2. Termodynamiikan perusteet

Koko: px
Aloita esitys sivulta:

Download "2. Termodynamiikan perusteet"

Transkriptio

1 FYSA241, kevät 2012 Tuomas Lappi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl Termodynamiikan perusteet 1

2 TD ja SM TD voidaan johtaa statistisesta fysiikasta. Tässä kohdassa noudatamme kuitenkin hetken historiallista järjestystä ja esittelemme TD:n ilman mikroskooppista taustaa. TD kuitenkin toimii myös systeemeille, joiden mikroskooppista rakennetta ei ymmärretä. Muistutus: Klassinen TD Termodynaamisten muuttujien välillä vallitsee 4 pääsääntöä (teorian postulaatit) tilanyhtälö (systeemistä riippuva yhteys) 2

3 TD muuttujat Termodynaamiset muuttujat Ovat makrotilaa karakterisoivia suureita. Ekstensiivinen suure on verrannollinen systeemin kokoon, esim: E sisäenergia V tilavuus N hiukkasten määrä M magnetoituma S entropia = tästä lisää myöhemmin Intensiivinen suure on riippumaton systeemin koosta, esim: T lämpötila ρ tiheys P paine (muistutus: P = F/A, voima pinta-alayksikköä kohti) B magneettikenttä µ kemiallinen potentiaali (tarvitaan, kun N muuttuu, osa B) 3

4 Tasapainon lajit Muistutus: määrittelimme TD tasapainon (TDTP) TDTD:ssä systeemin makrotila ei muutu spontaanisti Relaksaatioaika = aika, joka kuluu TDTP:n saavuttamiseen. Tasapainon lajeja Kemiallinen tasapaino: hiukkasten lukumäärä ja laji ei muutu (µ vakio) Mekaaninen tasapaino: ei mekaanista työtä = P vakio, hyvin määritelty Terminen tasapaino: ei lämmön johtumista = T vakio, hyvin määritelty muuttuja Mitä on lämpö? Järjestelmän kokonaislämpö ei ole hyvin määritelty käsite sen sijaan energian siirto lämpönä (ts. energian muutos lämmön johtumisena) on. Karvalakkiselitys: atomaarinen epäjärjestynyt energian siirto (vrt. mekaninen työ = järjestynyttä energiaa) 4

5 Nollas pääsääntö, lämpötila Lämpötilan olemassaolon hyvin määriteltynä suureena on (jälkikäteen) huomattu vaativan erillisen postulaattinsa: Nollas pääsääntö TD0: Terminen tasapaino on transitiivista. A on tasapainossa B:n kanssa ja B tasapainossa C:n kanssa = A on tasapainossa C:n kanssa. TD:ssä lämpötila määritellään lämpömittarin avulla, TD0 takaa että näin voidaan tehdä. 1. Rakennetaan lämpömittari, esim. elohopeaa lasiputkessa 2. Järjestelmän lämpötila mitataan saamalla mittari termiseen tasapainoon sen kanssa. 3. Jos mittari on yhtä aikaa TP:ssä A:n ja C:n kanssa, on sekä 3.1 A ja C samassa lämpötilassa (sama mittarilukema) 3.2 TD0: A ja C termisessä tasapainossa = ei lämmön johtumista Näin lämpötilan määritelmä on yhteydessä termiseen tasapainoon Tasapaino=ei energian siirtoa, yhteys mekaniikan energiaan. 5

6 Ideaalikaasu Valaisevampi lämpötilan käsite saadaan klassisesta ideaalikaasusta. Historiallisesti kokeelliset havainnot kaasulle: Boyle P 1/V (T vakio) Gay-Lussac P T (V vakio) Charles V T (P vakio) Nämä voidaan yhdistää klassisen ideaalikaasun tilanyhtälöksi PV = Nk B T Yksiköistä Yllä N on kaasumolekyylien lukumäärä. Voidaan mitata lukumäärää mooleissa h (1 mooli=n A hiukkasta), jolloin N moolimäärä n = N/N A ja PV = [N A k B ]T = nrt N A i Boltzmannin vakio k B ei ole varsinainen luonnonvakio, vaan mittayksiköiden muunnoskerroin Kelvinin ja Joulen välillä. = Voitaisiin ottaa T :n yksiköksi J tai ev, jolloin asetetaan k B 1. (Tilanyhtälön yksiköt ovat energian, [PV ] =J.) 6

7 Ideaalikaasu lämpömittarina PV = Nk B T Ideaalikaasu lämpömittarina, absoluuttinen nollapiste Ideaalikaasun laajenemista voidaan käyttää hyväksi ja rakentaa kaasulämpömittari. Olennainen ero elohopea tms. mittariin: asteikon nollekohta ei ole enää mielivaltainen, vaan kiinnitetty: P 0; V vakio tai V 0; P vakio. = Olemassa absoluuttinen nollapiste (Oikeasti fysikaalinen kaasu ei käyttäydy klassisen ideaalikaasun tavoin, kun T 0, vaan kvantti-ilmiöt tulevat tärkeiksi. Käytännössä täytyy siis tehdä mittauksia suuremmilla lämpötiloilla ja määritellä nollapiste ekstrapolaationa: Jos PV = Nk B T pätisi pienillä T :llä, niin absoluuttinen nollapiste on se lämpötila, jolla P 0 kun V vakio tai V 0 kun P vakio. Kuva taululle.) 7

8 Lämpötilan mittaaminen Celsius- ja Fahrenheit-asteikot vaativat lämpömittarin kalibroimista kahdessa pisteessä. Esim Celsius: veden sulaminen 0 C ja höyrystyminen 100 C normaalipaineessa. Ideaalikaasu: absoluuttinen nolla = Tarvitsee valita vain yksi kalibraatiopiste Lämpötilan yksiköt SI-järjestelmässä yksikkö Kelvin. Määritellään: veden kolmoispiste 273,16K Kelvinin yhteys muihin yksikköihin Veden faasidiagramma k B = J/K = 1K= J k B = ev/k = 1K= ev. 8

9 Tilamuuttujat, funktiot, yhtälöt Tilamuuttujat Valitut riippumattomat TD muuttujat, määräävät makrotilan. Tilanfunktiot TD suureet, jotka riippuvat vain makrotilasta (eli tilamuuttujista) Tilanyhtälö Tilanmuuttujien keskinäisiä riippuvuuksia, esim Ideaalikaasu PV = Nk B T Van der Waals-kaasu (P + a N2 )(V bn) = Nk V 2 B T Kiinteä kappale V = V 0 (1 + αt κp) Viriaalikehitelmä: tilanyhtälö tiheyden potenssisarjana: P = k B T (ρ + a 2 (T )ρ ) Lasketaan mikroskopiasta tai määritetään kokeellisesti Muuttujien valinta Tarkastelemme alkuvaiheessa (E, V, N)-systeemiä, eli tilamuuttujat energia, tilavuus ja hiukkasten määrä. Esim. kaasuille nämä riittävät määrittämään makrotilan. Muut, kuten P, T voidaan sitten ratkaista tilanyhtälöistä. Esim 1-atomiselle ideaalikaasulle E = 3 2 Nk BT (palataan tähän) PV = Nk B T Kyseessä on siis valinta, myöhemmin kurssilla valitaan eri tavalla 9

10 Prosessit Reversiibeli prosessi: järjestelmä koko prosessin ajan TDTP:ssä. Oltava hidas relaksaatioaikaan verrattuna Tilanyhtälö voimassa koko ajan Irreversiibeli ei reversiibeli (Esim. liian nopeasti, hystereesiä (muistia) jne.) Spontaani ilman ulkoisten olosuhteiden muutosta (kohti tasapainoa; tasapainossa ei spontaaneja prosesseja.) Mikä pidetään vakiona: terminologiaa Isoterminen vakiolämpötilassa Isobaarinen vakiopaineessa Isokoorinen vakiotilavuudessa Adiabaattinen eli isentrooppinen: lämpöä ei siirry eli entropia vakio 10

11 Energian säilyminen Systeemiin voidaan siirtää energiaa tekemällä työtä tai lämmittämällä. Energian on säilyttävä. F E Q TD1, I pääsääntö: energian säilyminen Systeemin energian infinitesimaalinen muutos on summa systeemiin tehdystä työstä d W ja siihen johdetusta lämmöstä d Q Huom etumerkit: de = d W + d Q d W > 0: ympäristö tekee työtä eli luovuttaa energiaa järjestelmälle d W < 0: järjestelmä luovuttaa energiaa eli tekee työtä 11

12 Reversiibeli työ F dx A P Työ reversiibelissä prosessissa Työnnetään mäntää voimalla F = PA matka dx = työ d W = F dx = PA dx = P dv d W rev. = P dv F P P + P A dx Työ irreversiibelissä prosessissa Systeemi ei ehdi tasapainottua, männän takana ylipaine P + P d W irr. > P dv 12

13 Energia on tilamuuttuja Työ ja lämpö eivät tilanmuuuttujia de = d W + d Q Järjestelmän sisäenergia E on tilamuuttuja, notaatio de W ja Q ovat erillisiä suureita energian siirossa, mutta eivät erillisiä tilamuuttujia = notaatio d W E E = Q = UI t E E = W = UI t (Myös sähkötyö on U Q I U I työtä = sama energia voitaisiin sähkömoottorilla muuttaa mekaaniseksi työksi.) Prosessin jälkeen järjestelmä ei muista kumpaa sai: työtä vai lämpöä. 13

14 Kaasun puristaminen, työ, lämpö, sisäenergia P B C 2 C 1 A Reversiibeli puristus A:sta B:hen, tehty työ Z B Z B Z A W = d W = dv P = dv P A A B (= pinta-ala käyrän alla) Työ riippuu tiestä, W 1 > W 2. E tilanfunktio = muutos ei riipu polusta E 1 = E 2 = E B E A W 1 > W 2 TD1: E = W + Q = Q = E W. V = Q 1 < Q 2, siirtyvä lämpö riippuu tiestä, ei tilanfunktio. Etumerkkimuistutus dv < 0 = W > 0. Kaasuun tehdään työtä (puristetaan) Toiseen suuntaan: dv > 0 = W < 0 Kaasu tekee työtä (laajetessaan) 14

15 Syklinen prosessi P B C 1 Kiertoprosessi A:sta B:hen reittiä 1, takaisin reittiä 2. Tehty työ Z W = d W C 1 +C 2 Z = Z dv P dv P C2 A = C 1 C 2 Z A B dv (P 1 P 2 ) V Koko kierrossa E = 0 = Q = W. (= pinta-ala renkaan sisällä) Etumerkit Tässä tapauksessa W > 0, Q < 0, eli järjestelmään tehdään työtä ja se luovuttaa lämpöä: kone muuttaa työtä lämmöksi. Moottorissa sykli myötäpäivään, jolloin kone muuttaa lämpöä työksi. 15

16 Esimerkki: ideaalikaasun isoterminen laajeneminen Tyypillisiä ideaalikaasun laajenemis/kokoonpuristumisprosesseja: Isoterminen ( dt = 0) laajeneminen / kokoonpuristuminen Adiabaattinen ( d Q = 0) laajeneminen / kokoonpuristuminen Käytännössä usein lämmön johtuminen on hidasta, nopeat prosessit ovat adiabaattisia. Esim. ääniaalto: värähtelyliike, jossa ilma puristuu ja laajenee adiabaattisesti. Isoterminen laajeneminen PV = Nk B T = vakio = P = Nk BT V Z V1 Z V1 W 0 1 = dvp(v ) = Nk B T V 0 V 0 dv V = Nk BT ln V 0 V 1 Ideaalikaasulle energia riippuu vain hiukkasmäärästä ja lämpötilasta (ei paineesta/tilavuudesta) eli E = E(N, T ) = isotermisessä prosessissa de = 0 ja d Q = d W 16

17 Esimerkki: ideaalikaasun adiabaattinen laajeneminen Adiabaattinen laajeneminen «d Q = 0 = P dv TD1 3 = de = d 2 PV = 3 (P dv + V dp) 2 = 5 3 dv V = dp P = PV 5/3 = P 0 V 5/3 0 = 5 3 ln V V 0 = ln P P 0 Ns. adiabaattinen tilanyhtälö PV 5/3 =vakio Nyt Nk B T = PV = PV 5/3 /V 2/3 = T 1 V 2/3 Puristettaessa (V ) adiabaattisesti P nousee nopeammin kuin isotermisessä prosessissa. Syy: nyt lämpöä ei johdy pois = T nousee, mikä itsessään nostaa painetta. 17

18 Responssifunktiot Vastefunktio eli responssifunktio Kuvaa järjestelmän vastetta ulkoisten parametrien muutoksiin. Määritellään käytännössä tilanfunktion osittaisderivaattana Riippumattomia tilanmuuttujia on monta (tällä kurssilla tyypillisesti 3) = määriteltävä, mitkä tilanmuuttujat/funktiot pidetään vakiona. (Oletetaan koko ajan reversiibeliys ja N=vakio) Esimerkkejä: Huom! notaatio y alaindeksisuure vakiona derivoitaessa. x z Lämpokapasiteetti vakiotilavuudessa C V = ` E T tai V,N vakiopaineessa C P = (E+PV ) T P,N ` Kokoonpuristuvuus isoterminen κ T = 1 V V P ` tai T,N adiabaattinen κ S = 1 V V P S,N (S = entropia vakio = adiabaattinen, palataan tähän) ` Lämpölaajenemiskerroin vakiopaineessa α = 1 V V T P,N 18

19 Lämpökapasiteetti Totuttu: lämpökapasiteetti on lämmitysenergia/lämpötilan muutos. Lämpö Q ei ole tilanmuuttuja, joten tämä ei riitä hyväksi termodynaamiseksi määritelmäksi (Q ei ole hyvin määritelty järjestelmän ominaisuus). Sen sijaan vakiotilavuudessa d Q dv =0 = de, joten määritellään Lämpökapasiteetti vakiotilavuudessa on sisäenergian muutos (vaste) lämpötilan (ulkoinen parametri) muuttuessa, olettaen että järjestelmä pidetään vakiotilavuudessa. C V = «E T V,N eli syst. vaste z } { d Q dv =0 = de = C V ulk. muutos z} { dt 19

20 Lämpökapasiteetti vakiopaineessa Jos nyt sähkövastuksella lämmitetään huoneilmaa, voidaanko käytää C V :tä lämpötilan laskemiseen? Ei, huoneilmassa P vakio, ja kaasu laajenee lämmetessään. (Myös kiinteät, nesteet, mutta paljon vähemmän.) Lämpökapasiteetti vakiopaineessa Laajeneminen vaatii energiaa (P dv ) = vakiopaineessa lämpötilan nostoon vaaditaan enemmän energiaa kuin vakiotilavuudessa. Isobaariselle prosessille määritellään lämpökapasiteetti vakiopaineessa C P : C P dt dp=0 = d Q = de + P dv = C P = E T «P,N + P joka kertoo tarvittavan lämmön määrän lämpötilan nostamiseksi vakiopaineessa. V T «, P,N 20

21 Ideaalikaasun lämpökapasiteetti Sisäenergia riippuu vain T :stä (ei V :stä eikä P:stä). E = 3 ««E E 2 Nk BT = = T T V (P, T, N) = Nk BT P C V = 3 2 Nk B C P = V,N = P « Nk B = 5 2 Nk B P,N = 3 2 Nk B «V = Nk B T P,N γ = C P C V = 5 3 Tämä on adiabaattisessa tilanyhtälössä PV γ =vakio esiintyvä eksponentti. Moniatominen kaasu Tämä pätee kaasulle, jonka molekyylit ovat yksiatomisia, eli ei pyörähdysliikettä. Jos myös molekyylien pyörähdysliikkeeseen voi varastoitua energiaa, on C V > 3 2 Nk B; mutta edelleen C P = C V + Nk B. 21

22 Osittaisderivaattaharjoituksia Osittaisderivaattapyöritystä Tätä harjoitellaan lisää osassa 4 (TD potentiaalit). Matemaattisesti voidaan johtaa relaatiota esim. responssifunktioiden välille. Esimerkkejä: oletetaan riippumattomat muuttujat x ja y, sekä z(x, y), w(x, y). «x = y z» «1 y x z Perustelu: ehto z=vakio kiinnittää käyrän x, y-tasossa, jolloin yhden muuttujan funktio y(x) tai x(y). Samoin x(w(y)): ««x x = y z w z «x y z «y z x «w y z «z = 1 x y Lasketaan dz(x, y) dx:n ja dy:n avulla, taululle; kuva! 22

23 Integroivan tekijän tarve TD1:ssä esiintyvistä differentiaaleista d Q ja d W esitimme reversiibeleille prosesseille työn tilanmuuttujien avulla: P dv. Miten voisi tehdä saman lämmölle? Tarvitaan uusi TD suure S, joka Kuvaa atomaarisen tason epäjärjestystä eli lämpöliikettä On ekstensiivinen (kuten V ) On tilanfunktio, eli S(E, V, N) Tämä epäjärjestyksen mitta S on nimeltään entropia. S kasvaa, kun järjestelmään johdetaan lämpöä: d Q ds. Mikä on verrannollisuusikerroin? Yritetään arvailla. Liittyy lämpöön = mukana T. Kvanttimikrotilat: T pieni = melkein kaikki hiukkaset perustilalla. Pieni lämpö saa aikaan suuren epäjärjestyksen lisäyksen. T iso = epäjärjestys on valmiiksi suuri. Lisätty lämpö ei muuta paljoa. Yksinkertaisin yritys on itse asiassa oikea: ds rev. = d Q T Tämä ei ollut johto TD:ssä entropian käsite pitkällisen prosessin tulos Clausius SM:ssä määritellään ensin S, vasta sen avulla T (1/T on integroiva tekijä, joka tekee d Q:sta tilanmuuttujan differentiaalin ds.) 23

24 Entropia ensimmäisessä pääsäännössä TD1 reversiibelille prosessille Yleisessä tapauksessa myös hiukkasluku muuttuu, ja ensimmäinen pääsääntö esitetään yleensä muodossa: de = T ds P dv + µ dn Irreversiibeli muutos (Palataan taas tilanteeseen dn = 0) de = d W + d Q aina, energia säilyy de = T ds P dv aina, tilanmuuttujien välinen relaatio ei riipu tiestä d W > P dv irreversiibeli Näistä seuraa, että irreversiibelissä prosessissa d Q < T ds Kannattaa ajatella näin: reversiibelissä prosessissa entropia muuttuu vähiten 24

25 Lämmön siirtyminen, johdatusta toiseen pääsäntöön Tarkastellaan järjestelmiä: kuuma T h ja kylmä T c, välillä johtuu lämpöä. Arkikokemus: Kuuma kappale jäähtyy, kylmä lämpenee. Kaavana d Q h = d Q; d Q c = d Q > 0 Entropian avulla T h ds h = d Q; T c ds c = d Q z } { 1 Yhteenlaskettu entropia ds = ds h + ds c = 1 «z} { >0 d Q > 0 T c T h Vaihdetaan kuuma kylmä: edelleen ds > 0. Terminen tasapaino: T c = T h = ds = 0 Havaitaan: kokonaisentropia kasvaa, paitsi tasapainossa se ei muutu. Muistetaan myös Reversiibeli prosessi järjestelmä koko ajan tasapainossa Irreversiibeli prosessi entropia kasvaa enemmän kuin reversiibelissä >0 25

26 TD2 Termodynamiikan toinen pääsääntö Järjestelmän ja ympäristön kokonaisentropia ei voi pienentyä ds tot. 0 dt Yhtäsuuruus toteutuu vain reversiibelissä prosessissa = Tasapainotila on suurimman entropian tila Huom! Kokonaisentropia, järjestelmä + ympäristö. Filosofointia Newtonin mekaniikan maailmankuvalle outo tulos: mikroskooppiset lait eivät anna ajalle suuntaa. (Newtonin mekaniikka determinististä, voidaan kääntää maailmankaikkeus menemään taaksepäin.) Myöskin kvanttimekaniikassa dynamiikka on determinististä mutta epätarkkuusperiaatteesta saadaan vihje: aaltofunktiota ei voida mitata. Kysymys ei olekaan liikelaeista vaan tiedosta. Entropia mittaa epätietoisuutta mikrotilasta. Alussa mikrotilaa ei tunneta tarkasti; ajan kuluessa epätietoisuus lisääntyy. 26

27 TD3 Tähän asti on laskettu vain entropian muutoksia ds. Mistä voidaan tietää entropian arvo? (Eli integroimisvakio integraalissa S = R S ds? ) Oikea vastaus löytyy vasta SM:stä, mutta klassisessa TD:ssa sitä ei voida perustella mistään tähänastisesta; entropiassa voi aina olla joku mielivaltainen vakio. Kvanttisysteemillä (myös monen hiukkasen) on aina alin energiatila, perustila. Kun T 0, on järjestelmän oltava tässä tilassa. Yksi tila = ei epäjärjestystä, entropiaa. Saadaan TD3 Tunnetaan myös nimellä Nernstin teoreema lim S(T ) = 0 T 0 (Olettaen, että järjestelmällä on yksikäsitteinen eli degeneroitumaton energian alin taso, perustila. ) 27

28 Työtä lämmöksi, lämpöä työksi U E I On helppoa rakentaa kone, joka muuttaa työtä lämmöksi, esim. kitkan, resistanssin tms. välityksellä Entropian muutos ds = d Q T > 0 Voidaanko muuttaa lämpöä suoraan työksi? d Q < 0 d W > 0 = ei, entropia pienenisi. (Maxwellin demoni) Jossain täytyy entropian kasvaa. = On oltava kylmä lämpövarasto, jota lämmitetään. Syklisyys Huom! Tässä puhutaan koko ajan koneesta, joka palaa prosessin jälkeen alkutilaan (syklinen prosessi); eli työtä ei tehdä konetta kuluttamalla. (Kysymys: mieti esimerkki epäsyklisestä koneesta) 28

29 Carnot n kone T > Q > Q < T < W Kaksi lämpövarastoa Otetaan kuumasta (T >) lämpö Q > = T > S > Luovutetaan kylmään (T <) lämpö Q < = T < S < Kone tekee työn W = Q > Q < Entropia kasvaa: Q< T < Q> (Sijoitetaan Q < = Q > W, pieni manipulaatio). Saadaan hyötysuhde η W Q > T> T< T > T > 0. Carnot n ideaalikoneen hyötysuhde Ideaalikoneessa entropia säilyy, η suurin. Tämä tunnetaan Carnot n koneena, hyötysuhde η C = W Q > = T> T< T > Historiaa: Carnot johti tämän jo ennen TD2:n ymmärtämistä. Tulos osoittautui oikeaksi ja ymmärrettiin vasta jälkikäteen. 29

30 Toisen pääsäännön ekvivalentteja muotoja Toinen pääsääntö voidaan esittää monessa ekvivalentissa muodossa: 1. Kokonaisentropia kasvaa 2. Järjestelmää voi viedä poispäin TDTP:stä vain muuttamalla työtä lämmöksi (TDTP on maksimientropia: siitä voi mennä pois vain tekemällä työtä, ja kasvattamalla ympäristön entropiaa.) 3. Lämpö ei siirry kylmästä lämpövarastosta lämpimään ilman ulkoista työtä Clausius (Tätä tarkastelimme johdatteluna TD2:seen) 4. Ei voida rakentaa konetta, joka ottaa lämpöä kuumasta lämpövarastosta ja muuttaa sen työksi ilman, että osa lämmöstä lämmittää kylmää lämpövarastoa. Kelvin, joka ymmärsi että höyrykone ei toimi pelkästään kuumalla lämpösäiliöllä, vaan vaatii myös kylmän. 5. Kaikista kahden kiinteän lämpötilan välillä työskentelevistä lämpökoneista on Carnot n ideaalikoneella korkein mahdollinen hyötysuhde. 30

31 Jääkaappi, lämpöpumppu Vastaava lasku johtaa hyötysuhteisiin jääkaapille ja lämpöpumpulle Kylmästä (T <) lämpö Q < = T < S < T > Kuumalle (T >) lämpö Q > = T > S > Koneeseen tehtävä työ W = Q > Q < Q > Säiliöiden entropia: Q> T > Q< T < 0 W Jääkaappi Tarkoituksena jäähdytys, hyötysuhde Q < Q < W T < T > T < T < Lämpöpumppu Tarkoituksena lämmitys, hyötysuhde Q > W T > T > T < 31

32 Carnot n kone T, S-tasossa, ideaalikaasun P, V -tasossa S C B P A dt = 0 ds = 0 B D A ds = 0 D C dt = 0 T V (Pinta-ala=koneen Q > 0) (Pinta-ala = koneen W > 0) A B Tuodaan energiaa isotermisesti d Q = T AB S B C Jäähdytetään (laajennetaan) adiabaattisesti d Q = 0 C D Viedään energiaa isotermisesti: d Q = T CD S D A Lämmitetään (puristetaan) adiabaattisesti d Q = 0 32

33 Entropia lämmön johtumisessa T A T T B T Tarkastellaan kahta järjestelmää, termisessä kosketuksissa toisiinsa, mutta eristyksissä ympäristöstä. Oletetaan molempien lämpökapasiteetit C A = C B = C, alussa lämpötilat T A, T B, lopussa T Energian säilyminen: C A (T T A )+C B (T T B ) = 0 = T = T A + T B 2 Mitä tapahtuu entropialle? Prosessi on irreversiibeli, mutta entropia on tilanfunktio = Entropian muutos = entropia lopussa - entropia alussa = S voidaan laskea reversiibelisti. Z S = S A + S B = A Z d Q T + B d Q T = C A Z T T A Z dt T T +C B T B dt T = C ln T 2 T A T B = C ln (T A + T B ) 2 4T A T B 0, koska (T A T B ) 2 = (T A + T B ) 2 4T A T B 0 33

34 Kaasujen sekoitusentropia A A + B B Kaksi ideaalikaasua A ja B, sama T, alussa paineet P A, P B ja tilavuudet V A, V B. Poistetaan väliseinä, annetaan sekoittua mitä tapahtuu entropialle? Taaskin irreversiibeli prosessi (miksi?), mutta entropia on tilanmuuttuja = voidaan laskea reversiibeliä tietä. Eristetty = de = 0, dt = 0; luonnollisesti de A,B = 0, dt A,B = 0. = T ds = P dv = Nk B T dv ; erikseen A:lle ja B:lle V (Muistetaan kaasujen osapaine: lopussa P = P final A + P final B ; osapaineet laskevat laajetessa.) Z S = Z ds A + ds B = N A k B Z VA +V B V A = N A k B ln dv V + N Bk B 1 + V B V A Z VA +V B V B «+ N B k B ln dv V 1 + V A V B Tämä on ns. sekoitusentropia. Esim. V A = V B, S = (N A + N B )k B ln 2 «34

35 Huomioita entropialaskuista Sekoitusentropia: Gibbsin paradoksi Entä jos A ja B samaa kaasua = mitään ei tapahdu, S = 0. Tulkinta? Kvanttimekaniikan ratkaisu: saman kaasun molekyylejä ei voi identifioida. Lämmön johtuminen sekoitusentropia, havaintoja A+B kokonaisuutena eristetty järjestelmä: d Q = 0. Reversiibelissä prosessissa olisi ds = 0 Nyt ei reversiibeli, koska alkutila ei ole koko järjestelmän tasapainotila (Reversiibeli: koko ajan tasapainotilassa.) T ds d Q. Lasku laskettiin käyttäen entropian on ekstensiivisyyttä: S = S A + S B. Lämmönjohtoesimerkissä A ja B kaksi laatikkoa Sekoittumisessa A:n ja B:n molekyylit; ideaalikaasut eivät vuorovaikuta (eli A:n entropia ei riipu siitä, että samassa tilassa on B:tä.) Entropia on tilanmuuttuja S A ja S B riippuvat vain S A :n ja S B :n alku- ja loppuarvoista. Entropian muutos voidaan siis laskea olettaen, että A ja B päätyvät samaan lopputilaan reversiibeliä tietä. Sekoitusentropiassa lasketaan kuten A:lla ja B:llä olisi erilliset väliseinät, jotka liikuvat niin, että järjestelmät laajenevat reversiibelisti. 35

36 Klassisen ideaalikaasun entropia Pidetään N vakiona: de = 3 2 Nk B dt = T ds P dv Z P dv = S = + 3 Z T 2 T =vakio V =vakio Nk B dt T»Z dv = Nk B V + 3 Z 2 dt T = Nk B» ln V V ln T T 0 + S 0 Huomioita Integroimisvakiot jäävät määräämättä T 0, V 0, S 0 Pitäisi ottaa TD3:sta (S(T = 0) = 0), mutta ei voida logaritmin takia! = Klassinen ideaalikaasu ristiriitainen T 0! Tarvitaan kvanttimekaaninen mikroskooppinen kuvaus. Tähän palataan kurssin B-osassa Klassisen TD:n laskuissa esiintyy vain entropian muutoksia, ongelma TD3:n kanssa tulee vasta mikroskooppisessa kuvauksessa 36

2. Termodynamiikan perusteet

2. Termodynamiikan perusteet Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 2. Termodynamiikan perusteet 1 TD ja SM Statistisesta fysiikasta voidaan

Lisätiedot

2. Termodynamiikan perusteet

2. Termodynamiikan perusteet Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 2. Termodynamiikan perusteet 1 Termodynamiikka ja Statistinen Mekaniikka Statistisesta

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 4: Entropia Pe 4.3.2016 1 AIHEET 1. Klassisen termodynamiikan entropia 2. Entropian

Lisätiedot

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208

IX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208 IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.

Lisätiedot

6. Yhteenvetoa kurssista

6. Yhteenvetoa kurssista Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit

Luento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

19.6-7 Harvan kaasun sisäenergia ja lämpökapasiteetit

19.6-7 Harvan kaasun sisäenergia ja lämpökapasiteetit 19.6-7 Harvan kaasun sisäenergia ja lämpökapasiteetit Kokeelliset havainnot ja teoria (mm. luku 18.4) Ainemäärän pysyessä vakiona harvan kaasun sisäenergia riippuu ainoastaan sen lämpötilasta eli U = U(T

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi

Spontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä

Lisätiedot

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7 KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde

Luku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 4: entropia Pe 3.3.2017 1 Aiheet tänään 1. Klassisen termodynamiikan entropia

Lisätiedot

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1):

T H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1): 1 c 3 p 2 T H d b T L 4 1 a V Kuva 1: Stirling kiertoprosessi. Stirlingin kone Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista kts. kuva 1: 1. Työaineen ideaalikaasu isoterminen puristus

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Muistelua johdanto-osasta: Kvanttimekaniikassa

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit Statistinen fysiikka, osa A (FYSA241) uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty

Lisätiedot

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH

Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

= (nopeus) d(impulssi)

= (nopeus) d(impulssi) 1 Falk Ruppel, Entropiasta Energiamuodot Energian vaihto tapahtuu aina määrätyissä energiamuodoissa. Jokainen energiamuoto on sitä kautta määritelty, että vaihdettu energia on sidottu johonkin määrättyyn

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

Statistinen fysiikka, osa A (FYSA241)

Statistinen fysiikka, osa A (FYSA241) Käytännön asioita Taustaa Mikrotiloja Todennäköisyyslaskentaa Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone YN212 kl 2017 1 Käytännön asioita Taustaa Mikrotiloja Todennäköisyyslaskentaa

Lisätiedot

1 Clausiuksen epäyhtälö

1 Clausiuksen epäyhtälö 1 PHYS-C0220 ermodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Clausiuksen epäyhtälö Carnot n koneen syklissä lämpötilassa H ja L vastaanotetuille lämmöille Q H ja Q L pätee oisin ilmaistuna,

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:

Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin: Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu

Lisätiedot

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita

Termodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska

Lisätiedot

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa

Ekvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

Ekvipartitioteoreema

Ekvipartitioteoreema Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän

Lisätiedot

Ch 19-1&2 Lämpö ja sisäenergia

Ch 19-1&2 Lämpö ja sisäenergia Ch 19-1&2 Lämpö ja sisäenergia Esimerkki 19-1 Olet syönyt liikaa täytekakkua ja havaitset, että sen energiasisältö oli 500 kcal. Arvioi kuinka korkealle mäelle sinun pitää pitää kiivetä, jotta kuluttaisit

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2015 4. ermodynaamiset potentiaalit 1 ermodynaaminen tasapaino kanonisessa joukossa Mikrokanoninen

Lisätiedot

7 Termodynaamiset potentiaalit

7 Termodynaamiset potentiaalit 82 7 ermodynaamiset potentiaalit 7-1 Clausiuksen epäyhtälö Kappaleessa 4 tarkasteltiin Clausiuksen entropiaperiaatetta, joka määrää eristetyssä systeemissä (E, ja N vakioita) tapahtuvien prosessien suunnan.

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

4. Termodynaamiset potentiaalit

4. Termodynaamiset potentiaalit FYSA241, kevät 2012 uomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 4. ermodynaamiset potentiaalit 1 asapainotila Mikrokanoninen ensemble Eristetty järjestelmä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,

Lisätiedot

Clausiuksen epäyhtälö

Clausiuksen epäyhtälö 1 Kuva 1: Clausiuksen epäyhtälön johtaminen. Clausiuksen epäyhtälö otesimme Carnot n koneelle, että syklissä lämpötiloissa H ja L vastaanotetuille lämmöille Q H ja Q L pätee Q H H oisin ilmaistuna, Carnot

Lisätiedot

FYSA242 Statistinen fysiikka, Harjoitustentti

FYSA242 Statistinen fysiikka, Harjoitustentti FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella

Lisätiedot

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa 766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa

Lisätiedot

8. Klassinen ideaalikaasu

8. Klassinen ideaalikaasu Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 3: Lämpövoimakoneet ja termodynamiikan 2. pääsääntö Maanantai 13.11. ja tiistai 14.11. Milloin prosessi on adiabaattinen?

Lisätiedot

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)

2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 1 Tässä luvussa päästää käsittelemään lämmön ja mekaanisen työn välistä suhdetta. 2 Näistä molemmat ovat energiaa eri muodoissa, ja

Lisätiedot

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit

Luento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ

I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde... 2 1.2 Mikroskooppiset ja makroskooppiset teoriat... 3 1.3 Terminen tasapaino ja lämpötila... 5 1.4 Termodynamiikan

Lisätiedot

energian), systeemi on eristetty (engl. isolated). Tällöin sekä systeemiin siirtynyt

energian), systeemi on eristetty (engl. isolated). Tällöin sekä systeemiin siirtynyt 14 2 Ensimmäinen pääsääntö 2-1 Lämpömäärä ja työ Termodynaaminen systeemi on jokin maailmankaikkeuden osa, jota rajoittaa todellinen tai kuviteltu rajapinta (engl. boundary). Systeemi voi olla esimerkiksi

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2017

PHYS-A0120 Termodynamiikka syksy 2017 PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla

Lisätiedot

PHYS-A0120 Termodynamiikka. Emppu Salonen

PHYS-A0120 Termodynamiikka. Emppu Salonen PHYS-A0120 ermodynamiikka Emppu Salonen 1. joulukuuta 2016 ermodynamiikka 1 1 Lämpötila ja lämpö 1.1 ilanyhtälö arkastellaan kolmea yksinkertaista fluidisysteemiä 1, jotka koostuvat kukin vain yhdentyyppisistä

Lisätiedot

Statistinen fysiikka, osa A (FYSA241)

Statistinen fysiikka, osa A (FYSA241) Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 0. Käytännön asioita 1 Ajat, paikat Ajan tasalla olevat tiedot kurssin kotisivulta

Lisätiedot

3. Statistista mekaniikkaa

3. Statistista mekaniikkaa Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 3. Statistista mekaniikkaa 1 Mikrotilojen laskenta Kvanttimekaniikka: diskreetit

Lisätiedot

Statistinen fysiikka, osa A (FYSA241)

Statistinen fysiikka, osa A (FYSA241) Statistinen fysiikka, osa A (FYSA241 uomas Lappi tuomas.v.v.lappi@jyu.fi kl 2013 Käytännön asioita Ajat, paikat Ajan tasalla olevat tiedot kurssin kotisivulta http: //users.jyu.fi/ tulappi/fysa241kl13/.

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 13 Derivaatan määritelmä Määritelmä

Lisätiedot

1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja.

1. Johdanto. FYSA241, kevät Tuomas Lappi kl Huone: FL249. Ei kiinteitä vastaanottoaikoja. FYSA241, kevät 2012 Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2012 1. Johdanto 1 Ajat, paikat Luennot: 20h ma, ke klo 10.15, FYS1,, 9.1.-22.2 Demot: 10h, ke

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1

Mikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1 76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa

Lisätiedot

Luku Pääsääntö (The Second Law)

Luku Pääsääntö (The Second Law) Luku 3 2. Pääsääntö (he Second Law) Some things happen naturally, some things don t Spontaneous must be interpreted as a natural tendency that may or may not be realized in prac=ce. hermodynamics is silent

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena

Lisätiedot

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma

kertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN

Lisätiedot

Palautus yhtenä tiedostona PDF-muodossa viimeistään torstaina

Palautus yhtenä tiedostona PDF-muodossa viimeistään torstaina PHYS-A0120 Termodynamiikka, syksy 2018 Kotitentti Vastaa tehtäviin 1/2/3, 4, 5/6, 7/8, 9 (yhteensä viisi vastausta). Tehtävissä 1, 2, 3 ja 9 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla

Lisätiedot

S , Fysiikka III (Sf) tentti/välikoeuusinta

S , Fysiikka III (Sf) tentti/välikoeuusinta S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat

Lisätiedot

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI

Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission

Lisätiedot

Thermodynamics is Two Laws and a Li2le Calculus

Thermodynamics is Two Laws and a Li2le Calculus Thermodynamics is Two Laws and a Li2le Calculus Termodynamiikka on joukko työkaluja, joiden avulla voidaan tarkastella energiaan ja entropiaan lii2yviä ilmiötä kaikissa luonnonilmiöissä ja lai2eissa Voidaan

Lisätiedot

Isotermit ja isobaarit. Luku6 Tilanyhtälö. Kriittinen piste. Molekyylien välinen vuorovaikutus. Ideaalikaasun N V. Yleinen aineen

Isotermit ja isobaarit. Luku6 Tilanyhtälö. Kriittinen piste. Molekyylien välinen vuorovaikutus. Ideaalikaasun N V. Yleinen aineen Luku6 Tilanyhtälö Isotermit ja isobaarit paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta Yleinen aineen p= f T pinta (, ) akiolämpötilakäyrät saadaan leikkaamalla painepinta p suuntaisilla tasoilla.

Lisätiedot

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi

Fysiikan perusteet. Työ, energia ja energian säilyminen. Antti Haarto 20.09.2011. www.turkuamk.fi Fysiikan perusteet Työ, energia ja energian säilyminen Antti Haarto 0.09.0 Voiman tekemä työ Voiman F tekemä työ W määritellään kuljetun matkan s ja matkan suuntaisen voiman komponentin tulona. Yksikkö:

Lisätiedot

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä.

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä. .. Käänteisunktio.. Käänteisunktio Mikäli unktio : A B on bijektio, niin joukkojen A ja B alkioiden välillä vallitsee kääntäen yksikäsitteinen vastaavuus eli A vastaa täsmälleen yksi y B, joten myös se

Lisätiedot

Termofysiikan perusteet

Termofysiikan perusteet Termofysiikan perusteet Ismo Napari ja Hanna Vehkamäki T 2 Q 2 C W Q 1 T 1 (< T 2 ) Helsingin yliopisto, 2013 (Päivitetty 18. joulukuuta 2013) Sisältö 1 Johdanto 1 1.1 Termofysiikan osa-alueet.......................

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2

infoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2 infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä

Lisätiedot

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Faasipiirrokset, osa 1: Laatiminen sekä 1-komponenttipiirrosten tulkinta

Faasipiirrokset, osa 1: Laatiminen sekä 1-komponenttipiirrosten tulkinta Faasipiirrokset, osa 1: Laatiminen sekä 1-komponenttipiirrosten tulkinta Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 1 - Luento 3 Tavoite Tutustua faasipiirrosten kokeelliseen ja laskennalliseen

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä

kuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä Termodynamiikan peruskäsitteitä The Laws of thermodynamics: (1) You can t win (2) You can t break even (3) You can t get out of the game. - Ginsberg s theorem - Masamune Shirow: Ghost in the shell Systeemillä

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 3: Lämpövoimakoneet ja termodynamiikan 2. pääsääntö Maanantai 14.11. ja tiistai 15.11. Kurssin aiheet 1. Lämpötila ja lämpö

Lisätiedot

Entrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit

Entrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen

Lisätiedot

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 /

Tämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 7 / 30.10.2017 v. 03 / T. Paloposki Tämän päivän ohjelma: Entropia Termodynamiikan 2. pääsääntö Palautuvat ja palautumattomat prosessit 1 Entropia Otetaan

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 1: lämpötila, Boltzmannin jakauma Ke 22.2.2017 1 Richard Feynmanin miete If,

Lisätiedot

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia.

Biofysiikka Luento Entropia, lämpötila ja vapaa energia. Shannonin entropia. Boltzmannin entropia. Lämpötila. Vapaa energia. Biofysiikka Luento 7 1 6. Entropia, lämpötila ja vapaa energia Shannonin entropia Boltzmannin entropia M I NK P ln P S k B j1 ln j j Lämpötila Vapaa energia 2 Esimerkkiprobleemoita: Miten DNA-sekvenssistä

Lisätiedot

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta

Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Simo K. Kivelä, 15.4.2003 Luonnollisten lukujen laskutoimitusten määrittely Peanon aksioomien pohjalta Aksioomat Luonnolliset luvut voidaan määritellä Peanon aksioomien avulla. Tarkastelun kohteena on

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 /

ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 / ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 9 / 14.11.2016 v. 03 / T. Paloposki Tämän päivän ohjelma: Vielä vähän entropiasta... Termodynamiikan 2. pääsääntö Entropian rooli 2. pääsäännön yhteydessä

Lisätiedot

Fysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?

Fysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Fysiikan maailmankuva 2015 Luento 8 Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Ajan nuoli Aika on mukana fysiikassa niinkuin jokapäiväisessä

Lisätiedot