Luento 2: Lämpökemiaa, osa 1 Torstai klo Termodynamiikan käsitteitä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Luento 2: Lämpökemiaa, osa 1 Torstai klo Termodynamiikan käsitteitä"

Transkriptio

1 Luento 2: Lämpökemiaa, osa 1 orstai klo A - ermodynaamiset tasapainot (Syksy 2012) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen Faasi - Systeemin tila asapainotila Standardi-/referenssitila - rosessiolosuhteet Isoterminen Isobaarinen Isokoorinen Adiabaattinen - itoisuus Mooliosuus - ainemääräprosentit Massaosuus - painoprosentit - Olomuodot ja faasimuutokset Kiinteä - neste (sula) - kaasu (höyry) Faasitransformaatio - ransformaatiolämpö Sulaminen/Jähmettyminen - Sulamislämpö Höyrystyminen/iivistyminen - Höyrystymislämpö Sublimoituminen/Härmistyminen - Sublimoitumislämpö - Reaktiot Spontaani Reversiibeli - irreversiibeli - Yleinen kaasuvakio R = 1,987 calmol -1 K -1 = 8,314 Jmol -1 K -1 JA HUOM! Lämpö Lämpötila

2 Miksi lämpökemiaa? A - ermodynaamiset tasapainot (Syksy 2012) avoitteena on tarkastella - kemiallisiin reaktioihin - fysikaalisiin faasimuutoksiin ja - systeemissä vallitsevien olosuhteiden muutoksiin liittyviä lämpömäärän muutoksia. Kuinka korkea lämpötila voidaan saavuttaa polttamalla tiettyä ainetta? Kuinka paljon tietyssä prosessissa vapautuu tai sitoutuu lämpöä? On määriteltävä suureet, joilla em. asioita kuvataan laskennallisesti. Sisäenergia, U - Energia on yksi systeemin tilaa kuvaavista suureista. - Systeemillä on sekä sisäistä että ulkoista energiaa. - Systeemin energia riippuu vertailutasosta (ei absoluuttisia arvoja). ermodyn. tilansuureet määritetään aina tietyn standarditilan suhteen - Sisäenergia sisältää systeemin kaikki sisäiset energiat Ei ulkoisia energioita kuten systeemin liike- ja potentiaalienergiaa - Systeemi voi saada tai luovuttaa sisäistä energiaa eri tavoin - yö makrofysikaalinen, suuntautunut - Lämpö mikrofysikaalinen, suuntautumaton - yö sisältää kaikki ei-termiset energiansiirtymismekanismit - Ulkoista painetta vastaan tehty työ - intajännitystä vastaan tehty työ - Sähkökenttää vastaan tehty työ - Magneettikenttää vastaan tehty työ Kemiallisessa termodynamiikassa keskeisiä ovat lämpötilan, kemiallisen potentiaalin ja paineen erojen aiheuttamat energiatilojen muutokset.

3 ermodynamiikan ensimmäinen pääsääntö A - ermodynaamiset tasapainot (Syksy 2012) Energian häviämättömyyden laki: Energiaa ei voi hävittää eikä luoda tyhjästä, mutta se voi muuttaa muotoaan. du Q W du, dq ja dw ovat sisäenergian, lämmön ja työn differentiaaliset muutokset Integroimalla saadaan: U Q W U on sisäenergian muutos siirryttäessä tilasta toiseen U < 0 U > 0 Systeemin luovuttaessa lämpöä tai tehdessä työtä Systeemin absorboidessa lämpöä tai kun siihen tehdään työtä Entalpia, H eli lämpösisältö kuvaa systeemin sisäistä energiaa josta on vähennetty paineen tekemä työ: H U p H on entalpia, U on sisäenergia, p on paine ja on tilavuus

4 Lämpökapasiteetti, C A - ermodynaamiset tasapainot (Syksy 2012) Se lämpömäärä, joka tarvitaan aineen lämpötilan kohottamiseksi yhdellä asteella. Kun kyseessä on lämpökapasiteetin arvo kilogrammaa kohden, puhutaan usein ominaislämmöstä. - akiotilavuudessa: C U dq d - akiopaineessa: C H dq d - Ideaalikaasuille: C C R - Sulille ja kiinteille aineille: C C Lämpökapasiteetti lämpötilan funktiona Epäorgaanisten aineiden lämpökapasiteetin lämpötilariippuvuus (vakiopaineessa) esitetään usein lämpötilan funktiona Kelleyn yhtälöllä: C a b c d 2 2 Olomuodon muutokset aiheuttavat epäjatkuvuuskohtia lämpökapasiteetin lämpötilariippuvuuteen.

5 477401A - ermodynaamiset tasapainot (Syksy 2012) Entalpia lämpötilan funktiona (ei faasimuutoksia) Systeemin entalpian muutos kahden eri lämpötilan välillä (vakiopaineessa) voidaan määrittää laskennallisesti lämpökapasiteetin lämpötilariippuvuuden lausekkeesta: H H 2 H H 2 2 d Cd a b c d d Lyhyillä lämpötilaväleillä c voidaan olettaa vakioksi: H C C 2 1 Edellä esitetyt yhtälöt ovat voimassa niin kauan kuin lämpötilavälillä 1 2 ei esiinny olomuodon muutoksia. Faasimuutokset Kaikissa reaktioissa ja fysikaalisissa olomuodon muutoksissa vapautuu tai sitoutuu lämpöä. Energian muutokset johtuvat aineen perushiukkasten välisten sidosten hajoamisesta ja uudelleen muodostumisesta, joita tapahtuu reaktioiden yhteydessä. Nämä muutokset on otettava huomioon systeemin lämpösisältöjä tarkasteltaessa. - Sulamislämpö m H tai H m - Höyrystymislämpö v H tai H v - Sublimaatiolämpö s H tai H s - Faasinmuutos- eli transformaatiolämpö tr H tai H tr Olomuodon muutoksiin liittyvät entalpian muutokset eivät käy ilmi lämpökapasiteetin lämpötilariippuvuudesta, vaan ne on tunnettava. (aulukkoteokset, tietokannat).

6 477401A - ermodynaamiset tasapainot (Syksy 2012) Entalpia lämpötilan funktiona (faasimuutokset huomioiden) Kun tarkastellaan systeemin entalpian muutoksia yli lämpötilavälin, jossa tapahtuu myös faasimuutoksia, integroidaan eri faaseja kuvaavia lämpökapasiteetin lausekkeita yli kunkin faasin stabiilisuusalueen ja lisätään olomuodonmuutoksiin liittyvät entalpianmuutokset: H H R 0 H 298 K C ( A) d H R C ( B) d 298K M 0 C ( l) d H C ( g) d M R H 0 M c (A), c (B), c (l) ja c (g) ovat kiinteiden faasien A ja B, sulan faasin l sekä kaasufaasin g lämpökapasiteettifunktiot tr H, m H ja v H ovat faasimuutoksiin A B, B l ja l g liittyvät faasimuutoslämmöt (transformaatiolämpö, sulamislämpö ja höyrystymislämpö)

7 Muodostumisentalpia, f H A - ermodynaamiset tasapainot (Syksy 2012) Entalpian muutos reaktiossa, jossa jokin yhdiste muodostuu alkuaineistaan Reaktioentalpia, R H Kemiallisen reaktion reaktioentalpia on tuotteiden ja lähtöaineiden muodostumisentalpioiden erotus H H R R Hlähtöaineet H tuotteet r ( ) H i1 i 0 f ( i, ) Standarditilassa olevien alkuaineiden muodostumisentalpia on nolla. Liukenemisentalpia Lämpö/entalpianmuutos, joka liittyy alkuaineen tai yhdisteen liukenemiseen kondensoituun (sulaan tai kiinteään) faasiin.

8 Hessin laki A - ermodynaamiset tasapainot (Syksy 2012) Kahden eri tilan entalpiaero on riippumaton reitistä, jota pitkin siirrytään lähtöaineista tuotteisiin Kirchoffin laki Reaktion raaka-aineiden kuumentaminen huoneenlämpötilasta reaktiolämpötilaan ja reaktioentalpia reaktiolämpötilassa on yhtä suuri kuin reaktioentalpia huoneenlämpötilassa lisättynä tuotteiden kuumentamiseen tarvittavalla energialla H H 298 C d H i R

9 ehtäviä luennolle A - ermodynaamiset tasapainot (Syksy 2012) 7. Kirjoita lyijyn hapettumisreaktio lyijyoksidiksi ja laske ko. reaktion reaktiolämpö 500 K:n lämpötilassa. C (b(s)) = 23,56 + 9, [Jmol -1 K -1 ] kun on K C (bo(s)) = 37, , [Jmol -1 K -1 ] kun on K C (O 2 (g)) = 29,96 + 4, , [Jmol -1 K -1 ] kun on K H f (bo) = -219,24 kjmol -1, kun = 298 K 8. Hematiittia pelkistetään hiilimonoksidilla lämpötilassa 1500 K (1227 ºC). Laske reaktiolämpö em. lämpötilassa reaktiolle: Fe 2 O CO = 2 Fe + 3 CO 2 f H o 298K [kjmol -1 ] H 1500K -H 298K [kjmol -1 ] Fe 2 O CO -110,5 38 Fe 0 47 CO 2-393, eräskappale karkaistaan veteen austenointilämpötilasta (950 C). Sammutusveden (alku)lämpötila on 25 ºC, eikä veden lämpötila saa nousta yli 80 ºC:een. Mikä on minimimäärä vettä, joka tarvitaan 1,6 kg:n teräskappaleen sammutukseen, kun tiedetään (tai oletetaan), että: - lämpöhäviöitä ympäristöön ei tapahdu - lämmönsiirto karkaisuveteen on niin nopeaa, että veden paikallinen ylikuumeneminen höyrystymislämpötilan yläpuolelle vältetään - 40 % austeniitistä (-Fe) muuttuu martensiittiseksi (-Fe) - martensiittireaktio tapahtuu 490 ºC:ssa - M Fe = 55,85 g/mol ja M H2O = 18,02 gmol -1 - tr Hº(-) = 1,76 kcalmol -1 - C (-Fe) = 5,85 + 2, calk -1 mol -1 - C (-Fe) = 8, , ,92-1/2 calk -1 mol -1 - C (H 2 O) = 18,03 calk -1 mol -1

10 477401A - ermodynaamiset tasapainot (Syksy 2012) Kotitehtävä 1 (torstai ) alautettava viimeistään ti , jolloin tehtävän ratkaisu käydään läpi. Lasiuunissa sulatetaan 100 kg kiinteää, puhdasta SiO 2 :a (-kvartsi). Uunin lämmitykseen käytetään kivihiiltä, jonka lämpöarvo on 8000 kcal/kg hiiltä. Uunissa polttoaineen tuomasta lämmöstä pystytään käyttämään 80 % kvartsin sulattamiseen. aljonko kivihiiltä tarvitaan kvartsin sulattamiseen ja lämmittämiseen 2200 ºC:een? Oletetaan, että reaktioita atmosfäärin, vuorauksen ja SiO 2 :n välillä ei tapahdu. Seuraavat tiedot on annettu: M Si = 28 g/mol M O = 16 g/mol tr (-kvartsi -kvartsi) = 574 C tr Hº = 0,175 kcalmol -1 tr (-kvartsi -kristobaliitti) = 806 C tr Hº = 0,6 kcalmol -1 m = 1722 C m Hº = 2,6 kcalmol -1 C = a + b + c -2 [calk -1 mol -1 ] a b c C (-kvartsi) 10,49 0, , C (-kvartsi) 14,08 2, C (-kristobaliitti) 17,39 0, , C (liq) 20,6 - -

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä Luento 2: Lämpökemiaa, osa 1 Keskiviikko 13.9. klo 8-10 477401A - ermodynaamiset tasapainot (Syksy 2017) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen

Lisätiedot

Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia)

Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia) Luento 4: Entroia orstai 12.11. klo 14-16 47741A - ermodynaamiset tasaainot (Syksy 215) htt://www.oulu.fi/yomet/47741a/ ermodynaamisten tilansuureiden käytöstä Lämökaasiteetti/ominaislämö - kuvaa aineiden

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

SISÄLLYSLUETTELO SYMBOLILUETTELO 4

SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 KEMIALLISESTI REAGOIVA TERMODYNAAMINEN SYSTEEMI 6 11 Yleistä 6 12 Standarditila ja referenssitila 7 13 Entalpia- ja entropia-asteikko 11 2 ENTALPIA JA OMINAISLÄMPÖ

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Erilaisia entalpian muutoksia

Erilaisia entalpian muutoksia Erilaisia entalpian muutoksia REAKTIOT JA ENERGIA, KE3 Erilaisille kemiallisten reaktioiden entalpiamuutoksille on omat terminsä. Monesti entalpia-sanalle käytetään synonyymiä lämpö. Reaktiolämmöllä eli

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10 Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko 25.10 klo 8-10 Jokaisesta oikein ratkaistusta tehtävästä voi saada yhden lisäpisteen. Tehtävä, joilla voi korottaa kotitehtävän

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä Termodynamiikan peruskäsitteitä The Laws of thermodynamics: (1) You can t win (2) You can t break even (3) You can t get out of the game. - Ginsberg s theorem - Masamune Shirow: Ghost in the shell Systeemillä

Lisätiedot

7 Termodynaamiset potentiaalit

7 Termodynaamiset potentiaalit 82 7 ermodynaamiset potentiaalit 7-1 Clausiuksen epäyhtälö Kappaleessa 4 tarkasteltiin Clausiuksen entropiaperiaatetta, joka määrää eristetyssä systeemissä (E, ja N vakioita) tapahtuvien prosessien suunnan.

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

Termodynaamiset syklit Todelliset tehosyklit

Termodynaamiset syklit Todelliset tehosyklit ermodynaamiset syklit odelliset tehosyklit Luennointi: k Kati Miettunen Esitysmateriaali: k Mikko Mikkola HYS-A00 ermodynamiikka (FM) 09..05 Syklien tyypit Sisältö Kaasusyklit s. höyrysyklit Suljetut syklit

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei

Lisätiedot

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

LUENTOMATERIAALI TERMODYNAAMISET TASAPAINOT A. Eetu-Pekka Heikkinen

LUENTOMATERIAALI TERMODYNAAMISET TASAPAINOT A. Eetu-Pekka Heikkinen 1/37 LUENOMAERIAALI ERMODYNAAMISE ASAPAINO 47741A Eetu-Pekka Heikkinen eknillinen tiedekunta Oulun yliopisto Oulu 217 2/37 ALKUSANA hermodynamics is a funny subject. he first time you go through it, you

Lisätiedot

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin: Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu

Lisätiedot

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1

Kryogeniikan termodynamiikkaa DEE Kryogeniikka Risto Mikkonen 1 DEE-54030 Kryogeniikka Kryogeniikan termodynamiikkaa 4.3.05 DEE-54030 Kryogeniikka Risto Mikkonen Open ystem vs. Closed ystem Open system Melting Closed system Introduced about 900 Cryocooler Boiling Cold

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt

RATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.

Lisätiedot

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 1 Tässä luvussa päästää käsittelemään lämmön ja mekaanisen työn välistä suhdetta. 2 Näistä molemmat ovat energiaa eri muodoissa, ja

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

Kemiallinen reaktio

Kemiallinen reaktio Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,

Lisätiedot

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa: Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään

Lisätiedot

LUENTOMATERIAALI TERMODYNAAMISET TASAPAINOT A. Eetu-Pekka Heikkinen

LUENTOMATERIAALI TERMODYNAAMISET TASAPAINOT A. Eetu-Pekka Heikkinen 1/32 LUENOMAERIAALI ERMODYNAAMISE ASAPAINO 47741A Eetu-Pekka Heikkinen eknillinen tiedekunta Oulun yliopisto Oulu 216 2/32 ALKUSANA hermodynamics is a funny subject. he first time you go through it, you

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

Ch 19-1&2 Lämpö ja sisäenergia

Ch 19-1&2 Lämpö ja sisäenergia Ch 19-1&2 Lämpö ja sisäenergia Esimerkki 19-1 Olet syönyt liikaa täytekakkua ja havaitset, että sen energiasisältö oli 500 kcal. Arvioi kuinka korkealle mäelle sinun pitää pitää kiivetä, jotta kuluttaisit

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia Korkealämpötilakemia Gibbsin faasisääntö, kuvaajien laadinta sekä1-komponenttipiirrokset To 23.11.2017 klo 8-10 SÄ114 Tavoite Tutustua faasipiirrosten kokeelliseen ja laskennalliseen laadintaan ja siten

Lisätiedot

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa 766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

Aineen olomuodot ja olomuodon muutokset

Aineen olomuodot ja olomuodon muutokset Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1

Lisätiedot

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 4.12. ja tiistai 5.12. Metallilangan venytys Metallilankaan tehty työ menee atomien välisten

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa

Lisätiedot

Luku 15 KEMIALLISET REAKTIOT

Luku 15 KEMIALLISET REAKTIOT Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 15 KEMIALLISET REAKTIOT Copyright The McGraw-Hill Companies, Inc. Permission required for

Lisätiedot

L7 Kaasun adsorptio kiinteän aineen pinnalle

L7 Kaasun adsorptio kiinteän aineen pinnalle CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle 1

Lisätiedot

VII LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ

VII LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ II LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ 7. Lämpö ja työ... 70 7.2 Kaasun tekemä laajenemistyö... 7 7.3 Laajenemistyön erityistapauksia... 73 7.3. Työ isobaarisessa tilanmuutoksessa... 73 7.3.2 Työ isotermisessä

Lisätiedot

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä): CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 10/017 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa E409 Kemiallinen tasapaino Tehtävä 1. Tasapainokonversion

Lisätiedot

η = = = 1, S , Fysiikka III (Sf) 2. välikoe

η = = = 1, S , Fysiikka III (Sf) 2. välikoe S-11445 Fysiikka III (Sf) välikoe 710003 1 Läpövoiakoneen kiertoprosessin vaiheet ovat: a) Isokorinen paineen kasvu arvosta p 1 arvoon p b) adiabaattinen laajeneinen jolloin paine laskee takaisin arvoon

Lisätiedot

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT

TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä

Lisätiedot

- Termodynaamiset edellytykset - On olemassa ajava voima prosessin tapahtumiselle - Perusta - Kemiallinen potentiaali

- Termodynaamiset edellytykset - On olemassa ajava voima prosessin tapahtumiselle - Perusta - Kemiallinen potentiaali Luento 1: Yleistä kurssista ja sen suorituksesta Tiistai 9.10. klo 10-12 Kemiallisten prosessien edellytykset - Termodynaamiset edellytykset - On olemassa ajava voima prosessin tapahtumiselle - Perusta

Lisätiedot

L7 Kaasun adsorptio kiinteän aineen pinnalle

L7 Kaasun adsorptio kiinteän aineen pinnalle CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle Oppimistavoitteet

Lisätiedot

Luku Pääsääntö (The Second Law)

Luku Pääsääntö (The Second Law) Luku 3 2. Pääsääntö (he Second Law) Some things happen naturally, some things don t Spontaneous must be interpreted as a natural tendency that may or may not be realized in prac=ce. hermodynamics is silent

Lisätiedot

Oikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa eräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808 C

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Korkealämpötilakemia

Korkealämpötilakemia 1.11.217 Korkealämpötilakemia Standarditilat Ti 1.11.217 klo 8-1 SÄ11 Tavoite Tutustua standarditiloihin liuosten termodynaamisessa mallinnuksessa Miksi? Millaisia? Miten huomioidaan tasapainotarkasteluissa?

Lisätiedot

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU HARJOITUSTYÖOHJE SISÄLLYS SYMBOLILUETTELO 3 1 JOHDANTO 4 2 TYÖOHJE

Lisätiedot

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2 FYSIKAALINEN KEMIA KEMA22) Laskuharjoitus 2, 28..2009. van der Waalsin tilanyhtälö: p = RT V m b a Vm V 2 m pv m = RT V m b = RT = RT a ) V m RT a b/v m V m RT ) [ b/v m ) a V m RT Soveltamalla sarjakehitelmää

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 30.10.2017 v. 03 / T. Paloposki Tämän päivän ohjelma: Entropia Termodynamiikan 2. pääsääntö Palautuvat ja palautumattomat prosessit 1 Entropia Otetaan

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 31.10.2016 TERVETULOA! v. 02 / T. Paloposki Tämän päivän ohjelma: Virtaussysteemin energiataseen soveltamisesta Kompressorin energiantarve, tekninen

Lisätiedot

CHEM-C2200 Kemiallinen termodynamiikka. Työ 2: Kaliumkloridin liukenemisentalpian määrittäminen. Työohje

CHEM-C2200 Kemiallinen termodynamiikka. Työ 2: Kaliumkloridin liukenemisentalpian määrittäminen. Työohje CHEM-C2200 Kemiallinen termodynamiikka Työ 2: Kaliumkloridin liukenemisentalpian määrittäminen Työohje 1 Johdanto Kalorimetriassa tutkitaan lämpötilan ja lämpöenergian muutoksia eristetyssä järjestelmässä.

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2017 Emppu Salonen Lasse Laurson Touko Herranen Toni Mäkelä Luento 11: Faasitransitiot Ke 29.3.2017 1 AIHEET 1. 1. kertaluvun transitioiden (esim.

Lisätiedot

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196

VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 VIII KIERTOPROSESSIT JA TERMODYNAAMISET KONEET 196 8.1 Kiertoprosessin ja termodynaamisen koneen määritelmä... 196 8.2 Termodynaamisten koneiden hyötysuhde... 197 8.2.1 Lämpövoimakone... 197 8.2.2 Lämpöpumpun

Lisätiedot

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia

Luento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006 TKK, TTY, LTY, Y, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 1.5.006 1. Uraanimetallin valmistus puhdistetusta uraanidioksidimalmista koostuu seuraavista reaktiovaiheista: (1) U (s)

Lisätiedot

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208 IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.

Lisätiedot

S , Fysiikka III (Sf) tentti/välikoeuusinta

S , Fysiikka III (Sf) tentti/välikoeuusinta S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 VESI

KEMIAN MIKROMAAILMA, KE2 VESI VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen

Lisätiedot

Standarditilat. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 2 - Luento 2. Tutustua standarditiloihin

Standarditilat. Ilmiömallinnus prosessimetallurgiassa Syksy 2016 Teema 2 - Luento 2. Tutustua standarditiloihin Standarditilat Ilmiömallinnus prosessimetallurgiassa Syksy 216 Teema 2 - Luento 2 Tavoite Tutustua standarditiloihin Miksi käytössä? Millaisia käytössä? Miten huomioitava tasapainotarkasteluissa? 1 Miten

Lisätiedot

Ellinghamin diagrammit

Ellinghamin diagrammit Ellinghamin diagrammit Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 1 - Luento 2 Tavoite Oppia tulkitsemaan (ja laatimaan) vapaaenergiapiirroksia eli Ellinghamdiagrammeja 1 Tasapainopiirrokset

Lisätiedot

Thermodynamics is Two Laws and a Li2le Calculus

Thermodynamics is Two Laws and a Li2le Calculus Thermodynamics is Two Laws and a Li2le Calculus Termodynamiikka on joukko työkaluja, joiden avulla voidaan tarkastella energiaan ja entropiaan lii2yviä ilmiötä kaikissa luonnonilmiöissä ja lai2eissa Voidaan

Lisätiedot

Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3

Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3 S-4.5.vk. 6..000 Tehtävä Ideaalikaasun aine on 00kPa, lämötila 00K ja tilavuus,0 litraa. Kaasu uristetaan adiabaattisesti 5-kertaiseen aineeseen. Kaasumolekyylit ovat -atomisia. Laske uristamiseen tarvittava

Lisätiedot

Ensimmäinen pääsääntö

Ensimmäinen pääsääntö 4 Ensimmäinen ääsääntö Luvuissa 2 ja 3 käsiteltiin eri taoja siirtää energiaa termodynaamisten systeemien välillä joko lämmön tai työn kautta. 1840-luvulla erityisesti Robert Julius von Mayern ja James

Lisätiedot

Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen

Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen KEMA221 2009 YKSINKERTAISET SEOKSET ATKINS LUKU 5 1 YKSINKERTAISET SEOKSET Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen Seoksia voidaan tarkastella osittaisten moolisuureitten

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa?

1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? Kysymys 1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? 2. EXTRA-PÄHKINÄ (menee yli aiheen): Heität vettä kiukaalle. Miksi vesihöyry nousee voimakkaasti kiukaasta ylöspäin?

Lisätiedot

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1

Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 Faasialueiden nimeäminen/tunnistaminen (eutek1sessa) tasapainopiirroksessa yleises1 A B B Piirroksen alue 1: Sularajan yläpuolella on seos aina täysin sula => yksifaasialue (L). Alueet 2 ja 5: Nämä ovat

Lisätiedot

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto

13 KALORIMETRI. 13.1 Johdanto. 13.2 Kalorimetrin lämmönvaihto 13 KALORIMETRI 13.1 Johdanto Kalorimetri on ympäristöstään mahdollisimman täydellisesti lämpöeristetty astia. Lämpöeristyksestä huolimatta kalorimetrin ja ympäristön välinen lämpötilaero aiheuttaa lämmönvaihtoa

Lisätiedot

8 Aineen olomuodot. 8-1 Olomuodon muutokset

8 Aineen olomuodot. 8-1 Olomuodon muutokset 96 8 Aineen olomuodot 8-1 Olomuodon muutokset Vesi voi esiintyä eri lämpötiloissa hyvin erilaisissa tiloissa jäänä, nestemäisenä vetenä ja höyrynä. Tällaisia tiloja sanotaan aineen olomuodoiksi (engl.

Lisätiedot

Kellogg-diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2012 Teema 1 - Luento 1

Kellogg-diagrammit. Ilmiömallinnus prosessimetallurgiassa Syksy 2012 Teema 1 - Luento 1 Kellogg-diagrammit Ilmiömallinnus rosessimetallurgiassa Syksy Teema - Luento Eetu-Pekka Heikkinen, Tavoite Oia tulkitsemaan ja laatimaan ns. Kellogg-diagrammeja eli vallitsevuusaluekaavioita Eetu-Pekka

Lisätiedot

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä.

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä. Lääketieteellisten alojen valintakokeen 009 esimerkkitehtäviä Tehtävä 4 8 pistettä Aineistossa mainitussa tutkimuksessa mukana olleilla suomalaisilla aikuisilla sydämen keskimääräinen minuuttitilavuus

Lisätiedot

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7 KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A

Lisätiedot