CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet"

Transkriptio

1 CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla tai vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin energiatase Ammoniakkia tuotetaan reaktioyhtälön N2(g) + 3 H2(g) 2 NH3(g) mukaisesti reaktorissa ilmanpaineessa käyttäen syöttönä seosta, jossa on stoikiometrinen määrä typpeä ja vetyä. Typen konversio on 25 % ja tuotevirran lämpötila 480 C. Missä lämpötilassa seos on syötettävä reaktoriin, jotta reaktori toimisi adiabaattisesti? Aineiden ominaisarvoja: Yhdiste J/(mol K) fh 0 (25 C) kj/mol Typpi 34 0 Vety 34 0 Ammoniakki 46-46,191 Vinkit tehtävän ratkaisemiseen: Tee energiatase adiabaattiselle reaktorille ja mieti mitä oletuksia voidaan tehdä (adiabaattista reaktoria ei lämmitetä tai jäähdytetä vaan reaktorin lämpötilan annetaan muuttua vapaasti reaktion edetessä) Laske reaktioentalpia referenssilämpötilassa (25 C) Laske DCp Laske reaktioentalpia reaktiolämpötilassa (480 C) Voit olettaa typpeä syötettävän 1 mol/h Ratkaise energiataseesta syötön lämpötila (V: 273 C) RATKAISU REAKTIOYHTÄLÖ: N2(g) + 3 H2(g) 2 NH3(g)

2 ENERGIATASE: Perustase, kun reaktorissa tapahtuu useita samanaikaisia reaktioita: (Tämä tapa pätee, kun komponenttien Cp:t eivät ole lämpötilasta riippuvia ja entalpia on annettu reaktiolämpötilassa) ( ) () Oletukset: Steady state (=> de/dt=0), systeemi ei tee työtä ( =0), adiabaattinen ( =0) Nyt saadaan yllä oleva yhtälö muotoon: ( ) () =0 Laskennan perusta N2,0 = 1 mol/h, jolloin H2,0 = 3 mol/h Jotta saadaan laskettua reaktioentalpia reaktiolämpötilassa T yhtälöllä () Tarvitaan ensin reaktioentalpia referenssilämpötilassa (Tref = 25 C) (25 ) () () = 2 46, ,382 Ja DCp: () () = Joista edelleen reaktioentalpia reaktiolämpötilassa (T = 480 C): (480 ) 92,382 0,044 (480 25) 112,402 Ratkaistaan syötön lämpötila ( ) () =0 + () = 273,4 = , ,402 0, ,034 Tehtävä 2. Isoterminen virtausreaktori, 2 reaktiota Keteeni (CH2CO) on tärkeä teollinen välituote, joka valmistetaan krakkaamalla etikkahappoa:

3 CH3COOH(g) fi CH2CO(g) + H2O(g) DrH(700 C) = 178,87 kj/mol Samanaikaisesti etikkahappo hajoaa termisesti metaaniksi ja hiilidioksidiksi. Mikä on krakkausuunin lämmitystarve, kun etikkahapposyöttö on 1000 mol/h lämpötilassa 300 C ja kun krakkauslämpötila on 700 C? Etikkahapon konversio on 30% ja selektiivisyys keteeniksi on 80%. Sivureaktion reaktiolämpö on DrH(700 C) = 12,68 kj/(mol etikkahappoa). Aineiden ominaisarvoja:, = 121,9, = 39,0, = 77,5, = 63,7, = 51,5 Vinkit tehtävän ratkaisemiseen: Isotermistä reaktoria lämmitetään/jäähdytetään siten, että reaktorin lämpötila pysyy vakiona Etikkahapon selektiivisyys keteeniksi on 80%, joten loput 20% reagoineesta etikkahaposta reagoi sivureaktion CH3COOH fi CH4 + CO2 mukaan Kun reaktiolämmöt on annettu reaktiolämpötilassa, niin lämmitystarve = syötön lämmitykseen tarvittava energiamäärä + reaktioista vapautuva/sitoutuva energiamäärä (V: ~92 MJ/h) RATKAISU REAKTIOYHTÄLÖT: (1) CH3COOH fi CH2CO + H2O DrH = 181,03 kj/mol (2) CH3COOH fi CH4 + CO2 DrH = 15,36 kj/mol ENERGIATASE: Perustase, kun reaktorissa tapahtuu useita samanaikaisia reaktioita: (Tämä tapa pätee, kun komponenttien Cp:t eivät ole lämpötilasta riippuvia ja entalpia on annettu reaktiolämpötilassa) = ( ) () Oletukset: Steady state (=> de/dt=0), systeemi ei tee työtä (W & =0) Nyt saadaan yllä oleva yhtälö muotoon: = ( ) + () Eli reaktorin jäähdytys tai lämmitystarve (Q) on sama kuin syötön lämmitykseen tarvittu lämpömäärä + reaktiolämpö

4 Huomaa: Reaktiolämpö on positiivinen endotermiselle ja negatiivinen eksotermiselle reaktiolle. Syöttö puhdasta etikkahappoa ( ) = ,9 () ( ) = Reaktorissa reagoivan A:n kokonaismäärä saadaan kun huomioidaan molemmat reaktiot. Helpoiten tämä tapahtuu kun käytetään selektiivisyyttä S Lisäksi S = 1eli tässä tapauksessa S1+S2 = 1 => S2 = 1- S1 i () + ( ) [ + ( ) ] = 0, = Reaktorin lämmitystarve on siis ( ) 92 0,8 178,87 + ( 0,8) 12,68 () = = Tehtävä 3. Adiabaattinen CSTR, energiataseen ja mitoitusyhtälön yhdistäminen Nestefaasireaktiossa A reagoi B:ksi adiabaattisessa sekoitussäiliöreaktorissa A B. Reaktio on toista kertalukua A:n suhteen. Komponenttia A ja liuotinta S syötetään 10 l/min lämpötilassa 50 C (CA0 = CS0 = 4 mol/l). Kuinka suuri konversio saavutetaan ja minkä kokoinen CSTR tarvitaan, kun tuotteen lämpötila on 143 C? Lähtöarvoja: (50 ) 15,32 = 66,9 = 66,9 = 75,3 (143 ) = 1,102 Vinkit tehtävän ratkaisemiseen: Adiabaattista reaktoria ei lämmitetä tai jäähdytetä vaan reaktorin lämpötilan annetaan muuttua vapaasti reaktion edetessä Ratkaise konversio yleisestä energiataseesta Laske reaktorin tilavuus CSTR:n mitoitusyhtälöstä

5 (V: 86 %, 105 dm 3 ) RATKAISU Energiatase adiabaattiselle reaktorille (Q=0) ( ) =0 ( ) => = Nestefaasireaktio vakiovirtauksella ( ) = 10 4 = 40 = 10 4 = = 0, ,0753 (143 50) 40 15,32 +0 (143 50) =0,8632 = 86,3 % CSTR:n mitoitusyhtälö = Reaktionopeusyhtälö, toista kertalukua A:n suhteen Stoikiometria () Yhdistetään = = = [ ()] = 10 0,863 () 1,102 4 ( 0,863) = 104, Tehtävä 4. Isoterminen vs. adiabaattinen panosreaktori, energiataseen ja mitoitusyhtälön yhdistäminen Panosreaktorissa tutkitaan ksyleenin isomeroitumista nestefaasissa. Reaktioyhtälö on muotoa A B.

6 Reaktio on ensimmäistä kertalukua ksyleenin (A) suhteen. Reaktorin tilavuus on 2 dm 3 ja reaktoriin panostetaan alussa 20 moolia ksyleeniä 25 C:ssa. Reaktion aktivoitumisenergia on 50 kj/mol ja frekvenssitekijä /s. Laske kauan kestää saavuttaa 50 %:n konversio, kun reaktio suoritetaan a) isotermisesti b) adiabaattisesti Lähtöarvoja: (25 ) 20,00, = 100, = 100 Vinkit tehtävän ratkaisemiseen: Isotermisessä tapauksessa laske konversio panosreaktorin mitoitusyhtälöstä (isotermisessä tapauksessa reaktorin lämpötila pidetään koko ajan 25 C:ssa jäähdyttämällä reaktoria) Adiabaattisessa tapauksessa johda yhtälö konversion muuttumiselle ajan funktiona (adiabaattisessa tapauksessa reaktorin lämpötilan annetaan nousta vapaasti) Laske reaktorin loppulämpötila adiabaattisen reaktorin energiataseesta eri konversion arvoilla (esim. 0,1:n askeleen välein nollasta 0,5:een) Laske reaktionopeusvakio jokaisessa loppulämpötilassa Laske termi dt jokaisella konversiolla ja integroi numeerisesti käyttäen vaikkapa puolisuunnikassääntöä: () 2 ( ), ä (V: a) 64 min, b) 9,3 min) RATKAISU a) Isoterminen Ensimmäisen kertaluvun nestefaasireaktio, joka tehdään vakiolämpötilassa ja vakiopaineessa: = = Sijoitetaan nopeusyhtälö taseyhtälöön: =

7 Integroidaan (alkuehto: t=0 ja ca=ca0): = 1 Lasketaan reaktionopeusvakio (298) = /( = 1, Lasketaan ca0 ja ca = = 20 = 10 ()= 10 ( 0,5) =5 Sijoitetaan 1 1 1, b) Adiabaattinen Panosreaktorin mitoitusyhtälö Ensimmäisen kertaluvun reaktio Stoikiometria () Yhdistämällä saadaan ()= () 5 10 = Ylläoleva yhtälö riippuu konversion lisäksi myös reaktiolämpötilasta, koska reaktionopeusvakio k riippuu lämpötilasta. Yhtälöä ei voi siis suoraan integroida, koska reaktiolämpötilaa ei tunneta. Konversio ja reaktiolämpötila saadaan yhdistettyä toisiinsa energiataseella. Reaktoreiden energiataseet -prujussa on johdettu panosreaktorille adiabaattinen lämpötilannousu: = missä

8 DT = T T0 DcA = ca ca0 x reaktion etenemisaste = = = 2000 = =0 Numeerista integrointia varten tehdään taulukko eri konversion arvoille (esim. askelpituudella h = 0,1), konversioiden avulla lasketaan ca ja T (adiabaattisen lämmönnousun avulla), sitten k lämpötilassa T (k lasketaan tehtävässä annetulla korrelaatiolla) ja lopuksi dt: X CA T(K) k(1/s) (mol/dm 3 ) = (1 ) , ,6 = y0 0, , ,7 = y1 0, , ,1 = y2 0, , ,2 = y3 0, , ,3 = y4 0, , ,0 = y5 Käyttämällä puolisuunnikassääntöä saadaan ajaksi = 2 ( ) = 0,1 (5814, , , , ,3 + 73,0) = 584,41 9,7 2 Annettaessa reaktorin toimia adiabaattisesti (eli ilman jäähdytystä) haluttu konversio saavutetaan huomattavasti lyhyemmässä ajassa kuin isotermisessä ajossa. Huomataan, että adiabaattisessa tapauksessa 50 %:n konversio saavutetaan huomattavasti nopeammin kuin isotermisessä tapauksessa. Adiabaattisessa reaktorissa lämpötila nousee 100 C, minkä takia reaktionopeusvakion arvo kasvaa Arrheniuksen yhtälön mukaisesti yli 100-kertaiseksi.

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä): CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 10/017 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa E409 Kemiallinen tasapaino Tehtävä 1. Tasapainokonversion

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot

HSC-ohje laskuharjoituksen 1 tehtävälle 2

HSC-ohje laskuharjoituksen 1 tehtävälle 2 HSC-ohje laskuharjoituksen 1 tehtävälle 2 Metanolisynteesin bruttoreaktio on CO 2H CH OH (3) 2 3 Laske metanolin tasapainopitoisuus mooliprosentteina 350 C:ssa ja 350 barin paineessa, kun lähtöaineena

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Luku 21. Kemiallisten reaktioiden nopeus

Luku 21. Kemiallisten reaktioiden nopeus Luku 21. Kemiallisten reaktioiden nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista tasapainoreaktiota:

Lisätiedot

Luku 8. Reaktiokinetiikka

Luku 8. Reaktiokinetiikka Luku 8 Reaktiokinetiikka 234 8.1 Reaktion nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista

Lisätiedot

Reaktiotekniikka. Prosessi- ja ympäristötekniikan perusta Teema 4 Kaisa Lamminpää

Reaktiotekniikka. Prosessi- ja ympäristötekniikan perusta Teema 4 Kaisa Lamminpää Reaktiotekniikka Prosessi- ja ympäristötekniikan perusta Teema 4 Kaisa Lamminpää Luennon sisältö Johdanto ja termejä Reaktiotekniikka Kemiallinen prosessitekniikka Kemialliset reaktiot Reaktioiden jaottelu

Lisätiedot

Luku 2. Kemiallisen reaktion tasapaino

Luku 2. Kemiallisen reaktion tasapaino Luku 2 Kemiallisen reaktion tasapaino 1 2 Keskeisiä käsitteitä 3 Tasapainotilan syntyminen, etenevä reaktio 4 Tasapainotilan syntyminen 5 Tasapainotilan syntyminen, palautuva reaktio 6 Kemiallisen tasapainotilan

Lisätiedot

1 Di erentiaaliyhtälöt

1 Di erentiaaliyhtälöt Taloustieteen mat.menetelmät syksy 2017 materiaali II-5 1 Di erentiaaliyhtälöt 1.1 Skalaariyhtälöt Määritelmä: ensimmäisen kertaluvun di erentiaaliyhtälö on muotoa _y = F (y; t) oleva yhtälö, missä _y

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

Tasapainotilaan vaikuttavia tekijöitä

Tasapainotilaan vaikuttavia tekijöitä REAKTIOT JA TASAPAINO, KE5 Tasapainotilaan vaikuttavia tekijöitä Fritz Haber huomasi ammoniakkisynteesiä kehitellessään, että olosuhteet vaikuttavat ammoniakin määrään tasapainoseoksessa. Hän huomasi,

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KEMIALLISIIN REAKTIOIHIN PERUSTUVA POLTTOAINEEN PALAMINEN Voimalaitoksessa käytetään polttoaineena

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

Puun termiset aineominaisuudet pyrolyysissa

Puun termiset aineominaisuudet pyrolyysissa 1 Puun termiset aineominaisuudet pyrolyysissa V Liekkipäivä Otaniemi, Espoo 14.1.2010 Ville Hankalin TTY / EPR 14.1.2010 2 Esityksen sisältö TTY:n projekti Biomassan pyrolyysin reaktiokinetiikan tutkimus

Lisätiedot

kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin?

kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin? Esimerkki: Mihin suuntaan etenee reaktio CO (g) + H 2 O (g) CO 2 (g) + H 2 (g), K = 0,64, kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin? 1 Le Châtelier'n

Lisätiedot

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä

Luento 2: Lämpökemiaa, osa 1 Keskiviikko klo Termodynamiikan käsitteitä Luento 2: Lämpökemiaa, osa 1 Keskiviikko 13.9. klo 8-10 477401A - ermodynaamiset tasapainot (Syksy 2017) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen

Lisätiedot

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

c) Tasapainota seuraava happamassa liuoksessa tapahtuva hapetus-pelkistysreaktio:

c) Tasapainota seuraava happamassa liuoksessa tapahtuva hapetus-pelkistysreaktio: HTKK, TTY, LTY, OY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 26.05.2004 1. a) Kun natriumfosfaatin (Na 3 PO 4 ) ja kalsiumkloridin (CaCl 2 ) vesiliuokset sekoitetaan keske- nään, muodostuu

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3

Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3 S-4.5.vk. 6..000 Tehtävä Ideaalikaasun aine on 00kPa, lämötila 00K ja tilavuus,0 litraa. Kaasu uristetaan adiabaattisesti 5-kertaiseen aineeseen. Kaasumolekyylit ovat -atomisia. Laske uristamiseen tarvittava

Lisätiedot

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Molekyylibiotieteet/Bioteknologia Etunimet valintakoe Tehtävä 3 Pisteet / 30

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Molekyylibiotieteet/Bioteknologia Etunimet valintakoe Tehtävä 3 Pisteet / 30 Helsingin yliopisto/tampereen yliopisto Henkilötunnus - hakukohde Sukunimi Molekyylibiotieteet/Bioteknologia Etunimet valintakoe 20.5.2013 Tehtävä 3 Pisteet / 30 3. Osa I: Stereokemia a) Piirrä kaikki

Lisätiedot

12. Differentiaaliyhtälöt

12. Differentiaaliyhtälöt 1. Differentiaaliyhtälöt 1.1 Johdanto Differentiaaliyhtälöitä voidaan käyttää monilla alueilla esimerkiksi tarkasteltaessa jonkin kohteen lämpötilan vaihtelua, eksponentiaalista kasvua, sähkölatauksen

Lisätiedot

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =

2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 = TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko

Lisätiedot

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe Kemian koe kurssi KE5 Reaktiot ja tasapaino koe 1.4.017 Tee kuusi tehtävää. 1. Tämä tehtävä koostuu kuudesta monivalintaosiosta, joista jokaiseen on yksi oikea vastausvaihtoehto. Kirjaa vastaukseksi numero-kirjainyhdistelmä

Lisätiedot

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli

Lisätiedot

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 014 Insinöörivalinnan kemian koe 8.5.014 MALLIRATKAISUT ja PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu

Lisätiedot

1.1 Homogeeninen kemiallinen tasapaino

1.1 Homogeeninen kemiallinen tasapaino 1.1 Homogeeninen kemiallinen tasapaino 1. a) Mitä tarkoittaa käsite kemiallinen tasapaino? b) Miten kemiallinen tasapaino ilmaistaan reaktioyhtälössä? c) Mistä tekijöistä tasapainossa olevan reaktioseoksen

Lisätiedot

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2 FYSIKAALINEN KEMIA KEMA22) Laskuharjoitus 2, 28..2009. van der Waalsin tilanyhtälö: p = RT V m b a Vm V 2 m pv m = RT V m b = RT = RT a ) V m RT a b/v m V m RT ) [ b/v m ) a V m RT Soveltamalla sarjakehitelmää

Lisätiedot

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7 KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

SISÄLLYSLUETTELO SYMBOLILUETTELO 4

SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 KEMIALLISESTI REAGOIVA TERMODYNAAMINEN SYSTEEMI 6 11 Yleistä 6 12 Standarditila ja referenssitila 7 13 Entalpia- ja entropia-asteikko 11 2 ENTALPIA JA OMINAISLÄMPÖ

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

mak37135 MAK-37.135 Materiaalien ja prosessien termodynaamis-kineettiset perusteet Tentti 22.2.2001 Vastaa 7:ään kysymykseen 1. Sinun olisi arvioitava hiilettyykö teräs, jonka hiilipitoisuus on 0.35% vai

Lisätiedot

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.

2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre. 2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.

Lisätiedot

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU HARJOITUSTYÖOHJE SISÄLLYS SYMBOLILUETTELO 3 1 JOHDANTO 4 2 TYÖOHJE

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut

(a) Järjestellään yhtälöitä siten, että vasemmalle puolelle jää vain y i ja oikealle puolelle muut BM0A5830 Differentiaalihtälöiden peruskurssi Harjoitus 7, Kevät 07 Päivitksiä: Tehtävän b tehtävänantoa korjattu, tehtävän 5 vastaus korjattu. b tehtävänantoa sujuvoitettu. Vastauksia lisätt.. Monasti

Lisätiedot

Erilaisia entalpian muutoksia

Erilaisia entalpian muutoksia Erilaisia entalpian muutoksia REAKTIOT JA ENERGIA, KE3 Erilaisille kemiallisten reaktioiden entalpiamuutoksille on omat terminsä. Monesti entalpia-sanalle käytetään synonyymiä lämpö. Reaktiolämmöllä eli

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT 1 a) Vaihtoehto B on oikein. Elektronit sijoittuvat atomiorbitaaleille kasvavan

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO KEMIANTEKNIIKAN OSASTO PERMUURAHAISHAPON VALMISTAMINEN PUTKIREAKTORISSA

LAPPEENRANNAN TEKNILLINEN YLIOPISTO KEMIANTEKNIIKAN OSASTO PERMUURAHAISHAPON VALMISTAMINEN PUTKIREAKTORISSA LAPPEENRANNAN TEKNILLINEN YLIOPISTO KEMIANTEKNIIKAN OSASTO PERMUURAHAISHAPON VALMISTAMINEN PUTKIREAKTORISSA Työn tarkastajana ja ohjaajana toimi DI Eero Kolehmainen Lappeenrannassa 26.3.2008 Jukka Räsänen

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

KE5 Kurssikoe Kastellin lukio 2012 Valitse kuusi (6) tehtävää. Piirrä pisteytystaulukko.

KE5 Kurssikoe Kastellin lukio 2012 Valitse kuusi (6) tehtävää. Piirrä pisteytystaulukko. KE5 Kurssikoe Kastellin lukio 01 Valitse kuusi (6) tehtävää. Piirrä pisteytystaulukko. 1. a) Selvitä, mitä tarkoitetaan seuraavilla käsitteillä lyhyesti sanallisesti ja esimerkein: 1) heikko happo polyproottinen

Lisätiedot

Luento 2: Lämpökemiaa, osa 1 Torstai klo Termodynamiikan käsitteitä

Luento 2: Lämpökemiaa, osa 1 Torstai klo Termodynamiikan käsitteitä Luento 2: Lämpökemiaa, osa 1 orstai 11.10. klo 14-16 477401A - ermodynaamiset tasapainot (Syksy 2012) ermodynamiikan käsitteitä - Systeemi Eristetty - suljettu - avoin Homogeeninen - heterogeeninen Faasi

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä

LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:

Lisätiedot

KE5 Kurssikoe Kastellin lukio 2014

KE5 Kurssikoe Kastellin lukio 2014 KE5 Kurssikoe Kastellin lukio 014 Valitse kuusi (6) tehtävää. Piirrä pisteytystaulukko. 1. a) Selvitä, mitä tarkoitetaan seuraavilla käsitteillä lyhyesti sanallisesti ja esimerkein: 1) heterogeeninen tasapaino

Lisätiedot

KE Prosessien perusteet

KE Prosessien perusteet KE-40.2500 Prosessien perusteet Tentiss2i saa kiiyttia1 materiaalina vain fysikaalisen kemian taulukoita kirjaa sek?i kemian laitetekniikan taulukoita ja piinoksia kirjaa' TENTT 10.3.20088-13. 1. Selit8

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Prosessitekniikka Taseet

Prosessitekniikka Taseet Oppimistavoite, osa 1 Prosessitekniikka Taseet Ville lopaeus Kemian laitetekniikan tutkimusryhmä Saada peruskäsitys tyypillisestä kemiallisesta prosessista ja sen osista Tunnistaa yksikköprosessit ja yksikköoperaatiot

Lisätiedot

Selvitetään kaasujen yleisen tilanyhtälön avulla yhdisteen moolimassa.

Selvitetään kaasujen yleisen tilanyhtälön avulla yhdisteen moolimassa. Diploi-insinööri ja arkkitehtikoulutuksen yhteisvalinta 2016 DI-keian valintakoe 1.6.2016 alliratkaisut 1. a) ääritetään ensin yhdisteen epiirinen kaava. Oletetaan, että yhdistettä on 100 g. Yhdiste sisältää

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10 Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko 25.10 klo 8-10 Jokaisesta oikein ratkaistusta tehtävästä voi saada yhden lisäpisteen. Tehtävä, joilla voi korottaa kotitehtävän

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan

Lisätiedot

Luento 9 Kemiallinen tasapaino CHEM-A1250

Luento 9 Kemiallinen tasapaino CHEM-A1250 Luento 9 Kemiallinen tasapaino CHEM-A1250 Kemiallinen tasapaino Kaksisuuntainen reaktio Eteenpäin menevän reaktion reaktionopeus = käänteisen reaktion reaktionopeus Näennäisesti muuttumaton lopputilanne=>

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT JA PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei

Lisätiedot

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio.

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio. REAKTIOT JA TASAPAINO, KE5 REAKTIOTASAPAINO Johdantoa: Usein kemialliset reaktiot tapahtuvat vain yhteen suuntaan eli lähtöaineet reagoivat keskenään täydellisesti reaktiotuotteiksi, esimerkiksi palaminen

Lisätiedot

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio:

Ei välttämättä, se voi olla esimerkiksi Reuleaux n kolmio: Inversio-ongelmista Craig, Brown: Inverse problems in astronomy, Adam Hilger 1986. Havaitaan oppositiossa olevaa asteroidia. Pyörimisestä huolimatta sen kirkkaus ei muutu. Projisoitu pinta-ala pysyy ilmeisesti

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

Luku 15 KEMIALLISET REAKTIOT

Luku 15 KEMIALLISET REAKTIOT Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 15 KEMIALLISET REAKTIOT Copyright The McGraw-Hill Companies, Inc. Permission required for

Lisätiedot

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen CHEM-A1200 Kemiallinen rakenne ja sitoutuminen Hapot, Emäkset ja pk a Opettava tutkija Pekka M Joensuu Jokaisella hapolla on: Arvo, joka kertoo meille kuinka hapan kyseinen protoni on. Helpottaa valitsemaan

Lisätiedot

Oletetaan kaasu ideaalikaasuksi ja sovelletaan Daltonin lakia. Kumpikin seoksen kaasu toteuttaa erikseen ideaalikaasun tilanyhtälön:

Oletetaan kaasu ideaalikaasuksi ja sovelletaan Daltonin lakia. Kumpikin seoksen kaasu toteuttaa erikseen ideaalikaasun tilanyhtälön: S-445, ysiikka III (Sf) entti 653 Astiassa on, µmol vetyä (H ) ja, µg tyeä ( ) Seoksen lämötila on 373 K ja aine,33 Pa Määritä a) astian tilavuus, b) vedyn ja tyen osaaineet ja c) molekyylien lukumäärä

Lisätiedot

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14)

8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) 8 Yritys kilpailullisilla markkinoilla (Mankiw & Taylor, Ch 14) Markkinat ovat kilpailulliset silloin, kun siellä on niin paljon yrityksiä, että jokainen pitää markkinoilla määräytyvää hintaa omista toimistaan

Lisätiedot

Teddy 10. harjoituksen malliratkaisu syksy 2011

Teddy 10. harjoituksen malliratkaisu syksy 2011 Teddy. harjoituksen malliratkaisu syksy 2. Tarkastellaan reaktioketjua k O 3 O2 +O () O 2 +O k O 3 (2) O 3 +O k 2 O 2 +O 2 (3) Vakiotilaolettamuksen mukaan välituotteen konsentraatio pysyy vakiona lyhyen

Lisätiedot

7 Termodynaamiset potentiaalit

7 Termodynaamiset potentiaalit 82 7 ermodynaamiset potentiaalit 7-1 Clausiuksen epäyhtälö Kappaleessa 4 tarkasteltiin Clausiuksen entropiaperiaatetta, joka määrää eristetyssä systeemissä (E, ja N vakioita) tapahtuvien prosessien suunnan.

Lisätiedot

Lasku- ja huolimattomuusvirheet - ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet - ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 DI-kemian valintakoe 31.5. Malliratkaisut Lasku- ja huolimattomuusvirheet - ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim.

Lisätiedot

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006 TKK, TTY, LTY, Y, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 1.5.006 1. Uraanimetallin valmistus puhdistetusta uraanidioksidimalmista koostuu seuraavista reaktiovaiheista: (1) U (s)

Lisätiedot

Bensiiniä voidaan pitää hiilivetynä C8H18, jonka tiheys (NTP) on 0,703 g/ml ja palamislämpö H = kj/mol

Bensiiniä voidaan pitää hiilivetynä C8H18, jonka tiheys (NTP) on 0,703 g/ml ja palamislämpö H = kj/mol Kertaustehtäviä KE3-kurssista Tehtävä 1 Maakaasu on melkein puhdasta metaania. Kuinka suuri tilavuus metaania paloi, kun täydelliseen palamiseen kuluu 3 m 3 ilmaa, jonka lämpötila on 50 C ja paine on 11kPa?

Lisätiedot

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa

Normaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu

Lisätiedot

2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y =

2 dy dx 1. x = y2 e x2 2 1 y 2 dy = e x2 xdx. 2 y 1 1. = ex2 2 +C 2 1. y = BM20A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 2, Kevät 207 Päivityksiä: Tehtävän 4b tehtävänanto korjattu ja vastauksia lisätty.. Ratkaise y, kun 2y x = y 2 e x2. Jos y () = 0 niin mikä on ratkaisu

Lisätiedot

2. Uusiutuvat luonnonvarat: Kalastuksen taloustiede

2. Uusiutuvat luonnonvarat: Kalastuksen taloustiede YLE5 / YET-09 Luonnonvarataloustieteen jatkokurssi. Uusiutuvat luonnonvarat: alastuksen taloustiede Marko Lindroos & Maija Holma Uusiutuvat luonnonvarat alastuksen taloustiede: Luentoteemat.1 Johdanto.

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7.

2CHEM-A1210 Kemiallinen reaktio Kevät 2017 Laskuharjoitus 7. HEM-A0 Kemiallinen reaktio Kevät 07 Laskuharjoitus 7.. Metalli-ioni M + muodostaa ligandin L - kanssa : kompleksin ML +, jonka pysyvyysvakio on K ML + =,00. 0 3. Mitkä ovat kompleksitasapainon vapaan metalli-ionin

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 406 6 laskuharjoituksien esimerkkiratkaisut Ratkaistaan differentiaaliyhtälö y = y () Tässä = d dy eli kyseessä on lineaarinen kertaluvun differentiaaliyhtälö: Yhtälön () homogenisoidulle

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Lämpö- eli termokemiaa

Lämpö- eli termokemiaa Lämpö- eli termokemiaa Endoterminen reaktio sitoo ympäristöstä lämpöenergiaa. Eksoterminen reaktio vapauttaa lämpöenergiaa ympäristöön. Entalpia H kuvaa systeemin sisäenergiaa vakiopaineessa. Entalpiamuutos

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää

Lisätiedot

Energiatehokkuuden analysointi

Energiatehokkuuden analysointi Liite 2 Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Energiatehokkuuden analysointi Liite loppuraporttiin Jani Isokääntä 9.4.2015 Sisällys

Lisätiedot

Teddy 2. välikoe kevät 2008

Teddy 2. välikoe kevät 2008 Teddy 2. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 3 ratkaisuiksi SMG-4 Sähkömagneettisten jäjestelmien lämmönsiito Ehdotukset hajoituksen 3 atkaisuiksi 1. Voidaan kohtuullisella takkuudella olettaa, että pallonmuotoisessa säiliössä lämpötila muuttuu vain pallon säteen

Lisätiedot

Käytetään lopuksi ideaalikaasun tilanyhtälöä muutoksille 1-2 ja 3-1. Muutos 1-2 on isokorinen, joten tilanyhtälöstä saadaan ( p2 / p1) = ( T2 / T1)

Käytetään lopuksi ideaalikaasun tilanyhtälöä muutoksille 1-2 ja 3-1. Muutos 1-2 on isokorinen, joten tilanyhtälöstä saadaan ( p2 / p1) = ( T2 / T1) LH0- Lämövoimakoneen kiertorosessin vaiheet ovat: a) Isokorinen aineen kasvu arvosta arvoon 2, b) adiabaattinen laajeneminen, jolloin aine laskee takaisin arvoon ja tilavuus kasvaa arvoon 3 ja c) isobaarinen

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus Ensimmäisen asteen yhtälö: :n korkein eksponentti = 1 + 5 = 4( 3) Toisen asteen yhtälö: :n korkein eksponentti = 3 5 + 4 = 0 Kolmannen asteen yhtälö: :n korkein

Lisätiedot

Integrointialgoritmit molekyylidynamiikassa

Integrointialgoritmit molekyylidynamiikassa Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin

Lisätiedot