Esko Turunen Luku 9. Logiikan algebralisointi

Koko: px
Aloita esitys sivulta:

Download "Esko Turunen Luku 9. Logiikan algebralisointi"

Transkriptio

1 Logiikan algebralisointi Tässä viimeisessä luvussa osoitamme, miten algebran peruskäsitteitä käytetään logiikan tutkimuksessa. Käsittelemme vain klassista lauselogiikkaa ja sen suhdetta Boolen algebraan, mutta monet vastaavuudet päteivät yleisimmille logiikoille ja niitä vastaaville algebroille. Algebrallisen logiikan tutkimus on eräs TTY:n matematiikan laitoksen tutkimuskohteista.

2 Määritelmä (1.9) Relaatio joukossa A on joukon A A osajoukko. Jos R A A on relaatio, merkitään a R b (a, b) R (jolloin sanotaan, että alkio a on relaatiossa R alkion b kanssa). Joukon A relaatio R on (1) refleksiivinen, jos a R a aina, kun a A, (2) symmetrinen, jos b R a aina, kun a R b, (3) transitiivinen, jos a R c aina, kun a R b ja b R c, (4) antisymmetrinen, jos a = b aina, kun a R b, b R a. (5) Refleksiivinen ja transitiivinen relaatio on esijärjestys. (6) Refleksiivinen, antisymmetrinen ja transitiivinen relaatio on järjestys. (7) Relaatio on refleksiivinen, symmetrinen ja transitiivinen relaatio on ekvivalenssirelaatio.

3 Määritelmä (1.9. jatkoa) Ekvivalenssirelaation merkkinä käytetään usein merkkiä ; tällöin merkitään a b. Jos on ekvivalenssirelaatio, niin jokainen joukon A alkio a määrää ekvivalenssiluokan [a] = {b A : a b}. Ekvivalenssiluokkien joukkoa merkitään A /, ja sitä kutsutaan ekvivalenssirelaatiota vastaavaksi A:n tekijäjoukoksi.

4 Määritelmä (1.9. jatkoa) Ekvivalenssirelaation merkkinä käytetään usein merkkiä ; tällöin merkitään a b. Jos on ekvivalenssirelaatio, niin jokainen joukon A alkio a määrää ekvivalenssiluokan [a] = {b A : a b}. Ekvivalenssiluokkien joukkoa merkitään A /, ja sitä kutsutaan ekvivalenssirelaatiota vastaavaksi A:n tekijäjoukoksi. Harjoitustehtävänä 110 on osoittaa seuraava perustulos: joukon A esijärjestys R generoi ekvivalenssin ehdolla x y joss xry ja yrx. Lisäksi tekijäjoukkoon A/ generoituu järjestysrelaatio ehdolla [x] [y] joss xry.

5 Määritelmä (1.10.) Jos on laskutoimitus ja on ekvivalenssirelaatio joukossa A, ne ovat yhteensopivat, jos a b a b aina kun a a ja b b. Laskutoimitus määrää tekijälaskutoimituksen joukossa A/ säännöllä [a] [b] = [a b].

6 Määritelmä (1.10.) Jos on laskutoimitus ja on ekvivalenssirelaatio joukossa A, ne ovat yhteensopivat, jos a b a b aina kun a a ja b b. Laskutoimitus määrää tekijälaskutoimituksen joukossa A/ säännöllä [a] [b] = [a b]. Tarkastellaan sellaista järjestettyä joukkoa (L, ), jossa on suurin alkio 1 ja pienin alkio 0, ts 0 x 1 aina, kun x L.

7 Määritelmä (1.10.) Jos on laskutoimitus ja on ekvivalenssirelaatio joukossa A, ne ovat yhteensopivat, jos a b a b aina kun a a ja b b. Laskutoimitus määrää tekijälaskutoimituksen joukossa A/ säännöllä [a] [b] = [a b]. Tarkastellaan sellaista järjestettyä joukkoa (L, ), jossa on suurin alkio 1 ja pienin alkio 0, ts 0 x 1 aina, kun x L. Sanomme, että alkio z L on alkioparin {x, y} K yläraja jos x, y z. Vastaavasti määritellään alkioparin {x, y} K alaraja.

8 Määritelmä (1.10.) Jos on laskutoimitus ja on ekvivalenssirelaatio joukossa A, ne ovat yhteensopivat, jos a b a b aina kun a a ja b b. Laskutoimitus määrää tekijälaskutoimituksen joukossa A/ säännöllä [a] [b] = [a b]. Tarkastellaan sellaista järjestettyä joukkoa (L, ), jossa on suurin alkio 1 ja pienin alkio 0, ts 0 x 1 aina, kun x L. Sanomme, että alkio z L on alkioparin {x, y} K yläraja jos x, y z. Vastaavasti määritellään alkioparin {x, y} K alaraja. Jos alkioparin {x, y} ylärajojen joukossa on pienin alkio L, merkitään sitä x y. Vastaavasti jos alkioparin {x, y} alarajojen joukossa on suurin alkio L, merkitään sitä x y.

9 Määritelmä (1.10.) Jos on laskutoimitus ja on ekvivalenssirelaatio joukossa A, ne ovat yhteensopivat, jos a b a b aina kun a a ja b b. Laskutoimitus määrää tekijälaskutoimituksen joukossa A/ säännöllä [a] [b] = [a b]. Tarkastellaan sellaista järjestettyä joukkoa (L, ), jossa on suurin alkio 1 ja pienin alkio 0, ts 0 x 1 aina, kun x L. Sanomme, että alkio z L on alkioparin {x, y} K yläraja jos x, y z. Vastaavasti määritellään alkioparin {x, y} K alaraja. Jos alkioparin {x, y} ylärajojen joukossa on pienin alkio L, merkitään sitä x y. Vastaavasti jos alkioparin {x, y} alarajojen joukossa on suurin alkio L, merkitään sitä x y. Hila on sellainen järjestetty joukko (L, ), jonka kaikilla alkiopareilla {x, y} on x y, x y L.

10 Hilan perusominaisuuksia käsitellään harjoitustehtävässä 111. Määritelmä (Hilan distributiivisuus) Hila (L,,, ) on distributiivinen jos kaikilla a, b, c L pätee 1 a (b c) = (a b) (a c), 2 a (b c) = (a b) (a c) Harjoitustehtävänä 112 on osoittaa, että ehdot implikoivat toinen toisensa.

11 Hilan perusominaisuuksia käsitellään harjoitustehtävässä 111. Määritelmä (Hilan distributiivisuus) Hila (L,,, ) on distributiivinen jos kaikilla a, b, c L pätee 1 a (b c) = (a b) (a c), 2 a (b c) = (a b) (a c) Harjoitustehtävänä 112 on osoittaa, että ehdot implikoivat toinen toisensa. Määritelmä (Boolen algebra) Distributiivinen hila (L,,,, ) on Boolean algebra jos kaikilla alkioilla a L on komplementtialkio a L, toisin sanoen a a = 0 ja a a = 1.

12 Hilan perusominaisuuksia käsitellään harjoitustehtävässä 111. Määritelmä (Hilan distributiivisuus) Hila (L,,, ) on distributiivinen jos kaikilla a, b, c L pätee 1 a (b c) = (a b) (a c), 2 a (b c) = (a b) (a c) Harjoitustehtävänä 112 on osoittaa, että ehdot implikoivat toinen toisensa. Määritelmä (Boolen algebra) Distributiivinen hila (L,,,, ) on Boolean algebra jos kaikilla alkioilla a L on komplementtialkio a L, toisin sanoen a a = 0 ja a a = 1. Komplementtialkio on yksikäsitteinen.

13 Tunnetuimmat esimerkit Boolean algebrasta ovat epätyhjän joukon X potenssijoukko, jossa järjestysrelaationa on. Oparaatioina ja on ja. Joukon A komplementti on joukko X \ A.

14 Tunnetuimmat esimerkit Boolean algebrasta ovat epätyhjän joukon X potenssijoukko, jossa järjestysrelaationa on. Oparaatioina ja on ja. Joukon A komplementti on joukko X \ A. Myös joukosta {0, 1} saadaan tunnetulla menetelmällä Boolen algebra.

15 Tunnetuimmat esimerkit Boolean algebrasta ovat epätyhjän joukon X potenssijoukko, jossa järjestysrelaationa on. Oparaatioina ja on ja. Joukon A komplementti on joukko X \ A. Myös joukosta {0, 1} saadaan tunnetulla menetelmällä Boolen algebra. Klassisen lauselogiikan rakennustiilinä ovat elementaarilauseet p, q, r, s,, joista loogisten konnektiivien ei, ja, tai, imp avulla saadaan lisää (hyvin määriteltyjä) lauseita: elementaarilauseet ovat lauseita ja jos α, β ovat lauseita, niin ei α, αjaβ, αtaiβ sekä αimpβ ovat lauseita. Huomaa, että lauseet ovat äärellisen mitaisia.

16 Tunnetuimmat esimerkit Boolean algebrasta ovat epätyhjän joukon X potenssijoukko, jossa järjestysrelaationa on. Oparaatioina ja on ja. Joukon A komplementti on joukko X \ A. Myös joukosta {0, 1} saadaan tunnetulla menetelmällä Boolen algebra. Klassisen lauselogiikan rakennustiilinä ovat elementaarilauseet p, q, r, s,, joista loogisten konnektiivien ei, ja, tai, imp avulla saadaan lisää (hyvin määriteltyjä) lauseita: elementaarilauseet ovat lauseita ja jos α, β ovat lauseita, niin ei α, αjaβ, αtaiβ sekä αimpβ ovat lauseita. Huomaa, että lauseet ovat äärellisen mitaisia. Klassisen lauselogiikan algebralisoinnissa tarvitaan joukko aksioomia ja päättelysäännöt. Sovitaan, että jos jokin lause α on aksiooma tai teoreema eli saatu päätelysäänöjen avulla aksioomista, merkitään α.

17 Aksioomiksi valitaan kaikki seuraavaa muotoa olevat lauseet 1 (αimpβ)imp[(βimpγ)imp(αimpγ)], 2 (αimp(αtaiβ), 3 (βimp(αtaiβ), 4 (αimpγ)imp[(βimpγ)imp((αtaiβ)impγ)], 5 (αjaβ)impα, 6 (αjaβ)impβ, 7 (γimpα)imp[(γimpβ)imp(γimp(αandβ))] 8 [αimp(βimpγ)]imp[(αjaβ)impγ], 9 [(αjaβ)impγ]imp[αimp(βimpγ)], 10 (αja ei α)impβ, 11 [αimp(αja ei α)]imp ei α, 12 αtai ei α Harjoitustehtävänä 113 on osoittaa, että kaikki aksioomat ovat tautologioita.

18 Päättelysääntönä on Modus Ponens: α, αimpβ seuraa β.

19 Päättelysääntönä on Modus Ponens: α, αimpβ seuraa β. Esitetään seuraavaksi metatodistus sille seikalle, että αimpα: Aksioomien (6) ja (9) nojalla 1 ((αjaα)impα)jaα)impα 2 [((αjaα)impα)jaα)impα]imp[((αjaα)impα)imp(αimpα)]

20 Päättelysääntönä on Modus Ponens: α, αimpβ seuraa β. Esitetään seuraavaksi metatodistus sille seikalle, että αimpα: Aksioomien (6) ja (9) nojalla 1 ((αjaα)impα)jaα)impα 2 [((αjaα)impα)jaα)impα]imp[((αjaα)impα)imp(αimpα)] josta Modus Ponens säännöllä ja aksiooman (5) perusteella saadaan 1 ((αjaα)impα)imp(αimpα) 2 ((αjaα)impα)

21 Päättelysääntönä on Modus Ponens: α, αimpβ seuraa β. Esitetään seuraavaksi metatodistus sille seikalle, että αimpα: Aksioomien (6) ja (9) nojalla 1 ((αjaα)impα)jaα)impα 2 [((αjaα)impα)jaα)impα]imp[((αjaα)impα)imp(αimpα)] josta Modus Ponens säännöllä ja aksiooman (5) perusteella saadaan 1 ((αjaα)impα)imp(αimpα) 2 ((αjaα)impα) ja edelleen Modus Ponens säännöllä 1 (αimpα)

22 Päättelysääntönä on Modus Ponens: α, αimpβ seuraa β. Esitetään seuraavaksi metatodistus sille seikalle, että αimpα: Aksioomien (6) ja (9) nojalla 1 ((αjaα)impα)jaα)impα 2 [((αjaα)impα)jaα)impα]imp[((αjaα)impα)imp(αimpα)] josta Modus Ponens säännöllä ja aksiooman (5) perusteella saadaan 1 ((αjaα)impα)imp(αimpα) 2 ((αjaα)impα) ja edelleen Modus Ponens säännöllä 1 (αimpα) Jos siis kaikkien lauseiden joukossa F määritellään relaatio R s.e. αrβ joss (αimpβ), on R refleksiivinen. Käyttämällä Aksiooma (1) ja kaksi kertaa Modus Ponens sääntöä nähdään, että se on myös transitiivinen.

23 Yleisestä teoriasta seuraa nyt, että asettamalla relaatio joukossa F siten, että α β joss (αimpβ) ja (βimpα) saadaan ekvivalenssirelaatio. Lisäksi tekijäjoukkoon F/ syntyy järjestysrelaatio asettamalla [α] [β] joss (αimpβ).

24 Yleisestä teoriasta seuraa nyt, että asettamalla relaatio joukossa F siten, että α β joss (αimpβ) ja (βimpα) saadaan ekvivalenssirelaatio. Lisäksi tekijäjoukkoon F/ syntyy järjestysrelaatio asettamalla [α] [β] joss (αimpβ). Ekvivalenssi on myös yhteensopiva loogisten konnektiivien kanssa, esim. jos α β, γ δ, niin myös (αjaγ) (βjaδ).

25 Yleisestä teoriasta seuraa nyt, että asettamalla relaatio joukossa F siten, että α β joss (αimpβ) ja (βimpα) saadaan ekvivalenssirelaatio. Lisäksi tekijäjoukkoon F/ syntyy järjestysrelaatio asettamalla [α] [β] joss (αimpβ). Ekvivalenssi on myös yhteensopiva loogisten konnektiivien kanssa, esim. jos α β, γ δ, niin myös (αjaγ) (βjaδ). Siten tekijäjoukossa voidaan määritellä operaatiot [α] [β] = [αjaβ], [α] [β] = [αtaiβ], [α] = [ei α].

26 Yleisestä teoriasta seuraa nyt, että asettamalla relaatio joukossa F siten, että α β joss (αimpβ) ja (βimpα) saadaan ekvivalenssirelaatio. Lisäksi tekijäjoukkoon F/ syntyy järjestysrelaatio asettamalla [α] [β] joss (αimpβ). Ekvivalenssi on myös yhteensopiva loogisten konnektiivien kanssa, esim. jos α β, γ δ, niin myös (αjaγ) (βjaδ). Siten tekijäjoukossa voidaan määritellä operaatiot [α] [β] = [αjaβ], [α] [β] = [αtaiβ], [α] = [ei α]. Syntynyt algebra (F/,,, ) on Boolen algebra: esim. hilaominaisuudet todistetaan Aksioomien (4), (5) ja (6) sekä Modus Ponens säännön avulla. Alkiona 1 on luokka [αtai ei α], alkiona 0 luokka [αja ei α].

27 Tämä Lindembaum-Tarski-teoreemana tunnettu tulos tarkoittaa, että sen päättämiseen onko α (joka usein on pitkä ja työläs tehtävä) riittää tarkastella onko α vastaava algebrallinen lauseke = 1 (mikä on usein paljon helpompaa).

28 Tämä Lindembaum-Tarski-teoreemana tunnettu tulos tarkoittaa, että sen päättämiseen onko α (joka usein on pitkä ja työläs tehtävä) riittää tarkastella onko α vastaava algebrallinen lauseke = 1 (mikä on usein paljon helpompaa). Ideaaleja vastaa algebrallisessa logiikassa eräänlainen duaalinen käsite, nimittäin filtteri: Se on annetun Boolen algebran L epätyhjä osajoukko F, joka on suljettu Modus Ponens säännön suhteen: jos a, a b F, niin b F.

29 Tämä Lindembaum-Tarski-teoreemana tunnettu tulos tarkoittaa, että sen päättämiseen onko α (joka usein on pitkä ja työläs tehtävä) riittää tarkastella onko α vastaava algebrallinen lauseke = 1 (mikä on usein paljon helpompaa). Ideaaleja vastaa algebrallisessa logiikassa eräänlainen duaalinen käsite, nimittäin filtteri: Se on annetun Boolen algebran L epätyhjä osajoukko F, joka on suljettu Modus Ponens säännön suhteen: jos a, a b F, niin b F. Algebrallista logiikkaa käsitellään tarkemmin kurssilla MAT Applied Logics. Tervetuloa sinne!

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Olkoon perusjoukkona X := {,,,, } ja := {(, ), (, ), (, ), (, )}. Muodosta yhdistetyt (potenssi)relaatiot,,,. Entä mitä on yleisesti n, kun

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio

Lisätiedot

PETR HÁJEKIN BL-ALGEBRAT

PETR HÁJEKIN BL-ALGEBRAT TAMPEREEN TEKNILLINEN YLIOPISTO Teknis-luonnontieteellinen osasto LASSE POHJOLAINEN PETR HÁJEKIN BL-ALGEBRAT DIPLOMITYÖ Aihe hyväksytty osastoneuvoston kokouksessa 13. 4. 2005. Tarkastaja: Professori Esko

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Johdatus diskreettiin matematiikkaan Harjoitus 1, Johdatus diskreettiin matematiikkaan Harjoitus 1, 15.9.2014 1. Hahmottele tasossa seuraavat relaatiot: a) R 1 = {(x, y) R 2 : x y 2 } b) R 2 = {(x, y) R 2 : y x Z} c) R 3 = {(x, y) R 2 : y > 0 and x 2

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 014 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteetesimerkkejä,

Lisätiedot

8 Joukoista. 8.1 Määritelmiä

8 Joukoista. 8.1 Määritelmiä 1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Mari Herranen. Ultratulo

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Mari Herranen. Ultratulo TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mari Herranen Ultratulo Informaatiotieteiden yksikkö Matematiikka Marraskuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö HERRANEN, MARI: Ultratulo Pro

Lisätiedot

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.

Lisätiedot

Jarkko Peltomäki. Järjestetyt joukot ja hilat

Jarkko Peltomäki. Järjestetyt joukot ja hilat Jarkko Peltomäki Järjestetyt joukot ja hilat Luonnontieteiden kandidaatin tutkielma Turun yliopisto Syyskuu 2010 Sisältö 1 Johdanto 2 2 Järjestetty joukko 3 2.1 Määritelmiä ja perusominaisuuksia...............

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg Diskreetin Matematiikan Paja Tehtäviä viikolle 2. (24.3-25.3) Jeremias Berg Tämän viikon tehtävien teemoina on tulojoukot, relaatiot sekä kuvaukset. Näistä varsinkin relaatiot ja kuvaukset ovat tärkeitä

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

Hilateoria ja Boolen algebrat

Hilateoria ja Boolen algebrat Hilateoria ja Boolen algebrat Veera Reitti Pro gradu -tutkielma Syyskuu 2018 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Matematiikan ja tilastotieteen laitos Reitti, Veera: Hilateoria

Lisätiedot

6 Relaatiot. 6.1 Relaation määritelmä

6 Relaatiot. 6.1 Relaation määritelmä 6 Relaatiot 6. Relaation määritelmä Määritelmä 6... Oletetaan, että X ja Y ovat joukkoja. Jos R µ X Y, sanotaan, että R on joukkojen X ja Y välinen relaatio. Jos R µ X X, sanotaan, että R on joukon X relaatio.

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet

MS-A0401 Diskreetin matematiikan perusteet MS-A0401 Diskreetin matematiikan perusteet Osa 2: Relaatiot ja funktiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta

Lisätiedot

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat

Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).

Lisätiedot

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei

Lisätiedot

Tietojenkäsittelyteorian alkeet, osa 2

Tietojenkäsittelyteorian alkeet, osa 2 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. syyskuuta 2016 Sisällys vs Ovat eri asioita! Älä sekoita niitä. Funktiot Funktio f luokasta A luokkaan B, merkitään

Lisätiedot

Hilateriasta Boolen algebroihin ja propositiologiikkaan

Hilateriasta Boolen algebroihin ja propositiologiikkaan Hilateriasta Boolen algebroihin ja propositiologiikkaan Pro Gradu -tutkielma Hanna Kauppinen 260373 Fysiikan ja matematiikan laitos Itä-Suomen yliopisto 15.5.2019 Tiivistelmä Tämä tutkielma käsittelee

Lisätiedot

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

Algebra kl Tapani Kuusalo

Algebra kl Tapani Kuusalo Algebra kl. 2010 Tapani Kuusalo Sisältö Luku 1. Luonnolliset luvut 1 Luku 2. Laskutoimitukset 4 1. Laskutoimitusten yleiset ominaisuudet 4 2. Neutraali- ja käänteisalkiot 6 3. Indusoidut laskutoimitukset,

Lisätiedot

2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}?

2. Minkä joukon määrittelee kaava P 0 (x 0 ) P 1 (x 0 ) mallissa M = ({0, 1, 2, 3}, P M 0, P M 1 ), kun P M 0 = {0, 1} ja P M 1 = {1, 2}? HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan II, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Mitkä muuttujat esiintyvät vapaina kaavassa x 2 ( x 0 R 0 (x 1, x 2 ) ( x 3 R 0 (x 3, x 0

Lisätiedot

KOMBINATORIIKKA JOUKOT JA RELAATIOT

KOMBINATORIIKKA JOUKOT JA RELAATIOT Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......

Lisätiedot

Todistusmenetelmiä Miksi pitää todistaa?

Todistusmenetelmiä Miksi pitää todistaa? Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien

Lisätiedot

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon Matematiikan johdantokurssi, syksy 08 Harjoitus 3, ratkaisuista. Kokonaisluvut määriteltiin luonnollisten lukujen avulla ekvivalenssiluokkina [a, b], jotka määrää (jo demoissa ekvivalenssirelaatioksi osoitettu)

Lisätiedot

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun {A 1,A 2,...,A n,b } 0, jatkoa jatkoa 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 Kertausta toiseen välikokeeseen Yhteenveto Kurssin sisältö 1. Algoritmin käsite 2. Lukujärjestelmät ja niiden muunnokset; lukujen esittäminen tietokoneessa 3. Logiikka

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.

Lisätiedot

TIETOTEKNIIKAN MATEMATIIKKA

TIETOTEKNIIKAN MATEMATIIKKA TIETOTEKNIIKAN MATEMATIIKKA Harjoitus 4 syksy 2016 Ratkaisut 1. Mitä ehtoja joukkojen M ja N tulee täyttää (kussakin kohdassa erikseen), jotta seuraavat väittämät olisivat tosia a) M = b) N \ M = c) M

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet TKK () Ilkka Mellin (2004) 1 Joukko-oppi Liite: Joukko-oppi TKK () Ilkka Mellin (2004) 2 Joukko-oppi: Mitä opimme? Tämän liitteen tavoitteena on esitellä joukko-opin peruskäsitteet ja - operaatiot laajuudessa,

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

KOMBINATORIIKKA JOUKOT JA RELAATIOT

KOMBINATORIIKKA JOUKOT JA RELAATIOT Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......

Lisätiedot

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

Taulumenetelmä modaalilogiikalle K

Taulumenetelmä modaalilogiikalle K / Kevät 2004 ML-6 1 Taulumenetelmä modaalilogiikalle On vaikeaa löytää Hilbert-tyylisiä todistuksia: Käytössä Modus Ponens -sääntö: jotta voidaan johtaa Q, täytyy johtaa P ja P Q. Mutta mikä on sopiva

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä30.

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 0. syyskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä0. ym.,

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I MS-A0402 Diskreetin matematiikan perusteet Yhteenveto ja esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 12. maaliskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteet

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0401 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A00 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 0. syyskuuta 0 Joukko-oppi ja logiikka Todistukset logiikassa Predikaattilogiikka Induktioperiaate Relaatiot

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

14. Juurikunnat Määritelmä ja olemassaolo.

14. Juurikunnat Määritelmä ja olemassaolo. 14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

Luonnollisen päättelyn luotettavuus

Luonnollisen päättelyn luotettavuus Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä

Lisätiedot

Huom. muista ilmoittautua kokeeseen ajoissa. Ilmoittautumisohjeet kurssin kotisivuilla.

Huom. muista ilmoittautua kokeeseen ajoissa. Ilmoittautumisohjeet kurssin kotisivuilla. Johdatus yliopistomatematiikkaan Avoin yliopisto Kesä 2017 Harjoitus 6, viimeinen harjoitus (15 tehtävää) Viimeinen palautuspäivä 21.6. Huom. muista ilmoittautua kokeeseen ajoissa. Ilmoittautumisohjeet

Lisätiedot

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Joukko-oppi TKK (c) Ilkka Mellin (2005) 1 Joukko-oppi Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot ja funktioiden

Lisätiedot

Matematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010

Matematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010 Ensimmäisen viikon luennot Matematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010 Perustuu osittain kirjan Poole: Linear Algebra lukuihin Appendix A ja Appendix B ja Trench in verkkokirjaan,

Lisätiedot

1. Logiikan ja joukko-opin alkeet

1. Logiikan ja joukko-opin alkeet 1. Logiikan ja joukko-opin alkeet 1.1. Logiikkaa 1. Osoita totuusarvotauluja käyttäen, että implikaatio p q voidaan kirjoittaa muotoon p q, ts. että propositio (p q) ( p q) on identtisesti tosi. 2. Todista

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

Seuraavana tavoitteena on osoittaa, että binääristen neliömuotojen ekvivalenssiluokat

Seuraavana tavoitteena on osoittaa, että binääristen neliömuotojen ekvivalenssiluokat 3.3 Luokkaryhmä Seuraavana tavoitteena on osoittaa, että binääristen neliömuotojen ekvivalenssiluokat muodostavat ryhmän. Määritelmä 3.39. Määritellään operaatio kahden samaa diksriminanttia olevan binäärisen

Lisätiedot

ALGEBRA KEVÄT 2013 JOUNI PARKKONEN

ALGEBRA KEVÄT 2013 JOUNI PARKKONEN ALGEBRA KEVÄT 2013 JOUNI PARKKONEN Algebra käsittelee laskemista. Osin tämä tarkoittaa numeroilla laskemista lukualueissa N, Z, Q, R, C laskutoimituksilla + ja ja niiden käänteisoperaatioilla ja / siinä

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Neljännen viikon luennot Reaaliarvoisen yhden muuttujan funktion raja arvo LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuun 2.1. Esko Turunen esko.turunen@tut.fi Funktion y = f (x) on intuitiivisesti

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Joukot. Georg Cantor ( )

Joukot. Georg Cantor ( ) Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

(xa) = (x) (a) = (x)0 = 0

(xa) = (x) (a) = (x)0 = 0 11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta

Lisätiedot

Propositionaalinen dynaaminen logiikka

Propositionaalinen dynaaminen logiikka TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saana Isoaho Propositionaalinen dynaaminen logiikka Matematiikan ja tilastotieteen laitos Matematiikka Kesäkuu 2010 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Modaalilogiikan täydellisyyslauseesta

Modaalilogiikan täydellisyyslauseesta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Teemu Pitkänen Modaalilogiikan täydellisyyslauseesta Informaatiotieteiden yksikkö Matematiikka Toukokuu 2015 Sisältö 1 Johdanto 3 2 Peruskäsitteistö ja semantiikka

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Lauri Hella. Joukko-oppi. Luentomoniste, Syksy Tampereen yliopisto Informaatiotieteiden yksikkö Matematiikka

Lauri Hella. Joukko-oppi. Luentomoniste, Syksy Tampereen yliopisto Informaatiotieteiden yksikkö Matematiikka Lauri Hella Joukko-oppi Luentomoniste, Syksy 2011 Tampereen yliopisto Informaatiotieteiden yksikkö Matematiikka Luku 1 Naiivia joukko-oppia Tällä kurssilla perehdytään aksiomaattiseen joukko-oppiin, jossa

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Rengashomomorfismi ψ :

Lisätiedot

Täydellisyysaksiooman kertaus

Täydellisyysaksiooman kertaus Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2017-2018 Yhteenveto Yleistä kurssista Kurssin laajuus 5 op Luentoja 30h Harjoituksia 21h Itsenäistä työskentelyä n. 80h 811120P Diskreetit rakenteet, Yhteenveto 2 Kurssin

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet )

T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet ) T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet 9.1 9.5) 30.11. 3.12.2004 1. Osoita lauselogiikan avulla oheisten ehtolausekkeiden ekvivalenssi. (a)!(a

Lisätiedot

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä.

Näytetään nyt relaatioon liittyvien ekvivalenssiluokkien olevan verkon G lohkojen särmäjoukkoja. Olkoon siis f verkon G jokin särmä. Tehtävä 6 : 1 Oletetaan ensin joukon X olevan sisältymisen suhteen minimaalinen solmut a ja b toisistaan erotteleva joukon V(G)\{a, b} osajoukko. Olkoon x joukon X alkio. Oletuksen nojalla joukko X\{x}

Lisätiedot

JOUKKO-OPIN ALKEITA. Veikko Rantala Ari Virtanen 1 2006

JOUKKO-OPIN ALKEITA. Veikko Rantala Ari Virtanen 1 2006 1 Joukon käsite JOUKKO-OPIN ALKEITA Veikko Rantala Ari Virtanen 1 2006 Joukon voisi yrittää määritellä kokoelmaksi olioita, mutta tämä edellyttää, että ymmärretään mitä olioilla ja kokoelmalla tarkoitetaan.

Lisätiedot