Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
|
|
- Pasi Toivonen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit Kurssin jatkon kannalta on tärkeää, että suorien piirtäminen koordinaatistoon tulee palautettua mieleen kunnolla
2 Suoran yhtälö Suoran yhtälön ratkaistu muoto y = kx + b Ratkaistu muoto, kun pelkkä y on yksin toisella puolella yhtälöä ja muut termit ovat toisella puolella. Mitkä seuraavista ovat suoran yhtälön ratkaistuja muotoja? 1. y= 2x x= y y = 2 4. y = 3 - x 5. 2x + y - 4 = 0 6. y = 0 7. y = x 2-4 Vastaus: 1, 4, 6 Suoran yhtälön tunnistus: sisältää ainakin toisen muuttujia x ja y, sekä voi sisältää vakion (paljaan luvun). Muuttujilla ei saa olla eksponenttia.
3 Suoran yhtälön ratkaistusta muodosta y = kx + b saadaan selville 1. suoran ja y-akselin leikkauspiste (0,b) 2. Suoran kulmakertoimen k = (0,b) k y= y= 2x 2x x= y x= + y y = y 3 = - 3 x - x 2x + y - 4 = 0 2y = 2y 2 = 2 y = 0 y = 0 (0,1) (0,-1) (0,3) (0,4) (0,1) (0,0) y:n muutos = y 2 y 1 x:n muutos x 2 x 1 (muuttujan x kerroin) Mitkä ovat seuraavien suorien leikkauspisteet y-akselilla ja kulmakertoimet Muista ratkaistu muoto: y= x-1 Muista ratkaistu muoto: y= -2x+4 Muista ratkaistu muoto: y=0x + 1 Muista ratkaistu muoto: y=0x + 0
4 Suoran piirtäminen TÄRKEÄ vaaka-akseli x, pystyakseli y, pisteet (x,y) 1. Muokkaa suoran yhtälö ratkaistuun muotoon 2. Selvitä b ja k 3. Piirrä koordinaatistoon suoran ja y-akselin leikkauspiste (0,b) y:n muutos 4. Siirry piirretystä pisteestä kulmakertoimen = = y 2 y 1 avulla x:n muutos x 2 x 1 seuraavaan pisteeseen geogebra 1. y= 2x + 1 k= y= 1 x y=1 k= y = 3 - x k= 1 1 = y:n muutos x:n muutos (x kasvaa 1, y pienenee 1) Suorien leikkauspiste on vastaavan yhtälöparin ratkaisu.
5 Lineaarisen (kuvaajana suorat) yhtälöparin ratkaisut Lineaarisen yhtälöparin ratkaisu on lukupari, joka toteuttaa yhtälöparin molempien suorien yhtälöt. Yhtälöparin voi ratkaista graafisesti piirtämällä suorat ja etsimällä niiden leikkauspisteen koordinaatit. Ratkaisuja voi olla yksi ei yhtään äärettömän monta Yhtälöparin graafinen ratkaisu on aina likimääräinen.
6 esimerkki 15 Ratkaise yhtälöpari graafisesti. (tehtävän anto voisi olla myös ratkaise suorien leikkauspiste) 2x y 5 0 9x 3y 6 0 a) b) 4x 2y 6 0 6x 2y 4 0 Ratkaisu a) Muokataan molempien suorien yhtälöt muotoon y = kx + b. 2x y + 5 = 0 y = 2x 5 : ( 1) y = 2x + 5 4x 2y + 6 = 0 2y = 4x 6 : ( 2) y = 2x + 3 Siirretään 2x ja 5 yhtälön oikealle puolelle. Samalla niiden merkit vaihtuvat. Siirretään 4x ja 6 yhtälön oikealle puolelle. Samalla niiden merkit vaihtuvat Yhtälöparin ratkaiseminen piirtämällä
7 Piirretään suorat samaan koordinaatistoon. Koska suorat ovat yhdensuuntaiset, niillä ei ole leikkauspistettä, eikä yhtälöparilla ole ratkaisua. Yhdensuuntaisilla suorilla on sama kulmakerroin. Yhtälöparin ratkaiseminen piirtämällä
8 Ratkaisu b) Muokataan molempien suorien yhtälöt muotoon y = kx + b. 9x 3y + 6 = 0 6x + 2y 4 = 0 3y = 9x 6 : ( 3) y = 3x + 2 2y = 6x + 4 : 2 y = 3x + 2 Siirretään 9x ja 6 yhtälön oikealle puolelle. Samalla niiden merkit vaihtuvat. Siirretään 6x ja 4 yhtälön oikealle puolelle. Samalla niiden merkit vaihtuvat Suorien yhtälöt ovat samat ja piirtämättäkin havaitaan, että kyseessä on yksi ja sama suora: ratkaisuja on ääretön määrä. vastaus: a) Yhtälöparilla ei ole ratkaisua. b) Yhtälöparin ratkaisuja ovat kaikki lukuparit, jotka toteuttavat suoran yhtälön y = 3x + 2. Yhtälöparin ratkaiseminen piirtämällä
9 Yhtälöparin ratkaiseminen algebrallisesti (tarkasti laskemalla) Piste (x,y) on yhtälöparin ratkaisu, jos se toteuttaa molemmat yhtälöt. (Sijoita x:n ja y:n arvot yhtälöihin ja sievennä.) Kaksi tapaa: 1. Sijoitusmenetelmä yhteenlaskumenetelmä
10 Sijoitusmenetelmä: Ratkaise yhtälöpari y 2x = 2 2x + y = 6 1. Ratkaistaan toisesta yhtälöstä toinen sen muuttujista, (muokataan tämä yhtälö sellaiseen muotoon, että muuttuja on yksin yhtäsuuruusmerkin toisella puolella.) 2. Sijoita ratkaistun muuttujan lauseke toiseen yhtälöön muuttujan tilalle. 3. Ratkaise saatu yhden muuttujan yhtälö. 4. Sijoita kohdassa 3 ratkaistu muuttuja kohdan 1. yhtälöön ja ratkaise toinen muuttuja. Ylemmästä yhtälöstä: y = 2x +2 Sijoitetaan y:n lauseke 2x+2 y:n paikalle alempaan yhtälöön: 2x + y = 6 2x + 2x+2 = 6 4x = 4 x = 1 Sijoitetaan ratkaistu x:n arvo 1: y = 2x +2 y = =4 Vastaus: x=1, y=4 (1,4)
11 Yhteenlaskumenetelmä: 1. Laita samat muuttujat allekkain 2. Tarkista, onko toisen muuttujan kertoimet vastaluvut. 3. Jos ei ole, kerro yhtälöitä sopivasti puolittain, että saat vastaluvut kertoimiksi 4. Summaa yhtälöt puolittain yhteen. Saat yhden muuttujan yhtälön. 5. Ratkaise yhtälö. 6. Sijoita edellisen kohdan ratkaisu jompaankumpaan yhtälöistä. Ratkaise saatu yhtälö Ratkaise yhtälöpari 2x + y = 2 2x + y = 6 0x + 2y = 8 y = 4 2x + y = 6 2x + 4 = 6 2x = 2 x = 1 Vastaus: x=1, y=4 (1,4) y 2x = 2 2x + y = 6
12 Tee tehtävät 22-30
Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!
MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki
LisätiedotKahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
Lisätiedotorigo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
LisätiedotAloita Ratkaise Pisteytä se itse Merkitse pisteet saanut riittävästi pisteitä voit siirtyä seuraavaan osioon ei ole riittävästi
Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)
Lisätiedoty=-3x+2 y=2x-3 y=3x+2 x = = 6
MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Lisätiedotc) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
LisätiedotTekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
LisätiedotAluksi. 1.1. Kahden muuttujan lineaarinen yhtälö
Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä
LisätiedotVastaukset. 8.7 Polynomilaskennan kertausta. 1. 2k + 3p + 3k + 4p = 5k + 7p. 2. x + x + x = 3x 1 x = x x x = x 2 x x x = x 3
Vastaukset 8.7 Polynomilaskennan kertausta 1. k + 3p + 3k + 4p = 5k + 7p. x + x + x = 3x 1 x = x x x = x x x x = x 3 3. a) 4x + (+6x) = 4x + 6x = 10x b) 4x + ( 6x) = 4x 6x = x c) 4x (+6x) = 4x 6x = x d)
LisätiedotHuippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
YHTÄLÖITÄ ALOITA PERUSTEISTA A. Luku on yhtälön ratkaisu, jos luku toteuttaa yhtälön. a) Sijoitetaan luku = yhtälöön. 6 = 0 0 = 0 Yhtälö on tosi, joten = on yhtälön ratkaisu. Vastaus: on b) Sijoitetaan
LisätiedotKERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +
LisätiedotLUKUVUODEN E-KURSSI MAB3
1 TYK AIKUISLUKIO LUKUVUODEN 2016 2017 E-KURSSI MAB3 Kurssin tunnus ja nimi Kurssin opettaja MAB3 Matemaattisia malleja I Frans Hartikainen frans.hartikainen@tyk.fi (MAB3-kurssin työtila on nähtävillä
LisätiedotVanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
LisätiedotYhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
LisätiedotLineaarinen yhtälöryhmä
Lineaarinen yhtälöryhmä 1 / 39 Lineaarinen yhtälö Määritelmä 1 Lineaarinen yhtälö on muotoa a 1 x 1 + a 2 x 2 + + a n x n = b, missä a i, b R, i = 1,..., n ovat tunnettuja ja x i R, i = 1,..., n ovat tuntemattomia.
Lisätiedotmatematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus
Lisätiedot5.3 Suoran ja toisen asteen käyrän yhteiset pisteet
.3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina
LisätiedotLaudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
Lisätiedotb) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)
Matematiikan TESTI, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/017 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
Lisätiedot1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO
1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Lämpötila maanpinnalla nähdään suoran ja y-akselin leikkauspisteen y- koordinaatista, joka on noin 10. Kun syvyys on 15 km, nähdään suoralta, että lämpötila
LisätiedotSijoitusmenetelmä. 1.2. Yhtälöpari
MAB Yhtälöpari Yhtälöpari Yhtälöparilla tarkoitetaan tilannetta, missä on kaksi htälöä, joiden tät toteutua htä aikaa Tämä on sama asia kuin että kstään, missä pisteessä tai missä pisteissä htälöitä vastaavat
Lisätiedot3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
LisätiedotTekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
Lisätiedotx 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)
MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon
LisätiedotLAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 2015
PREPPAUSTA 05.nb LAHDEN AMMATTIKORKEAKOULU TEKNIIKAN ALA MATEMATIIKAN PREPPAUSTEHTÄVIÄ Kesä 05 MURTOLUVUT. Laske murtolukujen 3 ja 5 6 summa, tulo ja osamäärä. Summa 3 5 6 4 3 5 6 8 6 5 6 3 6 6. Laske
LisätiedotMatikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon
Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no
LisätiedotMAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5
LisätiedotLISÄTEHTÄVÄT. Päähakemisto Tehtävien ratkaisut -hakemisto Piirretään suorat. Kahden muuttujan lineaariset yhtälöt. y x ja a) b) y x.
LISÄTEHTÄVÄT Kahden muuttujan lineaariset yhtälöt 0. a) b) y 7 x 4 0 y x 0 y7 x 4 : y x y,5 x c) d) 5x 8y 5 8y 5x5 :( 8) 7y 5x 7y 5x :7 5 5 5 y x y x 8 8 7 7. Piirretään suorat y x 0 y x ja x y 0 y x Leikkauspiste
Lisätiedot2.7 Neliöjuuriyhtälö ja -epäyhtälö
2.7 Neliöjuuriyhtälö ja -epäyhtälö Neliöjuuren määritelmä palautettiin mieleen jo luvun 2.2 alussa. Neliöjuurella on mm. seuraavat ominaisuudet. ab = a b, a 0, b 0 a a b =, a 0, b > 0 b a2 = a a > b, a
Lisätiedotyleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
Lisätiedot2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
LisätiedotParaabeli suuntaisia suoria.
15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotLukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]
Lukuväleistä MB Funktio - < < tai ]-,] < tai ]-,] Yksikäsitteisyys Täytyy tuntea/arvata tyyppi T 0. (sivu ) f() = a) f () = = 9 = 4 T 0. (sivu ) T 0. (sivu ) f() = f() = b) f(k) = k c) f(t + ) = (t + )
Lisätiedot5 Lineaariset yhtälöryhmät
5 Lineaariset yhtälöryhmät Edellisen luvun lopun esimerkissä päädyttiin yhtälöryhmään, jonka ratkaisemisesta riippui, kuuluuko tietty vektori eräiden toisten vektorien virittämään aliavaruuteen Tämäntyyppisiä
LisätiedotMATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017
MATEMATIIKKA Matematiikkaa pintakäsittelijöille Ongelmanratkaisu Isto Jokinen 2017 SISÄLTÖ 1. Matemaattisten ongelmien ratkaisu laskukaavoilla 2. Tekijäyhtälöt 3. Laskukaavojen yhdistäminen 4. Yhtälöiden
Lisätiedot3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö
3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden
LisätiedotMAA4 - HARJOITUKSIA. 1. Esitä lauseke 3 x + 2x 4 ilman itseisarvomerkkejä. 3. Ratkaise yhtälö 2 x 7 3 + 4x = 2 (yksi ratkaisu, eräs neg. kokon.
MAA4 - HARJOITUKSIA 1. Esitä lauseke 3 + 4 ilman itseisarvomerkkejä.. Ratkaise yhtälö a ) 5 9 = 6 b) 6 9 = 0 c) 7 9 + 6 = 0 3. Ratkaise yhtälö 7 3 + 4 = (yksi ratkaisu, eräs neg. kokon. luku) 4. Ratkaise
LisätiedotPyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien
Lisätiedot1. Lineaarinen optimointi
0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on
LisätiedotB. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
LisätiedotA-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.
MAB2 koe Jussi Tyni Lue ohjeet huolellisesti! Muista, että välivaiheet perustelevat vastauksesi. Muista kirjoittaa konseptille nimesi ja tee pisteytysruudukko konseptin yläreunaan. A-osio. Ei laskinta!
LisätiedotMb03 Koe 21.5.2015 Kuopion Lyseon lukio (KK) sivu 1/4
Mb03 Koe 2..20 Kuopion Lyseon lukio (KK) sivu /4 Kokeessa on kaksi osaa. Osa A ratkaistaan tehtäväpaperille ja osa B ratkaistaan konseptipaperille. Osa A: saat käyttää taulukkokirjaa mutta et laskinta.
Lisätiedotc) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.
MAA4. Koe 8.5.0 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse
LisätiedotKERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x
Lisätiedot1. taskulaskimen funktionäppäimet, pankkiautomaatti, postimerkkiautomaatti,...
Vastaukset:. taskulaskimen funktionäppäimet, pankkiautomaatti, postimerkkiautomaatti,.... a) 0 b) 0 c) ( a 3) 3. 0 5 8 3 4 4 4. a) 7 b) -7 c) d) 5 5. - 8-7 0 6 5 4 6. a) Tbsjub b) Eino c) - 7. a) b) 5
LisätiedotJuuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )
Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB
Lisätiedot4 TOISEN ASTEEN YHTÄLÖ
Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on
LisätiedotYmpyrän yhtälö
Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Lisätiedotmäärittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.
MAA8 Juuri- ja logaritmifunktiot 70 Jussi Tyni 5 a) Derivoi f ( ) e b) Mikä on funktion f () = ln(5 ) 00 c) Ratkaise yhtälö määrittelyjoukko log Käyrälle g( ) e 8 piirretään tangeti pisteeseen, jossa käyrä
LisätiedotEnsimmäisen asteen polynomifunktio
Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()
LisätiedotMAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele
LisätiedotYHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus
YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus Ensimmäisen asteen yhtälö: :n korkein eksponentti = 1 + 5 = 4( 3) Toisen asteen yhtälö: :n korkein eksponentti = 3 5 + 4 = 0 Kolmannen asteen yhtälö: :n korkein
LisätiedotTekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
LisätiedotRATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
LisätiedotHarjoituksia MAA4 - HARJOITUKSIA. 6. Merkitse lukusuoralle ne luvut, jotka toteuttavat epäyhtälön x 2 < ½.
MAA4 - HARJOITUKSIA 1 Esitä lauseke 3 x + x 4 ilman itseisarvomerkkejä Ratkaise yhtälö a ) 5x 9 = 6 b) 6x 9 = 0 c) 7x 9 + 6 = 0 3 Ratkaise yhtälö x 7 3 + 4x = 4 Ratkaise yhtälö 5x + = 3x 4 5 Ratkaise yhtälö
LisätiedotSivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi
Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla
LisätiedotSuoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on
Suoran htälöt Suoran ratkaistu ja leinen muoto: Suoran htälö ratkaistussa, eli eksplisiittisessä muodossa, on ANALYYTTINEN GEOMETRIA MAA5 = k + b, tai = a missä vakiotermi b ilmoittaa suoran ja -akselin
LisätiedotMAB Jussi Tyni. Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.
MAB6. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan
LisätiedotAVOIN MATEMATIIKKA 8 lk. Osio 2: Suoria ja verrannollisuuksia. (Muuntanut ja muokannut Jan-Erik Sandelin)
AVOIN MATEMATIIKKA 8 lk. Osio 2: Suoria ja verrannollisuuksia Marika Toivola Tiina Härkönen (Muuntanut ja muokannut Jan-Erik Sandelin) Alkuperäinen sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä.
Lisätiedot11 MATEMAATTINEN ANALYYSI
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.
LisätiedotPolynomi ja yhtälö Sievennä. a) 4a + 3a b) 11x x c) 9x + 6 3x. Ratkaisu a) 7a b) 12x c) 6x + 6
Polynomi ja yhtälö 103. Sievennä. a) 4a + 3a b) 11x x c) 9x + 6 3x a) 7a b) 12x c) 6x + 6 104. Ratkaise yhtälöt. a) 2x + 3 = 9 b) 8x + 2 = 5x + 17 a) 2x + 3 = 9 3 2x = 6 : 2 x = 3 b) 8x + 2 = 5x + 17 2
LisätiedotMATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
LisätiedotAluksi. 2.1. Kahden muuttujan lineaarinen epäyhtälö
Aluksi Matemaattisena käsitteenä lineaarinen optimointi sisältää juuri sen saman asian kuin mikä sen nimestä tulee mieleen. Lineaarisen optimoinnin avulla haetaan ihannearvoa eli optimia, joka on määritelty
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
LisätiedotTekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.
Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (
LisätiedotLUKUVUODEN E-KURSSI
1 TYK AIKUISLUKIO LUKUVUODEN 2016 2017 E-KURSSI Kurssin tunnus ja nimi Kurssin opettaja MAB6 Matemaattisia malleja II Frans Hartikainen frans.hartikainen@tyk.fi MAB6-kurssin työtila on nähtävillä myös
LisätiedotANALYYTTISTA GEOMETRIAA LUKIO-OPETUKSESSA. Eeva Kuparinen. Pro gradu -tutkielma Tammikuu 2008 MATEMATIIKAN LAITOS TURUN YLIOPISTO
ANALYYTTISTA GEOMETRIAA LUKIO-OPETUKSESSA Eeva Kuparinen Pro gradu -tutkielma Tammikuu 2008 MATEMATIIKAN LAITOS TURUN YLIOPISTO Sisältö 1 Johdanto 1 2 Koordinaatisto 3 2.1 Tason suorakulmainen xy-koordinaatisto............
LisätiedotA-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.
MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään
LisätiedotTehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
LisätiedotMITEN RATKAISEN POLYNOMIYHTÄLÖITÄ?
MITEN RATKAISEN POLYNOMIYHTÄLÖITÄ? Polynomiyhtälön ratkaiseminen Eri lajin yhtälöiden ratkaisutavat poikkeavat toisistaan. Siksi on tärkeää tunnistaa yhtälötyyppi. Polynomiyhtälö on yhtälö, joka voidaan
LisätiedotHuippu 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
KERTAUS KERTAUSTEHTÄVIÄ K1. a) Kun suoran s pisteen -koordinaatti kasvaa yhdellä, pisteen y- koordinaatti kasvaa kahdella. Suoran s kulmakerroin on siis. Kun suoran t pisteen -koordinaatti kasvaa kahdella,
LisätiedotMAA15 Vektorilaskennan jatkokurssi, tehtävämoniste
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.
LisätiedotLisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x
MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa
LisätiedotBM20A0300, Matematiikka KoTiB1
BM20A0300, Matematiikka KoTiB1 Luennot: Heikki Pitkänen 1 Oppikirja: Robert A. Adams: Calculus, A Complete Course Luku 12 Luku 13 Luku 14.1 Tarvittava materiaali (luentokalvot, laskuharjoitustehtävät ja
LisätiedotDerivointiesimerkkejä 2
Derivointiesimerkkejä 2 (2.10.2008 versio 2.0) Parametrimuotoisen funktion erivointi Esimerkki 1 Kappale kulkee pitkin rataa { x(t) = sin 2 t y(t) = cos t. Määritetään raan suuntakulma positiiviseen x-akseliin
LisätiedotNELIÖJUURI. Neliöjuuren laskusääntöjä
NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin
LisätiedotYhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
LisätiedotMAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14
LisätiedotYlioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan
LisätiedotOhjeita fysiikan ylioppilaskirjoituksiin
Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat
Lisätiedot2.3. Lausekkeen arvo tasoalueessa
Monissa käytännön tilanteissa, joiden kaltaisista kappaleessa Epäyhtälöryhmistä puhuttiin, tärkeämpää kuin yleinen mahdollisten ratkaisujen etsiminen, on löytää tavalla tai toisella jotkin tavoitteet täyttävät
Lisätiedot30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset
30A01000 Taulukkolaskenta ja analytiikka Luku 8: Lineaarinen optimointi ja sen sovellukset Mitä on lineaarinen optimointi (LP)? LP= lineaarinen optimointiongelma (Linear Programming) Menetelmä, jolla etsitään
LisätiedotRatkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)
Matematiikan TESTI 3, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/07 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
LisätiedotTekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
LisätiedotYleistä vektoreista GeoGebralla
Vektoreita GeoGebralla Vektoreilla voi laskea joko komentopohjaisesti esim. CAS-ikkunassa tai piirtämällä piirtoikkunassa. Ensimmäisen tavan etuna on, että laskujen tueksi muodostuu kuva. Tästä on varmasti
Lisätiedot1 Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f
Lisätiedot( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty
Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 15 Päivitetty 19..6 31 Tapa 1 Ratkaistaan yhtälöryhmä käyttämällä sijoituskeinoa. x y+ z = x y + 3z = 3x 4y+ z = Ratkaistaan yhtälöstä (1) muuttuja
Lisätiedot