Fysiikan olympiavalmennus, perussarja Palautus mennessä

Koko: px
Aloita esitys sivulta:

Download "Fysiikan olympiavalmennus, perussarja Palautus mennessä"

Transkriptio

1 Fysiikan olympiavalmennus, perussarja Kirje 1 Palautus mennessä Olet menestynyt hyvin MAOL:n fysiikkakilpailussa, ja sinut on valittu mukaan fysiikan olympiavalmennukseen. Valmennuskirjeitä on yhteensä kaksi, ja niihin aktiivisesti vastaamalla voit päästä valmennusleirille maaliskuussa Jyväskylään ja jopa valintakilpailuun vapun aikoihin Tallinnaan (ajankohdat varmistuvat myöhemmin), jossa valitaan Suomen joukkue vuoden 2018 fysiikkaolympialaisiin Portugaliin. Osallistumisesta ei aiheudu kuluja. Perussarjan valmennukseen osallistuminen auttaa myös pääsemään ensi vuonna avoimen sarjan valmennukseen, ja sitä kautta tulee mahdollisuus päästä kesän 2019 fysiikkaolympialaisiin Israeliin. Lisätietoa ja materiaalia löytyy fysiikkavalmennuksen sivuilta osoitteesta Edellä mainittu aktiivinen vastaaminen ei tarkoita, että täytyy voida antaa täydellinen vastaus jokaiseen kysymykseen. Vaikka ratkaiseminen ei onnistuisikaan, ratkaistessa voi toivottavasti oppia jotain. Ratkaisut kaikkiin tehtäviin lähetetään niille jotka ovat palauttaneet vastauksen edes yhteen tehtävään. Tässä on ensimmäinen valmennuskirje, jonka vastaukset tulee lähettää minulle mennessä sähköpostitse. Kirjepalautus ei onnistu työmatkojen vuoksi. Jotkin tehtävät ovat pitkiä, mutta sitä ei kannata hätkähtää; arvostelun kannalta tässä on = 12 saman arvoista tehtävää. Osatehtävät on pyritty laatimaan siten, että vaikka jokin kohta jäisi tekemättä, voi seuraavat silti ratkaista. Tehtävissä käsitellyt asiat eivät luultavasti ole kaikilta osin lukion kursseilta tuttuja, vaan niiden on tarkoitus opettaa jotain uutta klassisesta mekaniikasta. Olen alleviivauksin korostanut ne kohdat, joihin edellytetään vastausta. Jos ongelmia tulee vastaan, minulta voi kysellä asioita sähköpostitse. Tämä ei ole ylioppilas- tai kurssikoe, joten voit vastata järkeväksi katsomallasi tavalla. Kirjoita välivaiheita sen verran, että pystyt itse seuraamaan tekstiäsi ja uskot minunkin siihen pystyvän. Minulle ei tarvitse välivaihein vakuuttaa, että osaat ratkaista toisen asteen yhtälön tai tehdä jonkin muun mekaanisen laskun. Välivaiheet eivät kuitenkaan ole kiellettyjä. Jos et ole jostain syystä osallistunut MAOL:n fysiikkakilpailuun mutta haluat mukaan valmennukseen, vastaa tähän kirjeeseen. (Voit siis kertoa valmennuksesta kaverillesikin, jos arvelet hänen kiinnostuvan.) Lisäksi on hyödyksi ilmoittaa asiasta sähköpostitse minulle mahdollisimman pian, jotta myöhemmät kirjeet ja tiedotteet päätyvät sinullekin. Joonas Ilmavirta joonas.ilmavirta@jyu.fi Tehtävä 1. Massakin on energiaa, ja massa m on energiana tunnetun yhtälön mukaisesti mc 2. Fysikaalisissa järjestelmissä energiaa on monessa muodossa, ja massa on yksi niistä. Selvitämme tässä tehtävässä, millaiset määräsuhteet eri energioilla on tutuissa tilanteissa. (a) Vetyatomi: Vetyatomi koostuu protonista ja elektronista. Kuinka suuri on elektronin sidosenergiaa vastaava massa? Yksikkömuunnoksissa saattaa auttaa tai olla auttamatta tieto, että 96, 5 kj/mol = 1 ev/atomi. Kuinka suuri tämä massa on verrattuna vetyatomin massaan? Entä verrattuna elektronin massaan? (b) Maa ja Kuu: Maan ja Kuun muodostaman systeemin energia koostuu kolmesta osasta: massa, liike-energia ja potentiaalienergia. Kuinka suuri on suhde liike-energia + potentiaalienergia? massaenergia Voit tehdä karkeitakin arvioita. Tavoitteena on saada suuruusluokka-arvio, ei tarkkaa lukua. Esimerkiksi voit olettaa, että Maa on paikallaan ja Kuu kiertää ympyräradalla, ja että yhteismassa on Maan massa. 1/6

2 Huomaa, että potentiaalienergia on negatiivinen. Itseisarvon tehtävänä on varmistaa, etteivät suuret energiat vahingossa kumoa toisiaan liikaa merkkieron takia. Tehtävän suhdeluvun on tarkoitus kertoa, kuinka suuri merkitys muilla energiamuodoilla on massan rinnalla. (c) Protoni: Protoni koostuu kahdesta u-kvarkista ja yhdestä d-kvarkista. Protonin massa koostuu kvarkkien massojen lisäksi sidosenergiasta. Massat ovat m u = 2,3 MeV/c 2, m d = 4,8 MeV/c 2 ja m p = 938,3 MeV/c 2 (megaelektronivoltti on tässä yhteydessä kätevä yksikkö). Kuinka suuri osuus kvarkkien massalla on protonin massasta? Edellisissä kohdissa sidosenergian osuus oli melko pieni. Onko tilanne sama myös nyt? (d) Perustele aiempien kohtien laskuihin vedoten (laskematta enää mitään) seuraavat asiat: Suurin osa aurinkokuntamme energiasta on auringon (ja planeettojen) massaa. Suurin osa auringon tai planeetan massasta on sen sisältämien atomien massaa. Suurin osa atomien massasta on protonien ja neutronien massaa. Suurin osa protonien ja neutronien massasta on kvarkkien sidosenergiaa. Suurin osa aurinkokuntamme energiasta (ja siis myös massasta) on kvarkkien sidosenergiaa, ei niinkään hiukkasten massaa. Johtopäätös ei ole ongelma gravitaation kannalta: painovoiman aiheuttajana ei nimittäin ole vain massa, vaan kaikki energia. Tehtävä 2. Hubblen laki on kokeellinen havainto maailmankaikkeuden laajenemisesta, jonka mukaan meistä etäisyydellä r oleva tähti etääntyy meistä suunnilleen vauhdilla Hr, missä H on Hubblen vakio. Etäisyyden ja vauhdin mittaamiseen kosmologiassa liittyy ongelmia, joihin emme nyt puutu. Hubblen laki ei pidä tarkkaan paikkaansa, koska yksittäiset tähdet voivat liikkua melko satunnaisesti mikä mitenkin, mutta keskimäärin se pitää varsin hyvin paikkansa sopivilla etäisyysskaaloilla. Hubblen vakio on noin 70 km/s/mpc. Tässä esiintyvä yksikkö parsek, pc, on pituusyksikkö, joka on suuruudeltaan noin 3 valovuotta. Tässä tehtävässä ei tarvitse laskea tarkasti, vaan lukuja saa pyöristää reilusti, kunhan suuruusluokka pysyy kunnossa. Tutkitaan galaksia, joka on etäisyydellä r ja liikkuu Hubblen lain mukaisella nopeudella. Jos galaksi liikkuu vakionopeudella, milloin (kuinka monta vuotta sitten) se oli samassa paikassa meidän kotigalaksimme kanssa? Kuten (toivottavasti) huomaat, tulos ei riipu lainkaan etäisyydestä r, joten näistä oletuksista (vakionopeus ja Hubblen laki) seuraa, että kaikki aine on ollut joskus menneisyydessä yhdessä pisteessä. Nämä oletukset eivät pidä tarkkaan paikkaansa, mutta tämä on ehkä yksinkertaisin tapa perustella, että kaikki alkoi alkuräjähdyksestä. Miksi Hubblen laki ei voi päteä, jos etäisyys r on hyvin suuri? Arvioi, millä etäisyyksillä Hubblen laki viimeistään rikkoutuu. Arvio on kätevintä tehdä valovuosissa, mutta muitakin yksiköitä voi käyttää. Tehtävä 3. Maapallon ytimen olemassaolo havaittiin ensimmäisen kerran sen aiheuttaman varjon vuoksi. Tutustumme nyt tähän varjoon ja arvioimme sen perusteella ytimen kokoa ja ominaisuuksia. Tutkimme yksinkertaistettua mallia planeetastamme, jossa on kaksi kerrosta: ydin ja vaippa. Ytimen säde on r ja koko planeetan säde R. Maanjäristysaallon nopeus eli äänennopeus on ytimessä c y ja vaipassa c v. Vaikka kyse on ääniaallosta, toimivat samat optiikan periaatteet kuin tutummassa valo-optiikassakin. Maapallon ydin toimii eräänlaisena linssinä. (Todellisuudessa äänennopeus kasvaa jatkuvasti syvemmälle mentäessä, ja erilaisilla rajapinnoilla nopeudessa tapahtuu hyppäyksiä. Äänennopeuden jatkuvasta muutoksesta johtuen 2/6

3 aallot eivät etene suoraan. Yleensä hypyt tapahtuvat niin päin, että syvemmällä nopeus on suurempi. Vaipan ja ytimen rajapinnassa hyppy tapahtuukin päinvastaiseen suuntaan, ja juuri siksi se aiheuttaa varjon. Tämä epätavallinen hypyn suunta on vihje siitä, että ydin tai ainakin sen ulko-osa on nestemäinen. Meidän mallissamme kerroksia on vain kaksi ja kummankin kerroksen sisällä äänennopeus on vakio. Lisäksi tutkimme vain paineaaltoja, vaikka myös muunlaisia seismisiä aaltoja voi havaita.) Kuvassa 1 on esitetty maanjäristysaallon kulku kahdessa rajatapauksessa. Rajatapauksessa, kun aalto saapuu tangentiaalisesti ytimen ja vaipan rajapintaan, se voi jatkaa kahdella tavalla: joko suoraan tai taittuen. Aalto siis saapuu rajapinnalle pinnan suuntaisesti, mikä on juuri kokonaisheijastukseen liittyä rajatapaus. Tässä rajatapauksessa ytimeen taittuvan osan intensiteetti on nolla, mutta ytimen sisään menevä osuus kasvaa osumakulman jyrkentyessä. Kuva 1: Maanjäristysaallon kulku kahta reittiä. Ensimmäistä reittiä pitkin aalto kulkee pisteestä A pisteeseen C ydintä hipoen. Toisessa reitissä aalto taittuu rajapinnalta kohti ydintä pisteessä B ja tulee vastaavalla tavalla ytimestä takaisin vaippaan pisteessä D ja saapuu pinnalle pisteessä E. Rajatapauksessa kulma θ on kokonaisheijastuksen rajakulma. Jos pisteessä A tapahtuu maanjäristys, sen synnyttämä aalto havaitaan pisteiden A ja C välillä; näkyvää osaa on kulman α verran. Tästä eteenpäin tulee kulman δ kokoinen varjoalue (engl. P-wave shadow zone ), johon maanjäristysaallot eivät pääse suoraan. Pisteen E takana eli kulmaa α + δ kauempana maanjäristys havaitaan taas, ja nämä havaitut aallot ovat kulkeneet ytimen läpi. Kun maanjäristysaalto kulkee tätä rajatapausta suorempaan ydintä kohti, osa aallosta heijastuu rajapinnasta ja saapuu pinnalle ennen pistettä C ja osa menee ytimen läpi ja päätyy kauemmaksi kuin piste E. Seismisten aaltojen saapumista eri puolilla tapahtuvista maanjäristyksistä lukuisiin seismisiin mitta-asemiin on tutkittu kauan. Mittausten mukaan kuvan 1 kulmat ovat α 103 ja δ 39. Planeettamme säde on R 6371 km. Äänennopeus vaihtelee vaipassa noin c v 10 km/s. (Todellisuudessa se vaihtelee suunnilleen välillä km/s. Kuoriosassa, aivan 3/6

4 pinnan lähellä, se on pienempi.) Tässä tehtävässä on turha laskea liian tarkoilla luvuilla. (a) Päättele yhtälö ytimen säteelle r, kun tunnetaan R ja α. Sijoita tähän yhtälöön annetut lukuarvot ja arvioi ytimen säde. (b) Päättele yhtälö kuvan 1 kulmalle θ, kun tunnetaan kulmat α ja δ. Laske sitten nopeuksien suhde c y /c v kulmien α ja δ avulla. Kokonaisheijastuksen rajakulman voit olettaa tunnetuksi yhtälöksi; sitä ei tarvitse tässä perustella, ja sen voi tarvittaessa muistaa helposti Snellin lain avulla. Sijoita tähän yhtälöön annetut lukuarvot. Näin saat arvion äänennopeuden suhteelliselle muutokselle ytimen ja vaipan rajapinnalla. Mikä suunnilleen on tällä perusteella äänennopeus ytimessä? (c) Vertaa tuloksiasi tarkempiin tuloksiin, jotka on laskettu hienostuneemmilla menetelmillä. Ytimen säde on noin 3488 km ja nopeus hyppää vaipan ja ytimen rajalla suunnilleen arvosta 13,5 km/s arvoon 8 km/s. Onko ytimen säteessä ja äänennopeuksien suhteessa suuri ero edellä laskettujen tulosten ja näiden tarkempien arvojen välillä? Mistä luulet sen pääasiassa johtuvan? Jos jotain jäi tähän ilmiöön liittyen epäselväksi, kysy tässä kohdassa tai ennakkoon sähköpostilla. Tehtävä 4. Kappaleen, jonka massa on m, liikettä kuvailee Newtonin mekaniikassa tuttu laki 1 (Newtonin toinen laki) F = ma, (1) missä F on kappaleeseen kohdistuva voima ja a sen kiihtyvyys. Voima on siis suoraan verrannollinen liikutettavan kappaleen kiihtyvyyteen. Arkikokemus taas monissa tilanteissa näyttää, että voima on jollain tavalla verrannollinen nopeuteen: esimerkiksi vedessä liikkuva kappale näyttää putoavan alaspäin vakionopeudella tasaisen kiihtymisen sijaan. Yritämme nyt ymmärtää, miksi näin käy. (a) Nesteessä hitaasti liikkuvaan kappaleeseen vaikuttaa vastusvoima F v = Cv, (2) missä C on jokin kappaleen muodosta ja koosta sekä nesteen ominaisuuksista riippuva positiivinen vakio. Jos vastusvoiman lisäksi kappaleeseen vaikuttaa jokin ulkoinen voima F u, saadaan yhdistämällä yhtälöt (1) ja (2) yhtälö ma = Cv+F u. Jos sekä nopeus että kiihtyvyys riippuvat ajasta mutta F u on vakio, kirjoitamme edellisen muotoon ma(t) = Cv(t) + F u. Kiihtyvyys on määritelmän mukaan nopeuden aikaderivaatta 2 : a(t) = v (t). Näin ollen saamme differentiaaliyhtälön mv (t) = Cv(t) + F u. (3) Seuraavaksi ratkaisemme tämän differentiaaliyhtälön, eli etsimme sellaisen funktion v(t), joka toteuttaa ehdon (3). 3 Lisäksi vaadimme ratkaisulta, että alkuhetkellä t = 0 nopeus on jokin annettu v 0. Kun siis tiedämme kappaleen nopeuden hetkellä t = 0 olevan 1 Tutkimme tilannetta yksinkertaisuuden vuoksi nyt yhdessä ulottuvuudessa. 2 Lukiokursseilla on mahdollisesti määritelty keskikiihtyvyys aikavälillä t 1... t 2 erotusosamääräksi v(t 2) v(t 1) t 2 t 1. Ottamalla raja-arvo t 2 t 1 saadaan suoraan derivaatan määritelmä: v (t 1 ) = v(t lim 2) v(t 1) t2 t 1 t 2 t 1, joka on tuttu matematiikan kursseilta. 3 Differentiaaliyhtälöistä kerrotaan valmennussivuilta löytyvässä matemaattisten menetelmien materiaalissa. Kyseisestä materiaalista voi olla hyötyä myös muissa tehtävissä. 4/6

5 tasan v 0, yritämme yhtälöä (3) käyttäen päätellä, mikä nopeus on myöhemmin. Teemme valistuneen arvauksen, että ratkaisu on muotoa v(t) = A 1 + A 2 e A 3t, (4) missä A 1, A 2 ja A 3 ovat joitain vakioita. Laske tämän funktion derivaatta ja laske lausekkeen mv (t) + Cv(t) F u arvo. Jotta funktiomme todella olisi ratkaisu differentiaaliyhtälöön (3), on tämän lausekkeen oltava nolla kaikilla t. Päättele tästä sekä tiedosta v(0) = v 0 vakioiden A 1, A 2 ja A 3 arvot. (Hyvää harjoitusta on myäs ratkaista yhtälä (3) alkuehdon v(0) = v 0 kanssa käyttämättä yritettä (4), jos satut tuntemaan jonkin tähän sopivan menetelmän.) (b) Edellisen kohdan lopputuloksena saamme siis ratkaistua nopeuden v(t). Tuloksen pitäisi näyttää tältä: v(t) = F u C + (v 0 F u C )e Ct/m. (5) Perustele, miksi nopeus lähestyy arvoa v r = F u /C eli lim t v(t) = v r. Vertaillaan tätä tulosta yhtälöön (3), jonka kirjoitamme nyt muotoon ma = Cv + F u. Millä nopeuden v arvolla kiihtyvyys a on nolla? Miten ja miksi tämä liittyy edellä laskettuun raja-arvoon? Tehdään lisäksi tärkeä oletus: nesteen aiheuttama vastusvoima on hyvin suuri, jolloin siis C on suuri. Edellä todettiin, että lim t v(t) = v r. Perustele (mahdollisesti sopivin lisäoletuksin), miksi olettamassamme tilanteessa v(t) v r on hyvinkin tarkka arvio, jo melko pienillä ajoilla. (Tässä ei odoteta tarkkoja laskuja, vaan osoitus siitä, että ymmärrät, mistä on kyse.) Näin saamme siis yhtälön v F u /C. (6) (c) Edellä oletimme, että ulkoinen voima F u (t) on vakio. Nyt annamme sen muuttua, mutta vain hitaasti. Koska nopeus lähestyy arvoa v r hyvinkin nopeasti, voimme siis olettaa, että v v r koko ajan, vaikka v r muuttuukin. Saamme siis yhtälön v(t) F u (t)/c, jonka voimme (unohtaen likiarvoisuuden) kirjoittaa muotoon F u (t) = Cv(t). (7) Jos olisimmekin olettaneet, että vastusvoimaa kuvaava kerroin C on mitättömän pieni (tai jopa C = 0), olisimme saaneet tutun yhtälön (tässä siis F u tarkoittaa kappaleeseen vaikuttavia ulkoisia voimia poislukien väliaineen vastuksen tai kitkan): F u (t) = ma(t). (8) Vertaile näitä kahta liikeyhtälöä seuraavissa tapauksissa. Millä tavoin kappale putoaa painovoiman vaikutuksesta, kun F u on vakio? Mitä tapahtuu kappaleelle, joka heitetään ylöspäin? Jos kaksi samanmassaista kappaletta pudotetaan yhtä aikaa samalta korkeudelta, putoaako toinen nopeammin? Jos kyllä, missä tilanteessa molemmat putoavat yhtä nopeasti? Näyttää siltä, että jos kappale noudattaa liikeyhtälöä (7), sen liike-energian ja potentiaalienergian summa (siis kokonaisenergia) ei olekaan vakio. Keksi esimerkkitilanne, jossa näin käy. Miksi energia ei näytä säilyvän? 5/6

6 (d) Liikevastus voi olla edellä kuvatun kaltainen muutenkin kuin nesteissä. Myös ilmanvastus ja kitka voivat toimia kuvatulla tavalla. Jos vastusvoima riippuukin nopeudesta jotenkin toisin, esimerkiksi yhtälön F v = K v v mukaisesti, muuttuu liikeyhtälö (7) hieman, mutta oleellinen tulos on sama: voima aiheuttaa nopeuden, ei kiihtyvyyttä 4. Keksi kaksi esimerkkiä arkisista tilanteista, joissa liikeyhtälö (7) (tai jokin sen kaltainen yhtälö) kuvaa tilannetta paremmin, ja toiset kaksi, joissa liikeyhtälö (8) on sopivampi. Keksi vielä kaksi sellaista tilannetta, jossa kumpikin on huono. Jos tuntuu tarpeelliselta, voit jaotella kappaleeseen vaikuttavat voimat ulkoiseen ja vastusvoimaan F u ja F v haluamallasi tavalla. Voit tutkia myös useampiulotteista liikettä; tällöin yllä esitetyt liikeyhtälöt tulevat muotoihin F u (t) = C v(t) ja F u (t) = m a(t), kuten voi odottaa. 4 Tässä tilanteessa saamme vastaavin oletuksin F u (t) = K v(t) v(t). 6/6

Fysiikan olympiavalmennus, perussarja Palautus mennessä

Fysiikan olympiavalmennus, perussarja Palautus mennessä Fysiikan olympiavalmennus, perussarja Kirje 1 Palautus 31.1.2013 mennessä Olet menestynyt hyvin MAOL:n fysiikkakilpailussa, ja sinut on valittu mukaan fysiikan olympiavalmennukseen. Valmennuskirjeitä on

Lisätiedot

Fysiikan olympiavalmennus, perussarja Palautus mennessä

Fysiikan olympiavalmennus, perussarja Palautus mennessä Fysiikan olympiavalmennus, perussarja Kirje 1 Palautus 31.1.2015 mennessä Olet menestynyt hyvin MAOL:n fysiikkakilpailussa, ja sinut on valittu mukaan fysiikan olympiavalmennukseen. Valmennuskirjeitä on

Lisätiedot

Fysiikan olympiavalmennus, perussarja Palautus mennessä

Fysiikan olympiavalmennus, perussarja Palautus mennessä Fysiikan olympiavalmennus, perussarja Kirje 1 Palautus 31.1.2012 mennessä Olet menestynyt hyvin MAOL:n fysiikkakilpailussa, ja sinut on valittu mukaan fysiikan olympiavalmennukseen. Valmennuskirjeitä on

Lisätiedot

Fysiikan olympiavalmennus, perussarja Palautus mennessä

Fysiikan olympiavalmennus, perussarja Palautus mennessä Fysiikan olympiavalmennus, perussarja Kirje 1 Palautus 31.1.2014 mennessä Olet menestynyt hyvin MAOL:n fysiikkakilpailussa, ja sinut on valittu mukaan fysiikan olympiavalmennukseen. Valmennuskirjeitä on

Lisätiedot

Fysiikan olympiavalmennus, avoin sarja Palautus mennessä

Fysiikan olympiavalmennus, avoin sarja Palautus mennessä Fysiikan olympiavalmennus, avoin sarja Kirje 1 Palautus 31.1.2012 mennessä Olet menestynyt hyvin MAOL:n fysiikkakilpailussa, ja sinut on valittu mukaan fysiikan olympiavalmennukseen. Valmennuksen ensimmäinen

Lisätiedot

Fysiikan olympiavalmennus, avoin sarja Palautus mennessä

Fysiikan olympiavalmennus, avoin sarja Palautus mennessä Fysiikan olympiavalmennus, avoin sarja 2017 2018 Kirje 1 Palautus 8.2.2018 mennessä Arvoisa lukiolainen, Onnittelut hyvästä menestyksestäsi MAOLin valtakunnallisen fysiikkakilpailun avoimessa sarjassa.

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää

Lisätiedot

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi

Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein

Lisätiedot

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl

dl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan

Lisätiedot

Shrödingerin yhtälön johto

Shrödingerin yhtälön johto Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä

Lisätiedot

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen

Vedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen 4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

Liikemäärän säilyminen Vuorovesivoimat Jousivoima

Liikemäärän säilyminen Vuorovesivoimat Jousivoima Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi

Luento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Luento 10 Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Tällä luennolla tavoitteena: Gravitaatio jatkuu Konservatiivinen voima Mitä eroa on energia-

Lisätiedot

1 Tieteellinen esitystapa, yksiköt ja dimensiot

1 Tieteellinen esitystapa, yksiköt ja dimensiot 1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5

L a = L l. rv a = Rv l v l = r R v a = v a 1, 5 Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Voima ja potentiaalienergia II Energian kvantittuminen

Voima ja potentiaalienergia II Energian kvantittuminen Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)

Lisätiedot

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1

Leptonit. - elektroni - myoni - tauhiukkanen - kolme erilaista neutriinoa. - neutriinojen varaus on 0 ja muiden leptonien varaus on -1 Mistä aine koostuu? - kaikki aine koostuu atomeista - atomit koostuvat elektroneista, protoneista ja neutroneista - neutronit ja protonit koostuvat pienistä hiukkasista, kvarkeista Alkeishiukkaset - hiukkasten

Lisätiedot

H7 Malliratkaisut - Tehtävä 1

H7 Malliratkaisut - Tehtävä 1 H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.

Luku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia. Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

FT, dosentti Kauppakatu 7 e Jyväskylä p Arvoisa lukiolainen!

FT, dosentti Kauppakatu 7 e Jyväskylä p Arvoisa lukiolainen! Anssi Lindell Jyväskylässä FT, dosentti Kauppakatu 7 e 50 7.1.2016 40100 Jyväskylä p. + 358 40 80 533 48 anssi.lindell@jyu.fi Arvoisa lukiolainen! Olet menestynyt varsin hyvin Matemaattisten aineitten

Lisätiedot

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1

infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1 infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C

Tehtävä 1. a) sähkövirta = varausta per sekunti, I = dq dt = 1, A = 1, C s protonin varaus on 1, C Tehtävä a) sähkövirta = varausta per sekunti, I = dq dt =, 5 0 3 =, 5 0 3 C s protonin varaus on, 6 0 9 C Jaetaan koko virta yksittäisille varauksille:, 5 0 3 C s kpl = 9 05, 6 0 9 s b) di = Jd = J2πrdr,

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1 763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg

TEHTÄVIEN RATKAISUT. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 712 p m 105 kg TEHTÄVIEN RATKAISUT 15-1. a) Hyökkääjän liikemäärä on p = mv = 89 kg 8,0 m/s = 71 kgm/s. b) 105-kiloisella puolustajalla on yhtä suuri liikemäärä, jos nopeus on kgm 71 p v = = s 6,8 m/s. m 105 kg 15-.

Lisätiedot

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa

Lisätiedot

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk

yyyyyyyyyyyyyyyyy Tehtävä 1. PAINOSI AVARUUDESSA Testaa, paljonko painat eri taivaankappaleilla! Kuu kg Maa kg Planeetta yyy yyyyyyy yyyyyy kg Tiesitk I LUOKKAHUONEESSA ENNEN TIETOMAA- VIERAILUA POHDITTAVIA TEHTÄVIÄ Nimi Luokka Koulu yyyyyyyyyy Tehtävä 1. ETSI TIETOA PAINOVOIMASTA JA TÄYDENNÄ. TIETOA LÖYDÄT MM. PAINOVOIMA- NÄYTTELYN VERKKOSIVUILTA. Painovoima

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Fysiikka 1. Dynamiikka. Voima tunnus = Liike ja sen muutosten selittäminen Physics. [F] = 1N (newton)

Fysiikka 1. Dynamiikka. Voima tunnus = Liike ja sen muutosten selittäminen Physics. [F] = 1N (newton) Dynamiikka Liike ja sen muutosten selittäminen Miksi esineet liikkuvat? Physics Miksi paikallaan oleva 1 esine lähtee liikkeelle? Miksi liikkuva esine hidastaa ja pysähtyy? Dynamiikka käsittelee liiketilan

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

W el = W = 1 2 kx2 1

W el = W = 1 2 kx2 1 7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

5. Numeerisesta derivoinnista

5. Numeerisesta derivoinnista Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan

Lisätiedot

Dissipatiiviset voimat

Dissipatiiviset voimat Dissipatiiviset voimat Luennon tavoitteena Mitä on energian dissipaatio? Ilmanvastus ja muita vastusvoimia, analyyttinen käsittely Toinen tärkeä differentiaaliyhtälö: eksponentiaalinen vaimeneminen Vaimennettu

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:

Tarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0: 8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

MAAPALLON GEOMETRIA JA SEN SELVITTÄMINEN

MAAPALLON GEOMETRIA JA SEN SELVITTÄMINEN STRUVEN KETJULLA MAAPALLOA MITTAAMAAN: MAAPALLON GEOMETRIA JA SEN SELVITTÄMINEN Joonas Ilmavirta Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto 3.10.2017 OSA I: MAAPALLON GEOMETRIA MAAPALLON

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1

Ydin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1 Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN

Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN Mitä energia on? Risto Orava Helsingin yliopisto Fysiikan tutkimuslaitos CERN 17. helmikuuta 2011 ENERGIA JA HYVINVOINTI TANNER-LUENTO 2011 1 Mistä energiaa saadaan? Perusenergia sähkö heikko paino vahva

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Teoreetikon kuva. maailmankaikkeudesta

Teoreetikon kuva. maailmankaikkeudesta Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten

Lisätiedot

Matematiikan tukikurssi, kurssikerta 5

Matematiikan tukikurssi, kurssikerta 5 Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään

Lisätiedot

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt

Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka

Lisätiedot

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta

Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta 8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1

Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1 Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi

Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen

Lisätiedot

CERN-matka

CERN-matka CERN-matka 2016-2017 UUTTA FYSIIKKAA Janne Tapiovaara Rauman Lyseon lukio http://imglulz.com/wp-content/uploads/2015/02/keep-calm-and-let-it-go.jpg FYSIIKKA ON KOKEELLINEN LUONNONTIEDE, JOKA PYRKII SELITTÄMÄÄN

Lisätiedot

Jännite, virran voimakkuus ja teho

Jännite, virran voimakkuus ja teho Jukka Kinkamo, OH2JIN oh2jin@oh3ac.fi +358 44 965 2689 Jännite, virran voimakkuus ja teho Jännite eli potentiaaliero mitataan impedanssin yli esiintyvän jännitehäviön avulla. Koska käytännön radioamatöörin

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

DEE-11110 Sähkötekniikan perusteet

DEE-11110 Sähkötekniikan perusteet DEE-11110 Sähkötekniikan perusteet Antti Stenvall Peruskäsitteet Luennon keskeinen termistö ja tavoitteet sähkövaraus teho ja energia potentiaali ja jännite sähkövirta Tarkoitus on määritellä sähkötekniikan

Lisätiedot