TEHTÄVÄÄN TEHTÄVISTÄ 2 6! Tee marinaalit joka sivulle. Sievin lukio 1. a) Selitä kemian käsitteet lyhyesti
LisätiedotKertausta 1.kurssista. KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä. Hiilen isotoopit
KEMIAN MIKROMAAILMA, KE2 Atomin rakenne ja jaksollinen järjestelmä Kertausta 1.kurssista Hiilen isotoopit 1 Isotoopeilla oli ytimessä sama määrä protoneja, mutta eri määrä neutroneja. Ne käyttäytyvät kemiallisissa
LisätiedotKemiallinen reaktio
Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,
LisätiedotREAKTIOT JA TASAPAINO, KE5 KERTAUSTA
KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat
LisätiedotLuku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
LisätiedotIonisidos syntyy, kun elektronegatiivisuusero on tarpeeksi suuri (yli 1,7). Yleensä epämetallin (suuri el.neg.) ja metallin (pieni el.neg.) välille.
2.1 Vahvat sidokset 1. Ionisidokset 2. 3. Kovalenttiset sidokset Metallisidokset Ionisidos syntyy, kun elektronegatiivisuusero on tarpeeksi suuri (yli 1,7). Yleensä epämetallin (suuri el.neg.) ja metallin
LisätiedotREAKTIOT JA TASAPAINO, KE5 KERTAUSTA
KERTAUSTA REAKTIOT JA TASAPAINO, KE5 Aineiden ominaisuudet voidaan selittää niiden rakenteen avulla. Aineen rakenteen ja ominaisuuksien väliset riippuvuudet selittyvät kemiallisten sidosten avulla. Vahvat
LisätiedotKE1 KERTAUSTA SIDOKSISTA VASTAUKSET 2013. a) K ja Cl IONISIDOS, KOSKA KALIUM ON METALLI JA KLOORI EPÄMETALLI.
KE1 KERTAUSTA SIDOKSISTA VASTAUKSET 2013 Atomien väliset VAVAT sidokset: Molekyylien väliset EIKOT sidokset: 1. IOISIDOS 1. DISPERSIOVOIMAT 2. KOVALETTIE SIDOS 2. DIPOLI-DIPOLISIDOS 3. METALLISIDOS 3.
LisätiedotKvanttimekaaninen atomimalli. "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman
Kvanttimekaaninen atomimalli "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman Tunnin sisältö 1. 2. 3. 4. 5. 6. 7. Kvanttimekaaninen atomimalli Orbitaalit Kvanttiluvut Täyttymisjärjestys
LisätiedotPUOLIJOHTEISTA. Yleistä
39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa
LisätiedotCHEM-A1250 Luento 3 Sidokset (jatkuu) + kemiallinen reaktio
CHEM-A1250 Luento 3 Sidokset (jatkuu) + kemiallinen reaktio Eeva-Leena Rautama Elektronien vastaanottaminen, luovuttaminen ja jakaminen Pääsääntöisesti kemiallisten sidosten muodostumista Sitoutumisella
LisätiedotKiinteän aineen ominaisuuksia I. Kiteisen aineen perusominaisuuksia
Kiinteän aineen ominaisuuksia I Kiteiden perustyypit Kiderakenteiden peruskäsitteitä Kiteisen aineen perusominaisuuksia Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan
LisätiedotATOMIN JA IONIN KOKO
ATOMIN JA IONIN KOKO MATERIAALIT JA TEKNOLOGIA, KE4 Alkuaineen sijainti jaksollisessa järjestelmässä ja koko (atomisäde ja ionisäde) helpottavat ennustamaan kuinka helposti ja miten ko. alkuaine reagoi
LisätiedotKertaus. Tehtävä: Kumpi reagoi kiivaammin kaliumin kanssa, fluori vai kloori? Perustele.
Kertaus 1. Atomin elektronirakenteet ja jaksollinen järjestelmä kvanttimekaaninen atomimalli, atomiorbitaalit virittyminen, ionisoituminen, liekkikokeet jaksollisen järjestelmän rakentuminen alkuaineiden
LisätiedotChem-C2400 Luento 2: Kiderakenteet Ville Jokinen
Chem-C2400 Luento 2: Kiderakenteet 11.1.2019 Ville Jokinen Oppimistavoitteet Metalli-, ioni- ja kovalenttinen sidos ja niiden rooli metallien ja keraamien kiderakenteissa. Metallien ja keraamien kiderakenteen
LisätiedotMOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN
MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN PRO GRADU -TUTKIELMA SAKARI MIKKONEN OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS 2005 Sisällysluettelo
LisätiedotFysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli
LisätiedotKemian opiskelun avuksi
Kemian opiskelun avuksi Ilona Kuukka Mukana: Petri Järvinen Matti Koski Euroopan Unionin Kotouttamisrahasto osallistuu hankkeen rahoittamiseen. AINE JA ENERGIA Aine aine, nominatiivi ainetta, partitiivi
LisätiedotTASASUUNTAUS JA PUOLIJOHTEET
TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan
LisätiedotCHEM-A1200 Kemiallinen rakenne ja sitoutuminen
CHEM-A1200 Kemiallinen rakenne ja sitoutuminen Orgaaninen reaktio Opettava tutkija Pekka M Joensuu Orgaaniset reaktiot Syyt Pelkkä törmäys ei riitä Varaukset (myös osittaisvaraukset) houkuttelevat molekyylejä
Lisätiedot1. Materiaalien rakenne
1. Materiaalien rakenne 1.2 Atomirakenne ja atomien 2. Luento 4.11.2010 www.helsinki.fi/yliopisto Alkusanat Oppikirja 1: Brian S. Mitchell: Materials Engineering and Science for Chemical and Materials
Lisätiedot, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,
S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion
LisätiedotMOLEKYYLIT Johdanto Vetymolekyyli-ioni Kaksiatomiset molekyylit...239
MOLEKYYLIT... 8 6.1 Johdanto...8 6. Vetymolekyyli-ioni...9 6.3 Kaksiatomiset molekyylit...39 6.4 Kaksiatomisten molekyylien elektronikonfiguraatioita...43 6.5 Moniatomiset molekyylit...5 6.6 Orgaaniset
LisätiedotKEMIA HYVÄN VASTAUKSEN PIIRTEET
BILÄÄKETIETEEN enkilötunnus: - KULUTUSJELMA Sukunimi: 20.5.2015 Etunimet: Nimikirjoitus: KEMIA Kuulustelu klo 9.00-13.00 YVÄN VASTAUKSEN PIIRTEET Tehtävämonisteen tehtäviin vastataan erilliselle vastausmonisteelle.
LisätiedotS Fysiikka III (Est), 2 VK Malliratkaisut (Arvosteluperusteita täydennetään vielä)
S-.7 Fysiikka III (st), VK 8.5.008 Malliratkaisut (Arvosteluperusteita täydennetään vielä). Näytä, että sekä symmetrinen aaltofunktio ψn( x ) ψn ( x) + ψn( x) ψn, että antisymmetrinen aaltofunktioψn( x)
Lisätiedot8. MONIELEKTRONISET ATOMIT
8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä
LisätiedotKEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.
KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan
LisätiedotLasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.
Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 014 Insinöörivalinnan kemian koe 8.5.014 MALLIRATKAISUT ja PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu
LisätiedotJohdantoa/Kertausta. Kemia on elektronien liikkumista/siirtymistä. Miksi?
Johdantoa/Kertausta MATERIAALIT JA TEKNOLOGIA, KE4 Mitä on kemia? Kemia on elektronien liikkumista/siirtymistä. Miksi? Kaikissa kemiallisissa reaktioissa tapahtuu energian muutoksia, jotka liittyvät vanhojen
LisätiedotAtomin elektronikonfiguraatiot (1)
Atomin elektronikonfiguraatiot (1) Atomiin sidotun elektronin tilaa kuvataan neljällä kvanttiluvulla: n pääkvattiluku - aaltofunktion eli orbitaalin energia, keskimääräinen etäisyys ytimestä, saa arvot
LisätiedotKemialliset sidokset lukion kemian opetuksessa
Kemialliset sidokset lukion kemian opetuksessa Linda Gustafsson Pro gradu -tutkielma 4.9.2007 Kemian opettajan suuntautumisvaihtoehto Kemian koulutusohjelma Matemaattis-luonnontieteellinen tiedekunta Helsingin
LisätiedotSiirtymämetallien erityisominaisuuksia
Siirtymämetallien erityisominaisuuksia MATERIAALIT JA TEKNOLOGIA, KE4 Sivuryhmien metallien kemiaa: Jaksojen (vaakarivit) 4 ja 5 sivuryhmien metalleista käytetään myös nimitystä d-lohkon alkuaineet, koska
LisätiedotKE2 Kemian mikromaailma
KE2 Kemian mikromaailma 30. maaliskuuta 2017/S.H. Vastaa viiteen tehtävään. Käytä tarvittaessa apuna taulukkokirjaa. Kopioi vastauspaperisi ensimmäisen sivun ylälaitaan seuraava taulukko. Kokeen pisteet
LisätiedotJaksollinen järjestelmä
Mistä kaikki alkoi? Jaksollinen järjestelmä 1800-luvun alkupuoli: Alkuaineita yritettiin 1800-luvulla järjestää atomipainon mukaan monella eri tavalla. Vuonna 1826 Saksalainen Johann Wolfgang Döbereiner
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotPuolijohteet. luku 7(-7.3)
Puolijohteet luku 7(-7.3) Metallit vs. eristeet/puolijohteet Energia-aukko ja johtavuus gap size (ev) InSb 0.18 InAs 0.36 Ge 0.67 Si 1.11 GaAs 1.43 SiC 2.3 diamond 5.5 MgF2 11 Valenssivyö Johtavuusvyö
LisätiedotKE1 Kemiaa kaikkialla
Kalle Lehtiniemi ja Leena Turpeenoja 1 KE1 Kemiaa kaikkialla HELSINGISSÄ KUSTANNUSOSAKEYHTIÖ OTAVA otavan asiakaspalvelu Puh. 0800 17117 asiakaspalvelu@otava.fi tilaukset Kirjavälitys Oy Puh. 010 345 1520
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää
Lisätiedot6.2 Vetymolekyyli-ioni Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 238
MOLEKYYLIT 6.1 Johdanto 7 6. Vetymolekyyli-ioni 8 6.3 Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 38 6.4 Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 4 6.5 Moniatomiset molekyylit
LisätiedotPHYS-C0240 Materiaalifysiikka (5op), kevät 2016
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
LisätiedotLuku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
LisätiedotCHEM-C2210 Alkuainekemia ja epäorgaanisten materiaalien synteesi ja karakterisointi (5 op), kevät 2017
CHEM-C2210 Alkuainekemia ja epäorgaanisten materiaalien synteesi ja karakterisointi (5 op), kevät 2017 Tenttikysymysten aihealueita eli esimerkkejä mistä aihealueista ja minkä tyyppisiä tehtäviä kokeessa
LisätiedotMonen elektronin atomit
Monen elektronin atomit Helium atomi Keskimääräisen kentän approksimaatio Aaltofunktion symmetria hiukkasvaihdossa Paulin kieltosääntö Alkuaineiden jaksollinen järjestelmä Heliumin emissiospektri Vety
Lisätiedot(Huom! Oikeita vastauksia voi olla useita ja oikeasta vastauksesta saa yhden pisteen)
KE2-kurssi: Kemian mikromaalima Osio 1 (Huom! Oikeita vastauksia voi olla useita ja oikeasta vastauksesta saa yhden pisteen) Monivalintatehtäviä 1. Etsi seuraavasta aineryhmästä: ioniyhdiste molekyyliyhdiste
LisätiedotLuento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia CHEM-A1250
Luento 10:Kertausta: Kemiallinen tasapaino + Kiinteän olomuodon kemia 9.2.2017 CHEM-A1250 Tasapaino ja tasapainovakio Kaksisuuntainen reaktio a A+ b B p P + r R Eteenpäin menevän reaktion nopeus: rr 1
Lisätiedotψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
LisätiedotSukunimi: Etunimi: Henkilötunnus:
K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat
LisätiedotOrgaanisten yhdisteiden rakenne ja ominaisuudet
Orgaanisten yhdisteiden rakenne ja ominaisuudet 1 2 KOVALENTTISET SIDOKSET ORGAANISISSA YHDISTEISSÄ 3 4 5 6 7 Orgaanisissa molekyyleissä hiiliatomit muodostavat aina neljä kovalenttista sidosta Hiiliketju
LisätiedotLuento 12. Kiinteät aineet
Kiinteät aineet Luento 12 Kiinteät aineet ja nesteet kuuluvat molemmat kondensoituneisiin aineisiin. Niissä atomien väliset etäisyydet ovat atomien koon suuruusluokkaa eli 0.1 0.5 nm. Kiinteä aineen erottaa
LisätiedotVesi. Pintajännityksen Veden suuremman tiheyden nesteenä kuin kiinteänä aineena Korkean kiehumispisteen
Vesi Hyvin poolisten vesimolekyylien välille muodostuu vetysidoksia, jotka ovat vahvimpia molekyylien välille syntyviä sidoksia. Vetysidos on sähköistä vetovoimaa, ei kovalenttinen sidos. Vesi Vetysidos
Lisätiedot2. Maitohapon CH3 CH(OH) COOH molekyylissä
1. Yhdiste sisältää 37,51 massaprosenttia hiiltä, 58,30 massaprosenttia happea ja loput vetyä. Yhdisteen empiirinen kaava on a) C 3 4 4 b) C 4 5 5 c) C 5 7 6 d) C 6 8 7. 2. Maitohapon C3 C() C molekyylissä
LisätiedotKäytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.
1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana
LisätiedotSÄHKÖMAGNETISMI: kevät 2017
SÄHKÖMAGNETISMI: kevät 2017 Viikko Aihe kirjan luku Viikko 1 Sähköken>ä, pistevaraukset 14 Viikko 2 Varausjakauman sähköken>ä 16 Viikko 2 Sähköinen poteniaalienergia ja poteniaali 17 Viikko 3 Sähköken>ä
Lisätiedotc) Mitkä alkuaineet ovat tärkeitä ravinteita kasveille?
ke1 kertaustehtäviä kurssin lopussa 1. Selitä Kerro lyhyesti, mitä sana tarkoittaa. a) kemikaali b) alkuaine c) molekyyli d) vesiliukoinen 2. Kemiaa kotona ja ympärillä a) Kerro yksi kemian keksintö, jota
LisätiedotSMG-4450 Aurinkosähkö
SMG-4450 Aurinkosähkö Toisen luennon aihepiirit Lyhyt katsaus aurinkosähkön historiaan Valosähköinen ilmiö: Mistä tässä luonnonilmiössä on kyse? Piihin perustuvan puolijohdeaurinkokennon toimintaperiaate
LisätiedotE p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis
763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion
LisätiedotATOMIHILAT. Määritelmä, hila: Hilaksi sanotaan järjestelmää, jossa kiinteän aineen rakenneosat ovat pakkautuneet säännöllisesti.
ATOMIHILAT KEMIAN MIKRO- MAAILMA, KE2 Määritelmä, hila: Hilaksi sanotaan järjestelmää, jossa kiinteän aineen rakenneosat ovat pakkautuneet säännöllisesti. Hiloja on erilaisia. Hilojen ja sidosten avulla
LisätiedotLuku6 Tilanyhtälö. Ideaalikaasun N V. Yleinen aineen. paine vakio. tilavuus vakio
Luku6 Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät saadaan leikkaamalla painepinta pv suuntaisilla
LisätiedotLuento 11. Elektronin spin
Elektronin spin Luento 11 Spektrimittaukset osoittivat, että energiatasot jakautuvat todellisuudessa useampaan kuin normaalin Zeemanin ilmiön ennustamaan kolmeen. Ruvettiin puhumaan anomaalisesta Zeemanin
LisätiedotKaikki ympärillämme oleva aine koostuu alkuaineista.
YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme
LisätiedotYdinfysiikkaa. Tapio Hansson
3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10
LisätiedotKE2 Kemian mikromaailma
KE2 Kemian mikromaailma 1. huhtikuuta 2015/S.. Tässä kokeessa ei ole aprillipiloja. Vastaa viiteen tehtävään. Käytä tarvittaessa apuna taulukkokirjaa. Tehtävät arvostellaan asteikolla 0 6. Joissakin tehtävissä
LisätiedotS Fysiikka III (Est) 2 VK
S-37 Fysiikka III (Est) VK 500 Tarkastellaan vedyn p energiatasoa a) Mikä on tämän tason energia Bohrin mallissa? b) Oletetaan että spinratavuorovaikutus voidaan jättää huomiotta Kirjoita kaikki tähän
Lisätiedot8. MONIELEKTRONISET ATOMIT
8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä
LisätiedotYdin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1
Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,
Lisätiedotelektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni
3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja
Lisätiedotd) Klooria valmistetaan hapettamalla vetykloridia kaliumpermanganaatilla. (Syntyy Mn 2+ -ioneja)
Helsingin yliopiston kemian valintakoe: Mallivastaukset. Maanantaina 29.5.2017 klo 14-17 1 Avogadron vakio NA = 6,022 10 23 mol -1 Yleinen kaasuvakio R = 8,314 J mol -1 K -1 = 0,08314 bar dm 3 mol -1 K
LisätiedotNIMI: Luokka: c) Atomin varaukseton hiukkanen on nimeltään i) protoni ii) neutroni iii) elektroni
Peruskoulun kemian valtakunnallinen koe 2010-2011 NIMI: Luokka: 1. Ympyröi oikea vaihtoehto. a) Ruokasuolan kemiallinen kaava on i) CaOH ii) NaCl iii) KCl b) Natriumhydroksidi on i) emäksinen aine, jonka
Lisätiedot5.1 Johdanto 185. 5.2 Helium-atomi 186. 5.3 Keskeiskenttämalli 201. 5.4 Paulin kieltosääntö 206. 5.5 Atomien elektronirakenne 208
MONIELEKTRONIATOMIT 5. Johdanto 85 5. Helium-atomi 86 5.3 Keskeiskenttämalli 0 5.4 Paulin kieltosääntö 06 5.5 Atomien elektronirakenne 08 5.6 L--kytkentä monen elektronin atomeissa 3 5.7 Röntgenspektrien
Lisätiedot3.1 Varhaiset atomimallit (1/3)
+ 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti
LisätiedotTermodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki
Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät
LisätiedotYLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen
YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme
LisätiedotSIDOKSET. Palautetaan mieleen millaisia sidoksia kemia tuntee ja miten ne luokitellaan: Heikot sidokset ovat rakenneosasten välisiä sidoksia.
SIDOKSET IHMISEN JA ELINYMPÄ- RISTÖN KEMIA, KE2 Palautetaan mieleen millaisia sidoksia kemia tuntee ja miten ne luokitellaan: Vahvat sidokset ovat rakenneosasten sisäisiä sidoksia. Heikot sidokset ovat
LisätiedotLuku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
Lisätiedotn=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1
10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen
LisätiedotAtomien rakenteesta. Tapio Hansson
Atomien rakenteesta Tapio Hansson Ykköskurssista jo muistamme... Atomin käsite on peräisin antiikin Kreikasta. Demokritos päätteli alunperin, että jatkuva aine ei voi koostua äärettömän pienistä alkeisosasista
LisätiedotLIITE 11A: VALOSÄHKÖINEN ILMIÖ
LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,
LisätiedotFysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto
ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä
LisätiedotLuento Sähköstaattiset vuorovaikutukset. Veden ominaisuudet Hydrofobinen vuorovaikutus. x = 0
Luento 9 11.3.016 1 Sähköstaattiset vuorovaikutukset Poissonoltzmann yhtälö Varatut pinnat nesteessä Varatut pallomaiset partikkelit nesteessä Veden ominaisuudet Hydrofobinen vuorovaikutus = 0 Sähköstaattiset
LisätiedotKE2 KURSSIKOE 4/2014 Kastellin lukio
KE2 KURSSIKE 4/2014 Kastellin lukio Valitse kuusi (6) tehtävää. Piirrä pisteytystaulukko ja merkitse siihen rastilla vastaamatta jättämäsi tehtävät. 1. Eräiden alkuaineiden elektronirakenteet ovat seuraavat:
Lisätiedot