matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
|
|
- Esko Palo
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava
2 Yhteenlaskumenetelmän harjoittelua Joskus molemmat yhtälöt on kerrottava tai jaettava puolittain, jotta toinen tuntemattomista saadaan häviämään ja toinen ratkaistua. x+ y= ESIMERKKI Ratkaise yhtälöpari x+ y= 5 laskemalla. Ratkaisu Kerrotaan ylempi yhtälö luvulla ja alempi yhtälö luvulla, jotta yhteen laskettaessa tuntemattoman x sisältävät termit häviävät. x+ y= x+ y= 5 Lasketaan yhtälöt puolittain yhteen ja ratkaistaan tuntematon y. x+ y= + x+ 9y= 5 y= : y= Sijoitetaan y = ylempään yhtälöön ja ratkaistaan tuntematon x. x + = x = x = x = x Vastaus: = y= : Tuntematon x voitaisiin ratkaista myös yhteenlaskumenetelmän avulla. P U L M A Mitkä ovat numerot A ja B yhtälössä AAA AAA + AAA = AAABBB? 80
3 HARJOITUSTEHTÄVÄT. Ratkaise yhtälöpari yhteen laskemalla. x y a) += x+ y= b) x = y x y= 7 x+= y a) + x = y = : = + y = y = y = b). Ratkaise yhtälöpari yhteen laskemalla. + x y= 9 x = y 5 a) b) x+= y 0 x y= a) + x y= 9 x+= y 0 x+ y= 8 + x+ y= 0 = : = x + = 0 x = 0 x = : x =. Mitkä ovat ne kaksi lukua, joiden summa on ja erotus?. Pesäpallo ottelussa tehtiin 0 juoksua. Toinen joukkue teki juoksua enemmän. Ratkaise juoksujen lukumäärät. KOTITEHTÄVÄT 5. Ratkaise yhtälöpari. x y 9 a) += b) x = y x+= y x y= 7. Muodosta ja ratkaise yhtälöpari. 5x y x 5y 8. Kahden luvun summa on 5 ja erotus 7. Muodosta yhtälöpari ja ratkaise se. 8. Pöydällä on arpakuutiota, joiden silmäluku on joko tai. Silmälukujen summa on 0. Kuinka monen arpakuution silmäluku on? 8
4 Yhtälöparilaskuja Yhtälöpari voidaan ratkaista sekä piirtämällä että laskemalla. Piirtämällä saadaan yhtälöparin ratkaisun likiarvo ja laskemalla tarkka arvo. ESIMERKKI x+ y= Ratkaise yhtälöpari y= x a) piirtämällä b) laskemalla. Ratkaisu a) Piirretään yhtälöparin yhtälöitä kuvaavat suorat samaan koordinaatistoon. + = 5 = 5 5 Suorat voidaan piirtää esimerkiksi taulukoimalla tai matematiikkaohjelmiston avulla. Suorien leikkauspiste on likimain (,;,), joten yhtälöparin x, ratkaisu on y,. b) Sijoitetaan yhtälöparin ylempään yhtälöön x + y = tuntemattoman y paikalle lauseke x ja ratkaistaan tuntematon x. x+ ( x ) = x+ x = x = x = 9 : x = 9 = Ratkaistaan tuntematon y sijoittamalla alempaan yhtälöön y = x tuntemattoman x paikalle luku : y = =. Vastaus: a) x, ja y, b) ja y= 8
5 ESIMERKKI Ratkaise yhtälöpari laskemalla. y= x+ x 0 a) b) x y = 0 + = y x+ y= Ratkaisu a) Sijoitetaan y = x + alempaan yhtälöön ja ratkaistaan se. x (x+ ) = 0 x x = 0 x + 0= 8 epätosi Yhtälöparilla ei ole ratkaisua. Yhtälöparin yhtälöiden kuvaajat ovat yhdensuuntaisia ja erillisiä suoria. b) Kirjoitetaan ylempi yhtälö ratkaistussa muodossa y = x + ja sijoitetaan se alempaan yhtälöön. x+ ( x+ ) = x x+ = x 0= 0 tosi Yhtälöparilla on äärettömän monta ratkaisua. Yhtälöparin yhtälöiden kuvaajat ovat sama suora y = x +. Vastaus: a) ei ratkaisua b) kaikki suoran y = x + pisteet HARJOITUSTEHTÄVÄT y= x. Ratkaise yhtälöpari y= x. 5 = = 5 5 8
6 y x. Ratkaise yhtälöpari = x+= y laskemalla.. Mitkä ovat ne kaksi lukua, joiden summa on ja erotus 5? x + = = : =. a) Määritä piirtämällä suorien y = x + ja y = x leikkauspisteen koordinaatit y= x+ 5. Ratkaise yhtälöpari x+= y 7 laskemalla. (, ) y= x+ b) Mikä on yhtälöparin y= x ratkaisu? P U L M A Mitkä ovat lukujonon,, 7, 5,,... kaksi seuraavaa lukua? 8. Ratkaise yhtälöpari x+ y= + x 5y= 0 laskemalla.
7 KOTITEHTÄVÄT 7. Ratkaise yhtälöpari laskemalla. x+= y 8 x+= y 9 a) b) x+= y y= x x+= y 8 a) x+= y ( ) x+= y 8 + = 8. Jaa 50 euroa kahteen osaan, joista toinen on euroa suurempi kuin toinen. x+= y 50 = x = + y = y = y = b) x + = 9 = 9 x = 9 x = : x = y = y = y = y x 9. Ratkaise yhtälöpari = y= x piirtämällä y= x 0. Ratkaise yhtälöpari y= x a) piirtämällä b) laskemalla. 85
8 5 Ongelmanratkaisua Tuntemattomien valinta vaikuttaa muodostettavaan yhtälöön tai yhtälöpariin, mutta ei varsinaisen ongelman ratkaisuun. ESIMERKKI Hevoslaitumella on yhteensä ratsastajaa ja hevosta. Niillä on yhteensä 9 jalkaa. Laske yhtälöparin avulla, kuinka monta ratsastajaa ja hevosta laitumella on. Ratkaisu Valitaan ratsastajien lukumäärä tuntemattomaksi x ja hevosten lukumäärä tuntemattomaksi y. Tuntemattomat voidaan valita usealla eri tavalla. Koska ratsastajia ja hevosia on yhteensä, saadaan yhtälö x + y =. Vastaavasti jalkojen lukumääristä saadaan yhtälö x + y = 9. x Muodostetaan yhtälöpari += y x+ y= 9 x+= y ( ) x+ y= 9 ja ratkaistaan se. x y 7 + = x+ y= 9 y= : y= Sijoitetaan y = ylempään yhtälöparin yhtälöön ja ratkaistaan x. x + = x = x = Vastaus: Ratsastajia on ja hevosia. 8
9 Yhtälöiden kuvaajia voidaan käyttää apuna, kun halutaan tutkia tai vertailla erilaisia asioita. ESIMERKKI Laiva lähtee liikkeelle klo.00, jolloin laivojen välimatka on 5 km. Mihin aikaan ja kuinka kaukana lähtöpisteestä laiva saavuttaa laivan? laiva laiva 0 km/h 5 km/h Ratkaisu Koska laivan nopeus on 0 km/h, sen etäisyys y lähtöpisteestä voidaan esittää yhtälönä y = 0x, jossa x on matkaan käytetty aika tunteina. Vastaavasti laivan lähtöhetkellä 5 km edellä oleva laiva kulkee nopeudella 5 km/h, joten sen etäisyyttä lähtöpisteestä kuvaa yhtälö y = 5x + 5. Esitetään laivojen etäisyydet laivan lähtöpisteestä suorina y = 0x ja y = 5x + 5 ja piirretään ne samaan koordinaatistoon etäisyys lähtöpisteestä (km) Laivat kulkevat tasaisilla nopeuksilla, joten niiden liikkeitä voidaan kuvata suorilla. 0 0 laiva 0 laiva 0 aika (h) Laiva saavuttaa edellä kulkevan laivan, kun suorat leikkaavat toisensa. Leikkauspisteessä (, 90) aikaa on kulunut tuntia ja laivan etäisyys lähtöpisteestä on 90 km. Kello on = Vastaus: Laiva saavuttaa laivan klo 5, jolloin etäisyys lähtöpisteeseen on 90 km. 87
10 HARJOITUSTEHTÄVÄT. Ratkaise yhtälöpari. x y 5 a) += x+ y= 0 b) x = y x+= y 5 a) + x+= y 5 x = y = : x = + y = 5 y = 5 y = b) + x+ y= 0 x+= y 5 ( ) x+ y= 0 8x y= 0 = : x = () + y = 5. a) Missä pisteessä suorat leikkaavat toisensa? 5 = 5 5 = + 5 (, ) y= x b) Mikä on yhtälöparin y= x+ ratkaisu?. Luokan oppilaasta tyttöjä on 5 enemmän kuin poikia. Kuinka monta tyttöä luokassa on? + y = 5 y = 88
11 . Laske lounaan ja jälkiruoan hinnat. 9. Millä x koordinaatin arvoilla a) punainen suora on ylempänä kuin violetti suora b) violetti suora on ylempänä kuin punainen suora c) suorat ovat samalla korkeudella? 7 5 = = a) b) 5. Kolme liikettä vuokraa polkupyöriä. Suorat kuvaavat hinnan riippuvuutta vuokra ajasta hinta ( ) Tanko c) 7. Otso ostaa makkaran ja pillimehun, ja ne maksavat yhteensä euroa. Liisi ostaa kolme makkaraa ja kaksi pillimehua, ja ne maksavat yhteensä 8 euroa. Laske makkaran ja pillimehun hinnat Ratas Ketju vuokra-aika (h) Mikä liike on edullisin, kun vuokra aika on a) h b) h c) 7 h? 89
12 KOTITEHTÄVÄT 8. Ratkaise yhtälöpari. x+ y= 8 a) b) x+ 7 y= 9 x+ y= x+= y a) + x+ y= 8 x+ y= = : y = x + = 8 x + = 8 x = 8 x = b) + x+ 7y= 9 x+= y ( 7) x+ 7y= 9 x 7y= 7 = : x = + 7y = 9 + 7y = 9 7y = 9 : y = Milloin kesätöitä kannattaa tehdä tuntipalkalla ja milloin urakkapalkalla? 90
13 9. Kahdesta luvusta toinen on kolme kertaa niin suuri kuin toinen. Lukujen summa on. Mitkä luvut ovat kyseessä? 0. Kuvaajassa on esitetty mopon ja,5 tuntia myöhemmin samaa reittiä lähteneen auton kulkemat matkat ajan funktiona. 0 0 matka (km) mopo auto aika (h) a) Kuinka kaukana mopo on auton lähtiessä matkaan? b) Kuinka pitkälle mopo ehtii ennen kuin auto saavuttaa sen? c) Kuinka kauan autolla menee mopon saavuttamiseen? d) Mitkä ovat mopon ja auton tuntinopeudet? P U L M A. Kaksi aikuisten lippua ja yksi lasten lippu maksavat yhteensä. Yksi aikuisten lippu ja yksi lasten lippu maksavat yhteensä 0. Laske lippujen hinnat. Oheinen kuvio muodostuu neljässä rivissä olevista pikkukolmioista, joita on yhteensä. Kuinka monta a) pikkukolmiota on kuviossa, joka muodostuu viidestä rivistä b) riviä on kuviossa, jossa on pikkukolmiota? 9
14 Kertaus Yhtälön ratkaisua. Ratkaise yhtälö. a) x + 7 = 5 7 Kaksi yhtälöä ja kaksi tuntematonta. Päättele värisauvojen x ja y pituudet. x x x x y x y 0 x = x = y = b) x + 0 = x =. Päättele x:llä merkityn punnuksen massa, kun vaaka on tasapainossa. kg kg kg 0 kg 8 Yhtälöpari ja sen ratkaisu 7. Onko lukupari (, 7) yhtälöparin x+= y 5 y= x+ ratkaisu? Perustele. = = 9 x = 5 Yhtälöharjoittelua. Ratkaise yhtälö. a) x 0 = b) 7x + = 5x + 9 c) x + 0 = x d) x = x. Ratkaise yhtälö. a) 0(x + ) = 0 b) (x ) = 8 Onko yhtälöllä aina ratkaisu? 5. Tutki, onko x = 5 yhtälön x + = x + 9 ratkaisu. Perustele. 9 Yhtälöparin ratkaiseminen piirtämällä y= x 8. Ratkaise yhtälöpari y= x piirtämällä
15 0 Yhtälöparin ratkaiseminen sijoitusmenetelmällä x 9. Ratkaise yhtälöpari = x y=. y = y = y = y = : Yhtälöparilaskuja y= x+. Ratkaise yhtälöpari y= x a) piirtämällä b) laskemalla.. Muodosta yhtälöpari ja laske värisauvojen x ja y pituudet. x x x y y y y y y y y Sijoitusmenetelmän harjoittelua x y 0. Ratkaise yhtälöpari = x+= y. Yhtälöparin ratkaiseminen yhteenlaskumenetelmällä x y. Ratkaise yhtälöpari += x = y. x+= y + x = y x = x = : 5 Ongelmanratkaisua 5. Kahden luvun summa on 9 ja erotus 5. Mitkä luvut ovat kyseessä?. Parkkipaikalla on polkupyöriä ja autoja yhteensä. Niissä on yhteensä 9 rengasta. Laske yhtälöparin avulla polkupyörien ja autojen lukumäärät. + y = y = y = Yhteenlaskumenetelmän harjoittelua. Ratkaise yhtälöpari. x y= 8 0x+ 8y= a) b) x+ y= 5 x y= 0 Kokoavia tehtäviä x 7. Ratkaise yhtälöpari = x+= y. 8. Markolla ja Juholla on rahaa yhteensä 87 euroa. Kuinka paljon rahaa on kummallakin pojalla, kun Markolla on rahaa kaksi kertaa niin paljon kuin Juholla? 9
16 Tiivistelmä Käsitteitä Polynomi on termeistä koostuva summalauseke. Yhtälöpari toteutuu, kun yhtälöt ovat samanaikaisesti voimassa. Esimerkkejä Polynomilausekkeen sieventäminen. a) (x 5) + (7x + 8) = x 5 + 7x + 8 = 0x + b) ( x + 8) (x ) = x + 8 x + = x + 9 c) x 5x = 5 x x = 0x d) x (5x ) = x 5x + x ( ) = 0x x e) (x + )( x + 5) = x ( x) + x 5 + ( x) + 5 = x + 5x 9x + 5 = x x + 5 f) x 8 = x + 8 = x + Yhtälöparin ratkaiseminen y. Ratkaistaan yhtälöpari = x + y= x+ piirtämällä. 5 (, ) = + = x Ratkaisu on suorien leikkauspiste = y=. x+= y. Ratkaistaan yhtälöpari x+ y= yhteenlaskumenetelmän avulla. x+= y x+ y= ( ) + x+= y x y= 8 5y= 5 :( 5) y= Sijoitetaan y = alempaan yhtälöön. x + = x = 9 x = 5 Vastaus: x = 5 ja y = 9
797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön
LisätiedotMetallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet?
1 Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? Tapa 1 Merkitään toista osaa x:llä, toista y:llä ja piirretään asiaa
LisätiedotKäy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
Lisätiedotmatematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
798 matematiikka E Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Otavan asiakaspalvelu Puh. 0800 17117
Lisätiedot1 Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f
Lisätiedot15 Yhtäsuuruuksia 1. Päättele x:llä merkityn punnuksen massa. a) x 4 kg. x 3 kg
1 15 Yhtäsuuruuksia Päättele :llä merkityn punnuksen massa. a) 1 kg 1 kg 1 kg 1 kg 1 kg 1 kg b) 1 kg 5 kg 5 kg 4 kg 3 kg Kuinka monta ympyrää jälkimmäisen vaa an oikealle puolelle on laitettava, jotta
LisätiedotPRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)
LisätiedotLaudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
LisätiedotHuippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
YHTÄLÖITÄ ALOITA PERUSTEISTA A. Luku on yhtälön ratkaisu, jos luku toteuttaa yhtälön. a) Sijoitetaan luku = yhtälöön. 6 = 0 0 = 0 Yhtälö on tosi, joten = on yhtälön ratkaisu. Vastaus: on b) Sijoitetaan
LisätiedotKahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.
10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
LisätiedotKERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +
Lisätiedot1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO
1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Lämpötila maanpinnalla nähdään suoran ja y-akselin leikkauspisteen y- koordinaatista, joka on noin 10. Kun syvyys on 15 km, nähdään suoralta, että lämpötila
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
LisätiedotMerkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =
Mikä X? Esimerkki: Merkitse yhtä puuta kirjaimella ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3 + 2 = 5 + = 5 + = 1. Merkitse yhtä päärynää kirjaimella ja kirjoita yhtälöksi? Mikä tulee vastaukseksi?
LisätiedotTekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
LisätiedotMAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
LisätiedotVastaukset. 8.7 Polynomilaskennan kertausta. 1. 2k + 3p + 3k + 4p = 5k + 7p. 2. x + x + x = 3x 1 x = x x x = x 2 x x x = x 3
Vastaukset 8.7 Polynomilaskennan kertausta 1. k + 3p + 3k + 4p = 5k + 7p. x + x + x = 3x 1 x = x x x = x x x x = x 3 3. a) 4x + (+6x) = 4x + 6x = 10x b) 4x + ( 6x) = 4x 6x = x c) 4x (+6x) = 4x 6x = x d)
LisätiedotLuku 4 Yhtälönratkaisun harjoittelua
Luku 4 Yhtälönratkaisun harjoittelua 4.1. Yhtälönratkaisu tehtäviä Tehtävä 4.1.1 Ratkaise yhtälöistä tuntematon muuttuja käyttäen oppimiasi muunnoksia. Valitse sarja. Sarja 1) 6 5 37 = 0 Kun eräs luku
Lisätiedot3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
LisätiedotKoontitehtäviä luvuista 1 9
11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:
LisätiedotSijoitusmenetelmä. 1.2. Yhtälöpari
MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat
LisätiedotKertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)
Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman
LisätiedotKahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
Lisätiedot1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400
Lisätiedotc) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
LisätiedotAiemmin opittu. Jakson tavoitteet. Ajankäyttö. Tutustu kirjaan!
Aiemmin opittu Perusopetuksen opetussuunnitelman mukaan seuraavat lukuihin ja laskutoimituksiin liittyvät sisällöt on käsitelty vuosiluokilla 3 5: kymmenjärjestelmä-käsitteen varmentaminen, tutustuminen
LisätiedotLukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]
Lukuväleistä MB Funktio - < < tai ]-,] < tai ]-,] Yksikäsitteisyys Täytyy tuntea/arvata tyyppi T 0. (sivu ) f() = a) f () = = 9 = 4 T 0. (sivu ) T 0. (sivu ) f() = f() = b) f(k) = k c) f(t + ) = (t + )
LisätiedotLuku 5 Kertaus. Tehtävä 1 Kerratkaa oppimanne asiat yhdessä keskustellen.
Luku Kertaus Tehtävä 1 Kerratkaa oppimanne asiat yhdessä keskustellen. - Samanmuotoiset termit - Lausekkeen ja yhtälön ero - Yhtälön totuusarvon tutkiminen - Yhtälön ratkaisun etsiminen - Yhtälön ratkaisun
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
Lisätiedotorigo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotPiste ja jana koordinaatistossa
607 Piste ja jana koordinaatistossa ANALYYTTINEN GEOMETRIA MAA5 Kertausta kurssi Eri asioiden välisten riippuvuuksien havainnollistamiseen kätetään usein koordinaatistoesitstä Pstakselilla riippuvan muuttujan
LisätiedotJuuri 10 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri 0 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..08 Kertaus K. a) Alapaineiden pienin arvo on ja suurin arvo 74, joten vaihteluväli on [, 74]. b) Alapaineiden keskiarvo on 6676870774
LisätiedotMAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.
MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise
Lisätiedot2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
LisätiedotMAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x
MAA0 A-osa. Ratkaise. a) x + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x a) Kirjoitetaan summa x + 6x yhteisen tekijän avulla tulomuotoon ja ratkaistaan yhtälö tulon nollasäännön avulla. x + 6x = 0 x(x + 6) =
Lisätiedot2 Yhtälöitä ja epäyhtälöitä
2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja
LisätiedotYHTÄLÖ JA EPÄYHTÄLÖ. Aiheet
YHTÄLÖ JA EPÄYHTÄLÖ Aiheet Yhtälö ja sen ratkaisu Yhtälön ratkaisu lisäämällä ja vähentämällä Yhtälön ratkaisu jakamalla Yhtälön ratkaisu kertomalla Vakiokirjaimia Testaa taitosi 1 Identtiset yhtälöt Ongelmanratkaisua
Lisätiedot5.3 Ensimmäisen asteen polynomifunktio
Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;
Lisätiedot3 Yleinen toisen asteen yhtälö ja epäyhtälö
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen
LisätiedotKenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)
Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
LisätiedotLAUSEKKEET JA NIIDEN MUUNTAMINEN
LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua
LisätiedotAloita Ratkaise Pisteytä se itse Merkitse pisteet saanut riittävästi pisteitä voit siirtyä seuraavaan osioon ei ole riittävästi
Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)
LisätiedotMAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele
LisätiedotHarjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.
MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö
LisätiedotTEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.
TEHTÄVIEN RATKAISUT Luku 4.1 183. a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. Lasketaan funktioon syötetyn luvun neliö: 5 = 5. Saatuun arvoon lisätään luku 1:
LisätiedotKertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a
Lisätiedot5.2 Ensimmäisen asteen yhtälö
5. Ensimmäisen asteen ytälö 5. Ensimmäisen asteen yhtälö Aloitetaan antamalla nimi yhtälön osille. Nyt annettavat nimet eivät riipu yhtälön tyypistä tai asteesta. Tarkastellaan seuraavaa yhtälöä. Emme
LisätiedotMATEMATIIKKA 3 VIIKKOTUNTIA
EB-TUTKINTO 010 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4 kesäkuuta 010 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa olla
LisätiedotKertaustehtävien ratkaisut
Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0
Lisätiedotjakokulmassa x 4 x 8 x 3x
Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:
Lisätiedot1.1 Funktion määritelmä
1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Lisätiedot4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
LisätiedotVastaukset. 1. kaksi. 3. Pisteet eivät ole samalla suoralla. d) x y = x e) 5. a) x y = 2x
Vastaukset. kaksi. y - - x - - 3. Pisteet eivät ole samalla suoralla. d) x y = x 0 0 3 3 e) 5. a) b) x y = x 0 0 3 6 98 6. a) b) x y = x + 0 3 5 6 7 7. a) b) x y = x - 3 0-3 - 3 3 8. 99 a) y = b) y = -
Lisätiedot4 LUKUJONOT JA SUMMAT
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 4 LUKUJONOT JA SUMMAT ALOITA PERUSTEISTA 45A. Määritetään lukujonon (a n ) kolme ensimmäistä jäsentä ja sadas jäsen a 00 sijoittamalla
LisätiedotLue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan.
MAA Koe..05 Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko. konseptin yläreunaan. A-osio. Ilman laskinta! MAOL:in taulukkokirja saa olla käytössä. Laske kaikki tehtävät. Vastaa tälle paperille.
LisätiedotKertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0
Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.
LisätiedotMAOL-pisteytysohje. Matematiikka lyhyt oppimäärä Kevät 2014
0..0 MAOL-pistetsohje Matematiikka lht oppimäärä Kevät 0 Hvästä suorituksesta näk, miten vastaukseen on päädtt. Ratkaisussa on oltava tarvittavat laskut tai muut riittävät perustelut ja lopputulos. Arvioinnissa
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotAMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA
AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä
LisätiedotJuuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.5.08 Kertaus K. a) Polynomi P() = + 8 on jaollinen polynomilla Q() =, jos = on polynomin P nollakohta, eli P() = 0. P() = + 8 = 54 08 +
LisätiedotKERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x
LisätiedotKaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!
MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki
Lisätiedot3 Määrätty integraali
Määrätty integraali. a) Muodostuva alue on kolmio, jonka kanta on. Kolmion korkeus on funktion arvo kohdassa, eli f() = = 6. Lasketaan A() kolmion pintaalana. 6 A() 6 Vastaus: A() = 6 b) Muodostuva alue
Lisätiedotn. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa.
MAA 12 kertaus Funktion kuvaaja n. asteen polynomilla on enintään n nollakohtaa ja enintään n - 1 ääriarvokohtaa. Funktion nollakohta on piste, jossa f () = 0, eli kuvaaja leikkaa -akselin. Kuvaajan avulla
LisätiedotPolynomi ja yhtälö Sievennä. a) 4a + 3a b) 11x x c) 9x + 6 3x. Ratkaisu a) 7a b) 12x c) 6x + 6
Polynomi ja yhtälö 103. Sievennä. a) 4a + 3a b) 11x x c) 9x + 6 3x a) 7a b) 12x c) 6x + 6 104. Ratkaise yhtälöt. a) 2x + 3 = 9 b) 8x + 2 = 5x + 17 a) 2x + 3 = 9 3 2x = 6 : 2 x = 3 b) 8x + 2 = 5x + 17 2
LisätiedotMatematiikan johdantokurssi, syksy 2017 Harjoitus 8, ratkaisuista
Matematiikan johdantokurssi, sks 07 Harjoitus 8, ratkaisuista. Olkoot f ja g reaalifunktioita. Mitä voidaan sanoa hdistetstä funktiosta g f, jos a) f tai g on rajoitettu? b) f tai g on jaksollinen? Ratkaisu.
LisätiedotYlioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan
LisätiedotMAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5
LisätiedotRatkaisuja, Tehtävät
ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden
LisätiedotMATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.
AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka
LisätiedotJuuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(
LisätiedotA Lausekkeen 1,1 3 arvo on 1,13 3,3 1,331 B Tilavuus 0,5 m 3 on sama kuin 50 l 500 l l C Luvuista 2 3, 6 7
1 Tuotteen hinta nousee ensin 10 % ja laskee sitten 10 %, joten lopullinen hinta on... alkuperäisestä hinnasta. alkuperäisestä hinnasta. YLIOPPILASTUTKINTO- LAUTAKUNTA 23.3.2016 MATEMATIIKAN KOE PITKÄ
Lisätiedot5 Kertaus. Tehtävä 1 Kerratkaa oppimanne asiat yhdessä keskustellen.
5 Kertaus Tehtävä 1 Kerratkaa oppimanne asiat yhdessä keskustellen. - Samanmuotoiset termit - Lausekkeen ja yhtälön ero - Yhtälön totuusarvon tutkiminen - Yhtälön ratkaisun etsiminen - Yhtälön ratkaisun
LisätiedotPERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA
PERUSKOULUN MATEMATIIKKAKILPAILU LOPPUKILPAILU PERJANTAINA 4..005 OSA 1 Laskuaika 30 min Pistemäärä 0 pistettä 1. Mikä on lukujonon seuraava jäsen? Minkä säännön mukaan lukujono muodostuu? 1 4 5 1 1 1
Lisätiedotyleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
LisätiedotCasion fx-cg20 ylioppilaskirjoituksissa apuna
Casion fx-cg20 ylioppilaskirjoituksissa apuna Grafiikkalaskin on oivallinen apuväline ongelmien ratkaisun tukena. Sen avulla voi piirtää kuvaajat, ratkaista yhtälöt ja yhtälöryhmät, suorittaa funktioanalyysin
Lisätiedot2 Yhtälöitä ja funktioita
Yhtälöitä ja funktioita.1 Ensimmäisen asteen yhtälö 50. Sijoitetaan yhtälöön 7 ja tutkitaan, onko yhtälö tosi. a) x 18 3 x 7 7 18 3 7 14 18 3 7 4 4 Yhtälö on tosi, joten luku 7 on yhtälön ratkaisu. b)
LisätiedotLisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
LisätiedotAluksi. 1.1. Kahden muuttujan lineaarinen yhtälö
Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä
LisätiedotNumeeriset menetelmät Pekka Vienonen
Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin
LisätiedotYhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
Lisätiedot1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
Lisätiedot1. taskulaskimen funktionäppäimet, pankkiautomaatti, postimerkkiautomaatti,...
Vastaukset:. taskulaskimen funktionäppäimet, pankkiautomaatti, postimerkkiautomaatti,.... a) 0 b) 0 c) ( a 3) 3. 0 5 8 3 4 4 4. a) 7 b) -7 c) d) 5 5. - 8-7 0 6 5 4 6. a) Tbsjub b) Eino c) - 7. a) b) 5
Lisätiedot11 MATEMAATTINEN ANALYYSI
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.
LisätiedotAMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE
AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Ongelmanratkaisu ja Tekstikoe HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja
Lisätiedot