Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

Koko: px
Aloita esitys sivulta:

Download "Luento 1: Sisältö. Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko"

Transkriptio

1 Luento 1: Sisältö Kemialliset sidokset Ionisidos (suolat, NaCl) Kovalenttinen sidos (timantti, pii) Metallisidos (metallit) Van der Waals sidos (jalokaasukiteet) Vetysidos (orgaaniset aineet, jää) Vyörakenteen muodostuminen Molekyyliorbitaalien muodostuminen Atomiketju Energia-aukko

2 Kiteinen aine Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan nähden erittäin suuri, rakenne. Kiinteisiin aineisiin kuuluu myös amorfisessa muodossa oleva aine (ei säännöllistä rakennetta). Tiiviillä aineella taas tarkoitetaan yhteisesti kiteistä ja amorfista ainetta sekä nestettä ja näiden lisäksi eräitä kompleksisia aineen tiiviitä olomuotoja kuten nestekiteet ja erilaiset biomateriaaleissa tavattavat kompleksiset olomuodot.

3 Atomien väliset sidokset Kaikki atomien väliset sidokset aiheutuvat ytimien ja elektronien välisistä sähköstaattisista vuorovaikutuksista. Sidosten tyyppi ja voimakkuus määräytyy ko. atomien elektronirakenteesta. Stabiilissa sidoksessa ytimien ja elektronien välisellä avaruudellisella konfiguraatiolla on pienempi kokonaisenergia kuin millään muulla konfiguraatiolla. Yksittäisten atomien ja sidotun konfiguraation (kiteen) välistä energiaeroa kutsutaan koheesioenergiaksi (molekyylin tapauksessa puhutaan dissosiaatioenergiasta).

4 Sidostyypit Atomien väliset sidokset jaotellaan seuraaviin luokkiin: 1. Ionisidos (suolat, NaCl) 2. Kovalenttinen sidos (timantti, pii) 3. Metallisidos (metallit) 4. Van der Waals sidos (jalokaasukiteet) 5. Vetysidos (orgaaniset aineet, jää) Koheesioenergia vaihtelee välillä 0,1 ev/atomi (heikot van der Waals kiteet) - 7 ev /atomi (kovalentit kiteet). Sidostyypeistä tehdyt johtopäätökset soveltuvat myös kiteisiin.

5 Keskeisiä käsitteitä Ionisaatioenergia: Energia, joka tarvitaan irrottamaan ylimmällä orbitaalilla oleva elektroni neutraalista atomista. Elektroniaffiniteetti: Energia, joka tarvitaan irrottamaan negatiivisesti varatusta yksiarvoisesta ionista ylin elektroni (lopputuloksena neutraali atomi ja vapaa elektroni). Dissosiaatioenergia (koheesioenergia): Energia, joka tarvitaan hajottamaan molekyyli (kide) erillisiksi neutraaleiksi atomeiksi.

6 Ionisidos Syntyy positiivisesti ja negatiivisesti varattujen ionien välisestä vetävästä vuorovaikutuksesta (metallien ja epämetallien välillä). Ionit muodostuvat elektronien siirtyessä atomilta toiselle. Tämä on edullista johtuen suuresta erosta elektronegatiivisuudessa (atomin kyvystä sitoa ylimääräinen elektroni) Kaikki ioniyhdisteet ovat kiteitä huoneen lämpötilassa. NaCl on tyypillinen esimerkki ionisidoksesta.

7 NaCl-ionisidos Metallinen atomi luovuttaa elektronin, joten siitä tulee positiivinen ioni. Elektronegatiivisempi atomi (epämetalli) vastaanottaa ylimääräisen elektronin muuttuen negatiiviseksi ioniksi. Natriumin luovuttaessa elektronin kloorille natriumionin elektronikonfiguraatioksi tulee 1s 2s 2p (neonin elektronikonfiguraatio) ja negatiivisen kloori-ionin konfiguraatioksi 1s 2s 2p 3s 3p (argonin elektronikonfigraatio). Jalokaasujen konfiguraatiot ovat energeettisesti erittäin edullisia.

8 Kun natriumatomi menettää elektronin, sen koko pienenee. Vastaavasti klooriatomi kasvaa vastaanottaessaan ylimääräisen elektronin. Elektronin siirtymisreaktion jälkeen Na + ja Cl - -ionit pysyvät yhdessä sähköstaattisen voiman ansiosta muodostaen ionisidoksen.

9 Jos Na + ja Cl - -ionit ovat hyvin lähellä toisiaan, niiden elektroniorbitaalit menevät limittäin ja elektronit hylkivät toisiaan (Coulombin voima). Tällöin systeemin potentiaalienergia kasvaa nopeasti, jos ionit edelleen lähestyvät toisiaan. Potentiaalienergian nopea kasvu estää Paulin kieltosäännön rikkomisen.

10 Ionisidoksen muodostuminen I Elektronikuorten täydentyminen II Ionisidoksen muodostuminen Huomaa, että tämä tarkastelu unohtaa repulsiivisen termin osuuden tasapainoetäisyydellä! (ks seuraavat kalvot)

11 Natriumkloridimolekyylin dissosiaatioenergiat neutraaleiksi Na- ja Cl-atomeiksi ja toisaalta Na + - ja Cl - - ioneiksi eroavat natriumin ionisaatio-energian ja kloorin elektroniaffiniteetin erotuksen verran. Kuvaa esittää skemaattisesti, miten neutraalien atomien vuorovaikutus käyttäytyy atomien etäisyyden funktiona. Todellisuudessa varauksen siirto natriumilta kloorille ei ole täydellinen vaan ainoastaan 75% alkeisvarauksesta.

12 Potentiaalimalli ionisidokselle Kaksiatomisen molekyylin ionisidokselle voidaan käyttää semiempiiristä mallia: E ( r) missä ensimmäinen termi kuvaa Coulombin energiaa ja jälkimmäinen suljettujen kuorten repulsiota (estää molekyylin romahtamisen). Tasapainoetäisyydelle p 2 = e 4πε r + r 0 pätee 0 0 b 9 r 2 dep e b = 2 10 dr 4πε r r 0r0 r = 0, 9, mistä b= e r / (36 πε ) D i. Vastaava potentiaalienergian arvo 2 8 e = 9 4πε r 0 0 on dissosiaatioenergia ioneiksi (ei neutraaleiksi atomeiksi).

13

14 Ionisidoksen ominaisuuksia Ominaisuus Sulamis- ja kiehumispiste Sähkönjohtavuus Kovuus Hauraus Selitys Ioniyhdisteiden kiehumis- ja sulamispisteet ovat korkeat, koska ionien välisen voimakkaan sähköstaattisen vuorovaikutuksen rikkomiseen tarvitaan suuri terminen energia. Kiinteät ioniyhdisteet eivät johda sähköä, koska kiteessä ei ole vapaita elektroneita. Suurin osa ioniyhdisteistä on kovia (kiteen pinta ei naarmuunnu), koska ionit ovat sitoutuneet voimakkaasti hilaan eivätkä siirry paikaltaan helposti. Suurin osa ioniyhdisteistä on hauraita (kide pirstoutuu). Kiteen vääntämisen seurauksena samanmerkkiset ionit siirtyvät lähekkäin, mistä aiheutuu voimakas hylkivä vuorovaikutus. Tämä johtaa kiteen pirstoutumiseen.

15 Kovalenttinen sidos Kovalenttinen sidos muodostuu, kun elektronegatiivisuusero on pieni ja atomit ovat jaksollisessa järjestelmässä lähekkäin (kahden epämetallin välille). Atomit jakavat uloimman kuoren elektronit keskenään (elektronit kuuluvat molempiin atomeihin). Jakamalla elektroneja, atomit saavuttavat jalokaasujen elektronikonfiguraation. Kumpikin ydin vetää jaettuja elektroneja puoleensa.

16 Kovalenttisen sidoksen ominaisuuksia Ominaisuus Sulamis- ja kiehumispiste Selitys Korkeat sulamispisteet, koska atomit ovat sitoutuneet toisiinsa vahvoilla kovalenttisilla sidoksilla. Sulaminen vaatii monen sidoksen rikkoutumisen, mikä edellyttää suurta termistä energiaa. Sähkönjohtavuus Elektronit ovat joko ytimien tai kovalenttistensidosten vangitsemia eivätkä pääse liikkumaan hilassa, joten sähkönjohtavuus on huono. Kovuus Hauraus Kovalenttisetsidokset ovat voimakkaita, joten kovalenttistensidosten muodostamat aineet ovat kovia. Ovat hauraita, koska kovalenttistensidosten muodostama hila pirstoutuu helpommin kuin muuttaa muotoaan.

17 Sidosten vertailua

18 Metallisidos Metalleissa esiintyvä sidostyyppi. Sidoksen muodostaa positiivisten ydinten ja delokalisoituneitten vapaiden elektronien välinen vetävä sähköstaattinen vuorovaikutus. Atomeista irronneet elektronit muodostavat elektronikaasun positiivisten ionien väliin. Vapaa elektronikaasu -approksimaatiossa positiivisten ionien muodostama potentiaali oletetaan likimain vakioksi. Kiteen reunalla ionien potentiaali häviää, joten elektronien potentiaalienergia kasvaa. Tämä johtaa potentiaalikynnyksen muodostumiseen.

19 Metallin uloimman vyön (johtovyön tai johtavuusvyön) elektronit muodostavat elektronikaasun, joka voi liikkua vapaasti ydinten välissä. Nämä elektronit pitävät positiiviset ytimet yhdessä. Vapaat elektronit toimivat ytimien liimana. Metallisidos on ionisidosta ja kovalenttista sidosta heikompi. suuri sähkönjohtavuus suuri lämmönjohtavuus Metallisidokset ovat suunnattomia ja riippumattomia rakenteen geometriasta: metallit venyvät ja ovat taottavissa sidokset eivät hajoa, kun metalleja muovataan

20 Heikko sidos, tyypillisesti 0,2 ev/atomi Neutraalien atomien ja molekyylien välinen sidos Van der Waals -sidos Heikot vetovoimat syntyvät, kun molekyylien elektronitiheys fluktuoi aiheuttaen pieniä tilapäisiä dipoleita. Nämä dipolit vetävät toisiaan puoleensa. Näin syntyviä voimia kutsutaan Van der Waals voimiksi. Van der Waals voimat ovat suuruusluokaltaan 1 % kovalenttisen sidoksen voimakkuudesta.

21 Dipoli-dipoli vuorovaikutus Sähködipolin muodostama kenttä on Suurilla etäisyyksillä E d ( pr ) 1 p 3 = r, 3 5 4πε 0 r r 1 qa Ed = r >> a 3 4πε r 0 ( ) Dipolin 2 energia dipolin 1 kentässä on. Tämä pienenee asymptoottisesti kuten. Vastaava voima on attraktiivinen. 1/ r ja vaimenee kuten. 4 E p = p 3 1/r F = de / dr p 2 E d

22 Vetysidos Jos permanentteja dipoleja sisältävään sidokseen kuuluu vetyatomi, sidosta sanotaan vetysidokseksi. Vety voi muodostaa sähköstaattisen sidoksen (voimakkaasti elektronegatiivisen (esim. F ja O) atomin kanssa. Tällöin muodostuu voimakkaita dipoleja. Vetysidoksen suuruusluokka on 0,1-0,5 ev/atomi. Vetysidos sitoo jään vesimolekyylit esiintyy proteiineissa ja nukleiinihapoissa

23 Jään kiderakenne Vesimolekyylit sijoittuvat tetraedrin kärkiin. Vety- ja happiatomien välillä on vetysidos. Tetraedrikonfiguraatio määrää lumihiutaleen muodon

24 Yhteenveto sidostyypeistä Sidostyypit Ionisidos Van der Waals sidos Metallisidos Kovalenttinen -sidos Vetysidos Korkea sulamispiste Kova ja hauras Sähköä johtamaton kiinteä aine NaCl, CsCl, ZnS Matala sulamispiste Pehmeä ja hauras Sähköä johtamaton Ne, Ar, Kr, Xe Vaihteleva sulamispiste Vaihteleva lujuus Sähköä johtava Fe, Cu, Ag Todella korkea sulamispiste Todella kova Ei yleensä johda sähköä Timantti, grafiitti Matala sulamispiste Pehmeä ja hauras Ei yleensä johda sähköä Jää, orgaaniset kiinteät aineet

25 Vetymolekyylin muodostuminen Molekyyliorbitaalien muodostuminen: Vetyatomiin kuuluva spinorbitaali lähestyy paljasta protonia. Orbitaali jakautuu kahden isäntäatomin kesken. Symmetrinen kombinaatio johtaa suureen elektronitiheyteen protonien välissä. Antisymmetriseen tilaan liittyvä elektronitiheys = 0 keskipisteessä. Protonien hylkivän vuorovaikutuksen varjostus vähäistä.

26 Varaustiheys ja tilan pariteetti Parittomassa tilassa ytimien hylkivä potentiaalienergia dominoi eikä stabiilia kemiallista sidosta voi muodostua Parillisessa tilassa elektronin negatiivinen varaustiheys toimii liimana positiivisten ytimien välissä.

27 Symmetrinen ja antisymmetrinen orbitaali s * (1 s) = y - y u A B Energia kasvaa y A y B D E s (1 s) = y + y g A B Antisymmetrisen (hylkivä, antibonding ) orbitaalin energia on korkeampi kuin vapaan atomin elektronitilan energia, kun taas symmetrisen (sitova, bonding ) orbitaalin energia on matalampi kuin vapaan atomin elektroniorbitaalin energia. Molemmat elektronit sijoittuvat tälle sitovalle orbitaalille. Molekyylin sidosenergia on kuitenkin pienempi kuin 2D E sillä samalla kun elektronit menettävän energiaa tämän verran ytimien repulsio kasvaa ja pienentää dissosiaatioenergiaa.

28 Atomiketju Eräs tapa ajatella kiteen muodostumista on lähteä liikkeelle atomien lineaarisesta ketjusta. Kahdeksan s-symmetrisen atomiorbitaalin LCAO-orbitaalit Kuva esittää kahdeksan natrium-atomin ketjua ja sitä minkälaisia molekyyliorbitaaleja voidaan muodostaa vaikkapa ketjun atomien 3s-atomiorbitaaleista ns. LCAO-periaatteella (linear combination of atomic orbitals). Energeettisesti edullisimmalla tilalla on maksimisymmetria ja epäedullisimmalla maksimiantisymmetria

29 8 Na-atomin LCAO-tilat Kahdeksan Na-atomin 3s-orbitaaleista voidaan muodostaa 8 riippumatonta LCAO-tilaa. Niiden energiat muodostavat oheisen tilaharavan, jonka leveys muuttuu atomien etäisyyden funktiona. Jos Na-atomeja on enemmän kuin 8 haravan leveys suurenee hieman. Samalla sen tiheys kasvaa suoraan verrannollisesti atomien lukumäärään. Jos atomeja on ääretön määrä saamme energiaharavan sijasta energiajatkumon eli energiavyön, jonka leveys on likimain sama kuin kuvan energiaharavan!

30 Elektronien potentiaalienergia kiteessä Kiteessä elektronien potentiaalienergia on periodinen funktio, jossa on minimi kunkin atomin ytimen kohdalla. Lähellä kunkin kiteen atomin ydintä elektronien potentiaalienergia on varsin samanlainen kuin vapaassa yksittäisessä atomissa. Kuvassa atomien ytimet sijaitsevat potentiaalienergian minimikohdissa.

31 Naapuriatomien aaltofunktioiden alkaessa peittää toisiaan ominaisenergiat muuttuvat siten, että yksittäisen 2p-tilan energian sijaan saadaan tämän energian läheisyydessä oleva energiatilajatkumo. Näin muodostuneita elektronin sallittujen energioiden alueita kutsutaan energiavöiksi. Energiavöiden välisiä alueita kutsutaan energia-aukoiksi (eng. band gap). Energiavöiden muodostuminen

32 Kiteessä vapaiden atomien diskreeteistä energiatiloista tulee energiavöitä. Lähellä ydintä olevien elektronien energiatilat säilyvät lähes ennallaan. Uloimpien elektronien energiavyöt ovat leveitä ja peittävät usein toisiaan. Energiavöiden muodostuminen Johtovyö Energia-aukko Valenssivyö

33 Energiavyöt metallissa skemaattinen todellinen Metalleissa ylin elektronien osittain miehittämä vyö on puoliksi täynnä. Valenssivyö ei aina erotu aukolla johtovyöstä.

34 Irrotustyö ja Fermi-energia Elektronitilat metallissa Elektronin energia Fermi-pinnalla on irrotustyön φ 0 verran pienempi kuin elektronin potentiaalienergia tyhjössä metallikappaleen ulkopuolella.

35 Energiavyöt eristeessä Eristeissä (esim. timantti) ja hyvin täydellisissä puolijohteissa ylin elektronien miehittämä vyö (valenssivyö) on alhaisissa lämpötiloissa täynnä ja sen yläpuolella lähinnä oleva vyö (johtovyö) on tyhjä. Lämpöliike voi virittää elektroneja johtovyöhön, mutta suuren energiaaukon takia virittyminen on vähäistä.

36 Energiavyöt puolijohteessa Itseispuolijohteessa ei ole epäpuhtausatomeja (donoreja tai akseptoreita) Itseispuolijohteessa on 0K lämpötilassa valenssivyö täysi ja johtovyö tyhjä. Äärellisessä lämpötilassa elektroneja virittyy termisesti johtovyöhön. Jos energia-aukko on suuri terminen virittyminen on hyvin vähäistä ja materiaali on eriste tai puolieriste. Jokaista johtovyön elektronia kohden jää valenssivyöhön yksi aukko.

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering, Micro- and Nanosciences Laboratory. Atomien väliset sidokset Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit

Lisätiedot

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering. Atomien väliset sidokset

Molekyylit. Helsinki University of Technology, Laboratory of Computational Engineering. Atomien väliset sidokset Molekyylit. Atomien väliset sidokset. Vetymolekyyli-ioni 3. Kaksiatomiset molekyylit ja niiden molekyyliorbitaalit 4. Muutamien kaksiatomisten molekyylien elektronikonfiguraatio 5. Moniatomiset molekyylit

Lisätiedot

Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka

Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kaikenlaisia sidoksia yhdisteissä: ioni-, kovalenttiset ja metallisidokset Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Kertausta IONIEN MUODOSTUMISESTA Jos atomi luovuttaa tai

Lisätiedot

Jaksollinen järjestelmä ja sidokset

Jaksollinen järjestelmä ja sidokset Booriryhmä Hiiliryhmä Typpiryhmä Happiryhmä Halogeenit Jalokaasut Jaksollinen järjestelmä ja sidokset 13 Jaksollinen järjestelmä on tärkeä kemian työkalu. Sen avulla saadaan tietoa alkuaineiden rakenteista

Lisätiedot

Kovalenttinen sidos ja molekyyliyhdisteiden ominaisuuksia

Kovalenttinen sidos ja molekyyliyhdisteiden ominaisuuksia Kovalenttinen sidos ja molekyyliyhdisteiden ominaisuuksia 16. helmikuuta 2014/S.. Mikä on kovalenttinen sidos? Kun atomit jakavat ulkoelektronejaan, syntyy kovalenttinen sidos. Kovalenttinen sidos on siis

Lisätiedot

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi Luku 14: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien

Lisätiedot

PUOLIJOHTEISTA. Yleistä

PUOLIJOHTEISTA. Yleistä 39 PUOLIJOHTEISTA Yleistä Pyrittäessä löytämään syy kiinteiden aineiden erilaiseen sähkön johtavuuteen joudutaan perehtymään aineen kidehilassa olevien atomien elektronisiin energiatiloihin. Seuraavassa

Lisätiedot

Kiinteän aineen ominaisuuksia I. Kiteisen aineen perusominaisuuksia

Kiinteän aineen ominaisuuksia I. Kiteisen aineen perusominaisuuksia Kiinteän aineen ominaisuuksia I Kiteiden perustyypit Kiderakenteiden peruskäsitteitä Kiteisen aineen perusominaisuuksia Kide on suuresta atomijoukosta muodostunut säännöllinen ja stabiili, atomiseen skaalaan

Lisätiedot

MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN

MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN MOLEKYYLIFYSIIKAN OPETUKSESTA SEKÄ KEMIALLISEN SIDOKSEN VAIKUTUKSESTA MOLEKYYLIEN AUGER-ELEKTRONISPEKTREIHIN PRO GRADU -TUTKIELMA SAKARI MIKKONEN OULUN YLIOPISTO FYSIKAALISTEN TIETEIDEN LAITOS 2005 Sisällysluettelo

Lisätiedot

Kemian opiskelun avuksi

Kemian opiskelun avuksi Kemian opiskelun avuksi Ilona Kuukka Mukana: Petri Järvinen Matti Koski Euroopan Unionin Kotouttamisrahasto osallistuu hankkeen rahoittamiseen. AINE JA ENERGIA Aine aine, nominatiivi ainetta, partitiivi

Lisätiedot

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen CHEM-A1200 Kemiallinen rakenne ja sitoutuminen Orgaaninen reaktio Opettava tutkija Pekka M Joensuu Orgaaniset reaktiot Syyt Pelkkä törmäys ei riitä Varaukset (myös osittaisvaraukset) houkuttelevat molekyylejä

Lisätiedot

Kemialliset sidokset lukion kemian opetuksessa

Kemialliset sidokset lukion kemian opetuksessa Kemialliset sidokset lukion kemian opetuksessa Linda Gustafsson Pro gradu -tutkielma 4.9.2007 Kemian opettajan suuntautumisvaihtoehto Kemian koulutusohjelma Matemaattis-luonnontieteellinen tiedekunta Helsingin

Lisätiedot

TASASUUNTAUS JA PUOLIJOHTEET

TASASUUNTAUS JA PUOLIJOHTEET TASASUUNTAUS JA PUOLIJOHTEET (YO-K06+13, YO-K09+13, YO-K05-11,..) Tasasuuntaus Vaihtovirran suunta muuttuu jaksollisesti. Tasasuuntaus muuttaa sähkövirran kulkemaan yhteen suuntaan. Tasasuuntaus toteutetaan

Lisätiedot

KEMIA HYVÄN VASTAUKSEN PIIRTEET

KEMIA HYVÄN VASTAUKSEN PIIRTEET BILÄÄKETIETEEN enkilötunnus: - KULUTUSJELMA Sukunimi: 20.5.2015 Etunimet: Nimikirjoitus: KEMIA Kuulustelu klo 9.00-13.00 YVÄN VASTAUKSEN PIIRTEET Tehtävämonisteen tehtäviin vastataan erilliselle vastausmonisteelle.

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 014 Insinöörivalinnan kemian koe 8.5.014 MALLIRATKAISUT ja PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu

Lisätiedot

8. MONIELEKTRONISET ATOMIT

8. MONIELEKTRONISET ATOMIT 8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä

Lisätiedot

KE1 Kemiaa kaikkialla

KE1 Kemiaa kaikkialla Kalle Lehtiniemi ja Leena Turpeenoja 1 KE1 Kemiaa kaikkialla HELSINGISSÄ KUSTANNUSOSAKEYHTIÖ OTAVA otavan asiakaspalvelu Puh. 0800 17117 asiakaspalvelu@otava.fi tilaukset Kirjavälitys Oy Puh. 010 345 1520

Lisätiedot

Monen elektronin atomit

Monen elektronin atomit Monen elektronin atomit Helium atomi Keskimääräisen kentän approksimaatio Aaltofunktion symmetria hiukkasvaihdossa Paulin kieltosääntö Alkuaineiden jaksollinen järjestelmä Heliumin emissiospektri Vety

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

Sukunimi: Etunimi: Henkilötunnus:

Sukunimi: Etunimi: Henkilötunnus: K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat

Lisätiedot

Luento 12. Kiinteät aineet

Luento 12. Kiinteät aineet Kiinteät aineet Luento 12 Kiinteät aineet ja nesteet kuuluvat molemmat kondensoituneisiin aineisiin. Niissä atomien väliset etäisyydet ovat atomien koon suuruusluokkaa eli 0.1 0.5 nm. Kiinteä aineen erottaa

Lisätiedot

Luento 11. Elektronin spin

Luento 11. Elektronin spin Elektronin spin Luento 11 Spektrimittaukset osoittivat, että energiatasot jakautuvat todellisuudessa useampaan kuin normaalin Zeemanin ilmiön ennustamaan kolmeen. Ruvettiin puhumaan anomaalisesta Zeemanin

Lisätiedot

KE2 Kemian mikromaailma

KE2 Kemian mikromaailma KE2 Kemian mikromaailma 1. huhtikuuta 2015/S.. Tässä kokeessa ei ole aprillipiloja. Vastaa viiteen tehtävään. Käytä tarvittaessa apuna taulukkokirjaa. Tehtävät arvostellaan asteikolla 0 6. Joissakin tehtävissä

Lisätiedot

Kaikki ympärillämme oleva aine koostuu alkuaineista.

Kaikki ympärillämme oleva aine koostuu alkuaineista. YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen YLEINEN KEMIA Yleinen kemia käsittelee kemian perusasioita kuten aineen rakennetta, alkuaineiden jaksollista järjestelmää, kemian peruskäsitteitä ja kemiallisia reaktioita. Alkuaineet Kaikki ympärillämme

Lisätiedot

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw

Lisätiedot

5.1 Johdanto 185. 5.2 Helium-atomi 186. 5.3 Keskeiskenttämalli 201. 5.4 Paulin kieltosääntö 206. 5.5 Atomien elektronirakenne 208

5.1 Johdanto 185. 5.2 Helium-atomi 186. 5.3 Keskeiskenttämalli 201. 5.4 Paulin kieltosääntö 206. 5.5 Atomien elektronirakenne 208 MONIELEKTRONIATOMIT 5. Johdanto 85 5. Helium-atomi 86 5.3 Keskeiskenttämalli 0 5.4 Paulin kieltosääntö 06 5.5 Atomien elektronirakenne 08 5.6 L--kytkentä monen elektronin atomeissa 3 5.7 Röntgenspektrien

Lisätiedot

PERUSKOULUN KEMIAN OPETUSSUUNNITELMAT JA OPPIKIRJAT: ESIMERKKINÄ KEMIALLISET SIDOKSET JA NIIDEN OPETTAMINEN. Marjo Matilainen

PERUSKOULUN KEMIAN OPETUSSUUNNITELMAT JA OPPIKIRJAT: ESIMERKKINÄ KEMIALLISET SIDOKSET JA NIIDEN OPETTAMINEN. Marjo Matilainen PERUSKOULUN KEMIAN OPETUSSUUNNITELMAT JA OPPIKIRJAT: ESIMERKKINÄ KEMIALLISET SIDOKSET JA NIIDEN OPETTAMINEN Marjo Matilainen Pro gradu tutkielma Kemian laitos Opettaja 396/2012 PERUSKOULUN KEMIAN OPETUSSUUNNITELMAT

Lisätiedot

10. Puolijohteet. 10.1. Itseispuolijohde

10. Puolijohteet. 10.1. Itseispuolijohde 10. Puolijohteet KOF-E, kl 2005 69 Metallit, puolijohteet ja useat eristeet ovat kiteisiä kiinteitä aineita, joilla on säännönmukainen jaksollinen atomijärjestys ja elektronien energioiden kaistarakenne.

Lisätiedot

OPETTAJAN OPAS. Sisällys Opettajalle 3 Kurssisuunnitelma 5 Tenttisuunnitelma 6 Kemikaaliluettelo 7

OPETTAJAN OPAS. Sisällys Opettajalle 3 Kurssisuunnitelma 5 Tenttisuunnitelma 6 Kemikaaliluettelo 7 PETTAJAN PAS Sisällys pettajalle 3 Kurssisuunnitelma 5 Tenttisuunnitelma 6 Kemikaaliluettelo 7 1. Atomin rakenne 8 1.1 Atomin rakenne 1.2 Elektronin eneria Työ 5 Mistä elektroni todennäköisesti löytyy?

Lisätiedot

LIITE 11A: VALOSÄHKÖINEN ILMIÖ

LIITE 11A: VALOSÄHKÖINEN ILMIÖ LIITE 11A: VALOSÄHKÖINEN ILMIÖ Valosähköisellä ilmiöllä ymmärretään tässä oppikirjamaisesti sitä, että kun virtapiirissä ja tyhjiölampussa olevan anodi-katodi yhdistelmän katodia säteilytetään fotoneilla,

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Taulukko Käyttötarkoitus Huomioita, miksi? Kreikkalaisten numeeriset etuliitteet

Taulukko Käyttötarkoitus Huomioita, miksi? Kreikkalaisten numeeriset etuliitteet Päivitetty 8.12.2014 MAOLtaulukot (versio 2001/2013) Taulukko Käyttötarkoitus Huomioita, miksi? Kreikkalaisten numeeriset etuliitteet esim. ilmoittamaan atomien lukumäärää molekyylissä (hiilimonoksidi

Lisätiedot

Lumen teknisiä ominaisuuksia

Lumen teknisiä ominaisuuksia Lumen teknisiä ominaisuuksia Lumi syntyy ilmakehässä kun vesihöyrystä tiivistyneessä lämpötila laskee alle 0 C:n ja pilven sisällä on alijäähtynyttä vettä. Kun lämpötila on noin -5 C, vesihöyrystä, jäähiukkasista

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin.

Tehtävä 2. Selvitä, ovatko seuraavat kovalenttiset sidokset poolisia vai poolittomia. Jos sidos on poolinen, merkitse osittaisvaraukset näkyviin. KERTAUSKOE, KE1, SYKSY 2013, VIE Tehtävä 1. Kirjoita kemiallisia kaavoja ja olomuodon symboleja käyttäen seuraavat olomuodon muutokset a) etanolin CH 3 CH 2 OH höyrystyminen b) salmiakin NH 4 Cl sublimoituminen

Lisätiedot

1. Malmista metalliksi

1. Malmista metalliksi 1. Malmista metalliksi Metallit esiintyvät maaperässä yhdisteinä, mineraaleina Malmiksi sanotaan kiviainesta, joka sisältää jotakin hyödyllistä metallia niin paljon, että sen erottaminen on taloudellisesti

Lisätiedot

782630S Pintakemia I, 3 op

782630S Pintakemia I, 3 op 782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus

Lisätiedot

8. Alkoholit, fenolit ja eetterit

8. Alkoholit, fenolit ja eetterit 8. Alkoholit, fenolit ja eetterit SM -08 Alkoholit ovat orgaanisia yhdisteitä, joissa on yksi tai useampia -ryhmiä. Fenoleissa -ryhmä on kiinnittynyt aromaattiseen renkaaseen. Alkoholit voivat olla primäärisiä,

Lisätiedot

JAANA MÄENPÄÄ KULLAN, NCCO:N JA VISMUTTITELLURIDIN ELEKTRONISET RAKENTEET LASKENNALLISELLA MENETELMÄLLÄ. Diplomityö

JAANA MÄENPÄÄ KULLAN, NCCO:N JA VISMUTTITELLURIDIN ELEKTRONISET RAKENTEET LASKENNALLISELLA MENETELMÄLLÄ. Diplomityö JAANA MÄENPÄÄ KULLAN, NCCO:N JA VISMUTTITELLURIDIN ELEKTRONISET RAKENTEET LASKENNALLISELLA MENETELMÄLLÄ Diplomityö Tarkastajat: professori Helge Lemmetyinen ja yliopiston lehtori Matti Lindroos Tarkastajat

Lisätiedot

Workshop: Tekniikan kemia OAMK:ssa

Workshop: Tekniikan kemia OAMK:ssa 1 Oulun seudun ammattikorkeakoulu Kemian opetuksen päivät Tekniikan yksikkö OULU 2012 Workshop: Tekniikan kemia OAMK:ssa Miksi betonissa rauta ruostuu ulkopuolelta ja puussa sisäpuolelta? Rautatanko betonissa:

Lisätiedot

Kemia 1. Mooli 1, Ihmisen ja elinympäristön kemia, Otava (2009) MAOL taulukot, Otava

Kemia 1. Mooli 1, Ihmisen ja elinympäristön kemia, Otava (2009) MAOL taulukot, Otava Kemia 1 Mooli 1, Ihmisen ja elinympäristön kemia, Otava (2009) MAOL taulukot, Otava 1 Kemia Kaikille yksi pakollinen kurssi (KE1). Neljä valtakunnallista syventävää kurssia (KE2 KE5). Yksi soveltava yo

Lisätiedot

neon kemian kertauskirja Miria Hannola-Teitto Reija Jokela Markku Leskelä Elina Näsäkkälä Maija Pohjakallio Merja Rassi EDITA HELSINKI

neon kemian kertauskirja Miria Hannola-Teitto Reija Jokela Markku Leskelä Elina Näsäkkälä Maija Pohjakallio Merja Rassi EDITA HELSINKI neon kemian kertauskirja Miria Hannola-Teitto Reija Jokela Markku Leskelä Elina Näsäkkälä Maija Pohjakallio Merja Rassi EDITA HELSINKI Tuottaja: Heini Mölsä Toimitus: Riitta Manninen ja Heini Mölsä Graafinen

Lisätiedot

Vyöteoria. Orbitaalivyöt

Vyöteoria. Orbitaalivyöt Vyöteoria Elektronirakenne ja sähkönjohtokyky: Metallit σ = 10 4-10 6 ohm -1 cm -1 (sähkönjohteet) Epämetallit σ < 10-15 ohm -1 cm -1 (eristeet) Puolimetallit σ = 10-5 -10 3 ohm -1 cm -1 σ = neµ elektronien

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

ORGAANINEN KEMIA 1 (KE 4.1100)

ORGAANINEN KEMIA 1 (KE 4.1100) ORGAANINEN KEMIA 1 (KE 4.1100) KAPPALE 2: - Funktionaaliset ryhmät Laskarimuistiinpanot - Hapetusasteet (s. 35-36) 1. Jaetaan viiteen pääryhmään (0) alkaani-, (1) alkoholi-, (2) aldehydi-, (3) karboksyyli-

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

BIOFYSIKAALISET VAIKUTUKSET

BIOFYSIKAALISET VAIKUTUKSET 4 BIOFYSIKAALISET VAIKUTUKSET Sakari Lang, Kari Jokela SISÄLLYSLUETTELO 4.1 Johdanto... 118 4.2 Molekyylitason mekanismeja... 119 4.3 Radiotaajuisen kentän mekanismit ja vaikutukset... 150 4.4 Pientaajuisen

Lisätiedot

KIINTEÄN AINEEN FYSIIKKA 763333A. Erkki Thuneberg

KIINTEÄN AINEEN FYSIIKKA 763333A. Erkki Thuneberg KIINTÄN AINN FYSIIKKA 763333A rkki Thuneberg Fysiikan laitos Oulun yliopisto 2014 Järjestelyjä Kurssin verkkosivu on https://noppa.oulu.fi/noppa/kurssi/763333a Verkkosivulta löytyy luentomateriaali (tämä

Lisätiedot

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen

Kuva 6.6 esittää moniliitosaurinkokennojen toimintaperiaatteen. Päällimmäisen 6.2 MONILIITOSAURINKOKENNO Aurinkokennojen hyötysuhteen kasvattaminen on teknisesti haastava tehtävä. Oman lisähaasteensa tuovat taloudelliset reunaehdot, sillä tekninen kehitys ei saisi merkittävästi

Lisätiedot

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura

Hiukkasfysiikan luento 21.3.2012 Pentti Korpi. Lapuan matemaattisluonnontieteellinen seura Hiukkasfysiikan luento 21.3.2012 Pentti Korpi Lapuan matemaattisluonnontieteellinen seura Atomi Aine koostuu molekyyleistä Atomissa on ydin ja fotonien ytimeen liittämiä elektroneja Ytimet muodostuvat

Lisätiedot

vi) Oheinen käyrä kuvaa reaktiosysteemin energian muutosta reaktion (1) etenemisen funktiona.

vi) Oheinen käyrä kuvaa reaktiosysteemin energian muutosta reaktion (1) etenemisen funktiona. 3 Tehtävä 1. (8 p) Seuraavissa valintatehtävissä on esitetty väittämiä, jotka ovat joko oikein tai väärin. Merkitse paikkansapitävät väittämät rastilla ruutuun. Kukin kohta voi sisältää yhden tai useamman

Lisätiedot

9. Elektronirakenteen laskeminen

9. Elektronirakenteen laskeminen 9. Elektronirakenteen laskeminen MNQT, sl 2013 159 MNQT, sl 2013 160 Tarkastellaan vielä eri menetelmiä seuraavan jaottelun mukaisesti. Elektronirakenteen laskeminen tarkoittaa tavallisesti tarkasteltavan

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot

Aineen perusosaset. Protoni: Varaus +1 alkeisvarausta. Elektroni: Varaus -1 alkeisvarausta. Neutroni: Varaus 0 (varaukseton)

Aineen perusosaset. Protoni: Varaus +1 alkeisvarausta. Elektroni: Varaus -1 alkeisvarausta. Neutroni: Varaus 0 (varaukseton) Aineen perusosaset Protoni: Varaus +1 alkeisvarausta Elektroni: Varaus -1 alkeisvarausta Neutroni: Varaus 0 (varaukseton) + - n ATOMI, IONI, ALKUAINE JA MOLEKYYLI Atomi Elektroneja elektronikuorilla yhtä

Lisätiedot

Fysikaalisten tieteiden esittely puolijohdesuperhiloista

Fysikaalisten tieteiden esittely puolijohdesuperhiloista Fysikaalisten tieteiden esittely puolijohdesuperhiloista "Perhaps a thing is simple if you can describe it fully in several different ways without immediately knowing that you are describing the same thing."

Lisätiedot

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0

Luku 5. Johteet. 5.1 Johteiden vaikutus sähkökenttään E = 0 E = 0 E = 0 Luku 5 Johteet 5.1 Johteiden vaikutus sähkökenttään Johteessa osa atomien elektroneista on ns. johde-elektroneja, jotka pääsevät vapaasti liikkumaan sähkökentän vaikutuksesta. Hyvässä johteessa (kuten

Lisätiedot

Kemia s2011 ratkaisuja. Kemian koe s 2011 lyhennettyjä ratkaisuja

Kemia s2011 ratkaisuja. Kemian koe s 2011 lyhennettyjä ratkaisuja Kemian koe s 2011 lyhennettyjä ratkaisuja 1. a) Veden autoprotolyysin 2H 2 O(l) H 3 O + (aq) + OH (aq) seurauksena vedessä on pieni määrä OH ja H 3 O + ioneja, jotka toimivat varauksen kuljettajina. Jos

Lisätiedot

2 Eristeet. 2.1 Polarisoituma

2 Eristeet. 2.1 Polarisoituma 2 Eristeet Eristeissä kaikki elektronit ovat sitoutuneita atomeihin tai molekyyleihin, eivätkä voi siis liikkua vapaasti kuten johdeelektronit johteissa. Ulkoinen sähkökenttä aiheuttaa kuitenkin vähäisiä

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

FERROMAGNEETTISET MATERIAALIT

FERROMAGNEETTISET MATERIAALIT FERROMAGNEETTISET MATERIAALIT MAGNEETTITEKNOLOGIAKESKUS Harri Kankaanpää DIAMAGNETISMI Vesi, elohopea, kulta, vismutti,... Magneettinen suskeptibiliteetti negatiivinen: 10-9...10-4 (µ r 1) Heikentää/hylkii

Lisätiedot

Metallien ominaisuudet ja rakenne

Metallien ominaisuudet ja rakenne Metallien Kemia 25 Metallien ominaisuudet ja rakenne Metallit ovat käyttökelpoisia materiaaleja. Niiden ominaisuudet johtuvat metallin rakennetta koossa pitävästä metallisidoksesta. Metalleja käytetään

Lisätiedot

Johdatus biofysiikkaan 15.1.2013 Introduction to biophysics 15.1.2013

Johdatus biofysiikkaan 15.1.2013 Introduction to biophysics 15.1.2013 Johdatus biofysiikkaan 15.1.2013 Introduction to biophysics 15.1.2013 2nd lecture: Biophysics of biomolecules, by Marja Hyvönen please preferably contact me by email marja.hyvonen@oulu.fi p. 0294 481119

Lisätiedot

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö

fissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen

Lisätiedot

Kuva 1: Yhdisteet A-F viivakaavoin, tehtävän kannalta on relevanttia lisätä näkyviin vedyt ja hiilet. Piiroteknisistä syistä tätä ei ole tehty

Kuva 1: Yhdisteet A-F viivakaavoin, tehtävän kannalta on relevanttia lisätä näkyviin vedyt ja hiilet. Piiroteknisistä syistä tätä ei ole tehty 1. Valitse luettelosta kaksi yhdistettä, joille pätee (a) yhdisteiden molekyylikaava on C 6 10 - A, E (b) yhdisteissä on viisi C 2 -yksikköä - D, F (c) yhdisteet ovat tyydyttyneitä ja syklisiä - D, F (d)

Lisätiedot

8. Statistinen fysiikka

8. Statistinen fysiikka LaFy IV, 2015 1 8. Statistinen fysiikka Monien makroskooppisten ilmiöiden selitys perustuu atomimittakaavan klassilliseen mekaniikkaan. Tällaisia ovat esimerkiksi faasinmuutokset: kiehuminen, sulaminen

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä kaikessa fysiikassa. Sähköja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

2. Alkaanit. Suoraketjuiset alkaanit: etuliite+aani Metaani, etaani... Dekaani (10), undekaani, dodekaani, tridekaani, tetradekaani, pentadekaani..

2. Alkaanit. Suoraketjuiset alkaanit: etuliite+aani Metaani, etaani... Dekaani (10), undekaani, dodekaani, tridekaani, tetradekaani, pentadekaani.. 2. Alkaanit SM -08 Kaikkein yksinkertaisimpia orgaanisia yhdisteitä. Sisältävät vain hiiltä ja vetyä ja vain yksinkertaisia - sidoksia. Yleinen molekyylikaava n 2n+2 Alkaanit voivat olla suoraketjuisia

Lisätiedot

AKKU- JA PARISTOTEKNIIKAT

AKKU- JA PARISTOTEKNIIKAT AKKU- JA PARISTOTEKNIIKAT H.Honkanen Kemiallisessa sähköparissa ( = paristossa ) ylempänä oleva, eli negatiivisempi, metalli syöpyy liuokseen. Akussa ei elektrodi syövy pois, vaan esimerkiksi lyijyakkua

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

LIGNIINI yleisesti käytettyjä termejä

LIGNIINI yleisesti käytettyjä termejä Luennon 9 oppimistavoitteet Ligniinin biosynteesi, rakenne ja ominaisuudet Puu-19210 Puun rakenne ja kemia Ymmärrät, että ligniini on amorfinen makromolekyyli, joka muodostuu monomeeriyksiköistä Tiedät

Lisätiedot

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto 13 KALORIMETRI 13.1 Johdanto Kalorimetri on ympäristöstään mahdollisimman täydellisesti lämpöeristetty astia. Lämpöeristyksestä huolimatta kalorimetrin ja ympäristön välinen lämpötilaero aiheuttaa lämmönvaihtoa

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

FY6 - Soveltavat tehtävät

FY6 - Soveltavat tehtävät FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.

Lisätiedot

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist

Elektroniikka. Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Elektroniikka Tampereen musiikkiakatemia Elektroniikka Klas Granqvist Kurssin sisältö Sähköopin perusteet Elektroniikan perusteet Sähköturvallisuus ja lainsäädäntö Elektroniikka musiikkiteknologiassa Suoritustapa

Lisätiedot

Tekijä lehtori Zofia Bazia-Hietikko

Tekijä lehtori Zofia Bazia-Hietikko Tekijä lehtori Zofia Bazia-Hietikko Tarkoituksena on tuoda esiin, että kemia on osa arkipäiväämme, siksi opiskeltavat asiat kytketään tuttuihin käytännön tilanteisiin. Ympärillämme on erilaisia kemiallisia

Lisätiedot

Kurssin esittely. Kurssin esittely on monisteella KE4 Metallit ja materiaalit

Kurssin esittely. Kurssin esittely on monisteella KE4 Metallit ja materiaalit Kurssin esittely 18. huhtikuuta 2013 11:34 Kurssin esittely on monisteella KE4 Metallit ja materiaalit Tiedonhakutehtävät kannattaa hoitaa mahdollisimman nopeasti pois alta! Tiedonhakutehtävät saa palauttaa

Lisätiedot

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA

HALLIN ILMIÖ 1. TUTKITTAVAN ILMIÖN TEORIAA 1 ALLIN ILMIÖ MOTIVOINTI allin ilmiötyössä tarkastellaan johteen varauksenkuljettajiin liittyviä suureita Työssä nähdään kuinka all-kiteeseen generoituu all-jännite allin ilmiön tutkimiseen soveltuvalla

Lisätiedot

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen CHEM-A1200 Kemiallinen rakenne ja sitoutuminen Hapot, Emäkset ja pk a Opettava tutkija Pekka M Joensuu Jokaisella hapolla on: Arvo, joka kertoo meille kuinka hapan kyseinen protoni on. Helpottaa valitsemaan

Lisätiedot

Kemia s10 Ratkaisut. b) Kloorin hapetusluvun muutos: +VII I, Hapen hapetusluvun muutos: II 0. c) n(liclo 4 ) = =

Kemia s10 Ratkaisut. b) Kloorin hapetusluvun muutos: +VII I, Hapen hapetusluvun muutos: II 0. c) n(liclo 4 ) = = 1. 2. a) Yhdisteen molekyylikaava on C 6 H 10 : A ja E b) Yhdisteessä on viisi CH 2 yksikköä : D ja F c) Yhdisteet ovat tyydyttyneitä ja syklisiä : D ja F d) Yhdisteet ovat keskenään isomeereja: A ja E

Lisätiedot

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen

34.2 Ulkoisen magneettikentän vaikutus ferromagneettiseen aineeseen 34 FERROMAGNETISMI 34.1 Johdanto Jaksollisen järjestelmän transitiometalleilla on täyden valenssielektronikuoren (s-kuori) alapuolella vajaa d-elektronikuori. Tästä seuraa, että transitiometalliatomeilla

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

sivu 1/7 OPETTAJALLE Työn motivaatio

sivu 1/7 OPETTAJALLE Työn motivaatio sivu 1/7 PETTAJALLE Työn motivaatio Työssä saadaan kemiallinen reaktio näkyväksi käyttämällä katalyyttiä. Työssä katalyyttinä toimii veren hemoglobiinin rauta tai yhtä hyvin liuos joka sisältää esimerkiksi

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

a) Puhdas aine ja seos b) Vahva happo Syövyttävä happo c) Emäs Emäksinen vesiliuos d) Amorfinen aine Kiteisen aineen

a) Puhdas aine ja seos b) Vahva happo Syövyttävä happo c) Emäs Emäksinen vesiliuos d) Amorfinen aine Kiteisen aineen 1. a) Puhdas aine ja seos Puhdas aine on joko alkuaine tai kemiallinen yhdiste, esim. O2, H2O. Useimmat aineet, joiden kanssa olemme tekemisissä, ovat seoksia. Mm. vesijohtovesi on liuos, ilma taas kaasuseos

Lisätiedot

Selluloosan rakenne ja ominaisuudet

Selluloosan rakenne ja ominaisuudet TEHTÄVÄ 1 - Pohjatiedot Selluloosan rakenne ja ominaisuudet 1. Millainen on selluloosan rakenne? 2. Missä selluloosa esiintyy soluseinässä? 3. Mikä on selluloosan tehtävä soluseinässä? Puu-19.210 Puun

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia Luku 4 Sähköstaattinen energia oiman, työn ja energian käsitteet ovat keskeisiä fysiikassa. Sähkö- ja magneettikenttiä mitataan voimavaikutuksen kautta. Kun voima vaikuttaa varaukselliseen hiukkaseen,

Lisätiedot

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13

Fy06 Koe ratkaisut 29.5.2012 Kuopion Lyseon lukio (KK) 5/13 Fy06 Koe ratkaisut 9.5.0 Kuopion Lyseon lukio (KK) 5/3 Koe. Yksilöosio. 6p/tehtävä.. Kun 4,5 V:n paristo kytketään laitteeseen, virtapiirissä kulkee,0 A:n suuruinen sähkövirta ja pariston napojen välinen

Lisätiedot

Vetysidoksen opetus ja oppiminen

Vetysidoksen opetus ja oppiminen Vetysidoksen opetus ja oppiminen Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Kemian laitos Kemian opettajankoulutusyksikkö Pro Gradu-tutkielma Tekijä: Anna Saloma Pvm: 14.11.2005 Ohjaajat:

Lisätiedot

Kemia 1. Mooli 1, Ihmisen ja elinympäristön kemia, Otava (2009) MAOL-taulukot, Otava

Kemia 1. Mooli 1, Ihmisen ja elinympäristön kemia, Otava (2009) MAOL-taulukot, Otava Kemia 1 Mooli 1, Ihmisen ja elinympäristön kemia, Otava (2009) MAOL-taulukot, Otava 1 Kemia Kaikille yksi pakollinen kurssi (KE1). Neljä valtakunnallista syventävää kurssia (KE2-KE5). Yksi soveltava yo-kokeeseen

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Reaktioyhtälö. Sähköisen oppimisen edelläkävijä www.e-oppi.fi. Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava

Reaktioyhtälö. Sähköisen oppimisen edelläkävijä www.e-oppi.fi. Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava Reaktioyhtälö Sähköisen oppimisen edelläkävijä www.e-oppi.fi Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava Empiirinen kaava (suhdekaava) ilmoittaa, missä suhteessa yhdiste sisältää eri alkuaineiden

Lisätiedot

FyKe 7 9 Kemia ja OPS 2016

FyKe 7 9 Kemia ja OPS 2016 Kuvat: vas. Fotolia, muut Sanoma Pro Oy FyKe 7 9 Kemia ja OPS 2016 Kemian opetuksen tehtävänä on tukea oppilaiden luonnontieteellisen ajattelun sekä maailmankuvan kehittymistä. Kemian opetus auttaa ymmärtämään

Lisätiedot

LIKA VAI PATINA? Puhdistustoimenpiteet restauroinnissa ja konservoinnissa

LIKA VAI PATINA? Puhdistustoimenpiteet restauroinnissa ja konservoinnissa Irina Emelyanova LIKA VAI PATINA? Puhdistustoimenpiteet restauroinnissa ja konservoinnissa Opinnäytetyö Restauroinnin koulutusohjelma Huhtikuu 2015 Tekijä/Tekijät Tutkinto Aika Irina Emelyanova Artenomi

Lisätiedot

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2

Jukka Tulkki 8. Laskuharjoitus (ratkaisut) Palautus torstaihin 3.4 klo 12:00 mennessä. x 2 S 437 Fysiikka III Kevät 8 Jukka Tulkki 8 askuharjoitus (ratkaisut) Palautus torstaihin 34 klo : mennessä Assistentit: Jaakko Timonen Ville Pale Pyry Kivisaari auri Salmia (jaakkotimonen@tkkfi) (villepale@tkkfi)

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Syntymäaika: 2. Kirjoita nimesi ja syntymäaikasi kaikkiin sivuille 1 ja 3-11 merkittyihin kohtiin.

Syntymäaika: 2. Kirjoita nimesi ja syntymäaikasi kaikkiin sivuille 1 ja 3-11 merkittyihin kohtiin. 1 Helsingin, Jyväskylän ja Oulun yliopistojen kemian valintakoe Keskiviikkona 15.6. 2011 klo 9-12 Nimi: Yleiset ohjeet 1. Tarkista, että tehtäväpaperinipussa ovat kaikki sivut 1-12. 2. Kirjoita nimesi

Lisätiedot