Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Koko: px
Aloita esitys sivulta:

Download "Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla."

Transkriptio

1 FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin periaate Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. Aaltorintaman jokainen piste synnyttää uuden, aaltorintaman nopeudella etenevän palloaallon. Interferoidessaan palloaallot muodostavat uuden r = vt aaltorintaman, joka on niiden yhteinen tangenttipinta. Kuva 1. Huygensin periaate Huygensin periaatteen nojalla tasoaallon heijastuskulma on yhtä suuri kuin tulokulma, koska heijastuneen aallon nopeus on yhtä suuri kuin tulevan aallon nopeus. Valon taittuminen puolestaan voidaan selittää sillä, että rajapinnan eri puolilla valo etenee eri nopeuksilla.

2 FYS103 / K3 Snellin laki Aaltoliikkeen taittuminen ja Snellin laki Valon nopeus tyhjiössä on c ja väliaineessa c/n, missä n on väliaineen taitekerroin. Tutkitaan kahden väliaineen rajapintaan saapuvaa aaltorintamaa. Rajapinnan yläpuolella alkeisaallon säde on vt=(ct)/n, kun taas rajapinnan alapuolella alkeisaallon säde on v t=(ct)/n. Valon nopeuden muutos väliaineiden rajapinnassa aiheuttaa siis aaltorintaman kääntymisen. vt v t θ θ n n Kuva 2. Rajapintaan saapuva aaltorintama Q vt P θ P θ v t Q Kuva 3. Aaltorintaman taittuminen

3 FYS103 / K3 Snellin laki Tarkastellaan kolmioita P PQ ja PP Q. Kolmiot ovat suorakulmaisia ja niillä on yhteisenä hypotenuusana jana PP. Aaltorintaman ja väliaineen rajapinnan väliset kulmat θ ja θ saadaan yhtälöistä sinθ = vt np P ja sin θ = v t. Jos toinen yhtälö n P P ratkaistaan hypotenuusan PP suhteen ja sijoitetaan toiseen yhtälöön, saadaan lopputulokseksi Snellin laki nsinθ = n sin θ (1) eli n 1 sinθ 1 = n 2 sinθ 2. (2) Snellin laista voidaan tehdä seuraavia johtopäätöksiä: Valonsäteellä, joka tulee optisesti tiheämpään aineeseen, taitekulma on pienempi kuin tulokulma, eli se taittuu kohti normaalia. Taitekertoimista riippumatta kohtisuoraan tuleva säde ei taitu lainkaan. Valon kulku rajapinnassa on käänteistä, n 12 = 1 n 21 Riittävän suurella tulokulmalla, kun sinθ n 21, tapahtuu kokonaisheijastus. Kokonaisheijastuksen rajakulma θ cr noudattaa taittumislain perusteella yhtälöä sinθ cr = n 21. Taittumislaki voidaan johtaa myös Fermat n periaatetta käyttäen. Fermat n periaatteen mukaan valon taittuminen voidaan selittää sillä, että oletetaan valon kulkevan aina nopeinta tietä kahden pisteen välisen matkan. Valo etenee siis aina siten, että optinen matka saa ääriarvon. Monokromaattisen valon kulku prismassa Valonsäteen kulkiessa prisman läpi tapahtuu taittumista usein kahdella pinnalla. Nämä pinnat ovat sellaisessa kulmassa (α) toisiinsa nähden, että taittuminen prisman toisella pinnalla ei kumoa ensimmäisen taittumisen aiheuttamaa taittumista, vaan lisää sitä. Valonsäteen reitti prisman läpi on kuvassa 4.

4 FYS103 / K3 Snellin laki θ 4 θ 1 θ 2 θ 3 Kuva 4. Valonsäteen kulku prismassa Molemmat taittumiset prisman pinnoilla noudattavat Snellin lakia, joten kuvasta 4 saadaan yhtälö sinθ 1 = n sinθ 2 n = sinθ 4. (3) sinθ 3 Saapuva valonsäde taittuu kulmaan β ensimmäisellä ja kulmaan γ toisella pinnalla. Saapuvan ja lähtevän säteen välinen kulma δ on siten δ=β+γ. Trigonometrian avulla tämä kulma voidaan lausua myös saapuvan valonsäteen kulman θ 1, lähtevän valonsäteen kulman θ 4 sekä apeksikulman α (kuva 4) avulla. δ =θ 1 +θ 4 α (4) Symmetriselle prismalle δ on minimissään kun valonsäde prisman sisällä kulkee yhdensuuntaisesti prisman pohjan kanssa. Tällöin θ 1 =θ 4 (ks. Kuva 5). Kuva 5 Valonsäteen kulku symmetrisessä prismassa

5 FYS103 / K3 Snellin laki Edelleen voidaan osoittaa, että tuntemattoman prismamateriaalin ja väliaineen taitesuhde saadaan kaavasta (5), jos tiedetään prismalle tulevan ja taittuvan säteen välinen minimikulma δ m. sin α + δ m 2 n r = sin α 2 (5) 2. Mittaukset Tehtävä 1. Valon taittumisen tutkiminen Ensimmäisessä mittauksessa käytetään kuvan 6 mukaista laitteistoa. Lasersäde ammutaan kollimaattorin (metallilevy, jossa on pieni reikä) läpi. Pyörivälle alustalle asetetaan pyöreä lasiastia, joka on jaettu väliseinällä kahteen yhtä suureen osaan. Pyörivä alusta on varustettu kulmajaotuksella, jonka avulla tulokulma saadaan riittävällä tarkkuudella. Taitekulma on parasta määrittää varjostimen avulla. Kuva 6. Mittauslaitteisto 1 Astian toiseen osaan laitetaan aluksi vettä. Tutki valon taittumista eri tulokulman arvoilla ja etsi kokonaisheijastuksen rajakulma. Totea myös valon kulun käänteisyys. Esitä mittaustulokset graafisesti (sinθ 2, sinθ 1 )-koordinaatistossa ja määritä kuvaajan avulla veden taitekerroin. Laske saamastasi taitekertoimen arvosta myös

6 FYS103 / K3 Snellin laki kokonaisheijastuksen rajakulma. Kaada tämän jälkeen vesi pois ja laita astian toiseen osaan assistentin antamaa tuntematonta nestettä. Määritä sen taitekerroin ja kokonaisheijastuksen rajakulma.(tämän osion voi tietysti tehdä kaatamatta vettä pois ennen öljyn lisäämistä. Tällöin ongelmaksi muodostunee veden ja öljyn erillään pitäminen työn lopussa.) Tehtävä 2. Monokromaattisen valon kulku prismassa Toisessa mittauksessa pyörivälle alustalle asetetaan prisma kuvan 7 mukaisesti. Tutki valon kulkua prismassa laserin ja varjostimen avulla. Prisman ja varjostimen etäisyyden pitäisi olla vähintään yksi metri. Symmetriselle prismalle määritetään δ min sekä prismamateriaalin taitekerroin kaavan (5) avulla. L laser prisma D Kuva 7. Mittauslaitteisto 2 Kotitehtävä Mitä tietoja tarvitset (tehtävässä 1) lasersäteen taitekulman kokeelliseen määrittämiseen varjostinta hyväksikäyttäen? Piirrä kuva. Johda kaava taitekulmalle.

Teoreettisia perusteita I

Teoreettisia perusteita I Teoreettisia perusteita I - fotogrammetrinen mittaaminen perustuu pitkälti kollineaarisuusehtoon, jossa pisteestä heijastuva valonsäde kulkee suoraan projektiokeskuksen kautta kuvatasolle - toisaalta kameran

Lisätiedot

25 INTERFEROMETRI 25.1 Johdanto

25 INTERFEROMETRI 25.1 Johdanto 5 INTERFEROMETRI 5.1 Johdanto Interferometrin toiminta perustuu valon interferenssiin. Interferenssillä tarkoitetaan kahden tai useamman aallon yhdistymistä yhdeksi resultanttiaalloksi. Kuvassa 1 tarkastellaan

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ

1 Johdanto (1) missä 0 on. interferenssi. mittauksen tarkkuudeksi Δ 25B INTERFEROMETRI 1 Johdanto 1.1 Michelsonin interferometri Kuva 1. Michelsonin interferometrin periaate. Michelsoninn interferometrin periaate on esitetty kuvassa 1. Laitteisto koostuu laserista, puoliläpäisevästää

Lisätiedot

RATKAISUT: 16. Peilit ja linssit

RATKAISUT: 16. Peilit ja linssit Physica 9 1 painos 1(6) : 161 a) Kupera linssi on linssi, jonka on keskeltä paksumpi kuin reunoilta b) Kupera peili on peili, jossa heijastava pinta on kaarevan pinnan ulkopinnalla c) Polttopiste on piste,

Lisätiedot

OPTISET KUIDUT. KEMIA JA YMPÄRISTÖ Jesse Peurala ja Reijo Tolonen 0401422 ja 0501128 TP05S, ryhmä C

OPTISET KUIDUT. KEMIA JA YMPÄRISTÖ Jesse Peurala ja Reijo Tolonen 0401422 ja 0501128 TP05S, ryhmä C OPTISET KUIDUT KEMIA JA YMPÄRISTÖ Jesse Peurala ja Reijo Tolonen 0401422 ja 0501128 TP05S, ryhmä C SISÄLLYS SISÄLLYS...2 1 Johdanto...1 2 Valon taittuminen...1 3 Optisten kuitujen lasi ja kuidun rakenne...2

Lisätiedot

Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82.

Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Fysiikka 2, 7. lk RUOKOLAHDEN KIRKONKYLÄN KOULU Toisessa fysiikan jaksossa käsitellään Aalto-oppia. Oppikirja s. 13 82. Tämä dokumentin versio on päivätty 6. syyskuuta 2013. Uusin löytyy osoitteesta http://rikun.net/mat

Lisätiedot

4.1 Kaksi pistettä määrää suoran

4.1 Kaksi pistettä määrää suoran 4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

AURINKOENERGIA. Auringon kierto ja korkeus taivaalla

AURINKOENERGIA. Auringon kierto ja korkeus taivaalla AURINKOENERGIA Auringon kierto ja korkeus taivaalla Maapallo kiertää aurinkoa hieman ellipsin muotoista rataa pitkin, jonka toisessa polttopisteessä maapallo sijaitsee. Maapallo on lähinnä aurinkoa tammikuussa

Lisätiedot

INTERFERENSSI OHUISSA KALVOISSA OPETTAJANOHJE

INTERFERENSSI OHUISSA KALVOISSA OPETTAJANOHJE INTERFERENSSI OHUISSA KALVOISSA OPETTAJANOHJE Johdanto Työ hahmottaa fysiikan ominaisuutta ennustaa ja selittää ihmisen arkiympäristössä tapahtuvia havaintoja neste- ja kaasufaasien välissä olevia ohuita

Lisätiedot

Sädeoptiikka Taittuminen ja kuvanmuodostus

Sädeoptiikka Taittuminen ja kuvanmuodostus Sädeoptiikka Taittuminen ja kuvanmuodostus Oiva Utriainen Raportti 5 Didaktisen fysiikan opintokokonaisuus DFCL3 26.11.2001 Ohjaaja Ari Hämäläinen Fysikaalisten tieteiden laitos Helsingin yliopisto 2 1

Lisätiedot

Suorakulmainen kolmio

Suorakulmainen kolmio Suorakulmainen kolmio 1. Määritä terävä kulma α, β ja γ, kun sinα = 0,5782, cos β = 0,745 ja tanγ = 1,222. π 2. Määritä trigonometristen funktioiden sini, kosini ja tangentti, kun kulma α = ja 3 β = 73,2

Lisätiedot

15. Suorakulmaisen kolmion geometria

15. Suorakulmaisen kolmion geometria 15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen

Lisätiedot

Funktion derivoituvuus pisteessä

Funktion derivoituvuus pisteessä Esimerkki A Esimerkki A Esimerkki B Esimerkki B Esimerkki C Esimerkki C Esimerkki 4.0 Ratkaisu (/) Ratkaisu (/) Mielikuva: Funktio f on derivoituva x = a, jos sen kuvaaja (xy-tasossa) pisteen (a, f(a))

Lisätiedot

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan.

Tämä luku nojaa vahvasti esimerkkeihin. Aloitetaan palauttamalla mieleen, mitä koordinaatistolla tarkoitetaan. MAB: Koordinaatisto geometrian apuna Aluksi Geometriassa tulee silloin tällöin eteen tilanne, jossa piirroksen tekeminen koordinaatistoon yksinkertaistaa laskuja. Toisinaan taas tilanne on muuten vaan

Lisätiedot

Kuvan 4 katkoviivalla merkityn alueen sisällä

Kuvan 4 katkoviivalla merkityn alueen sisällä TKK, TTY, LTY, OY ja ÅA insinööriosastojen valintakuulustelujen fysiikan koe 28.5.2003 Merkitse jokaiseen koepaperiin nimesi, hakijanumerosi ja tehtäväsarjan kirjain. Laske jokainen tehtävä siististi omalle

Lisätiedot

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria

KALTEVA TASO. 1. Työn tavoitteet. 2. Teoria Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1. Työn tavoitteet Tämän työn ensimmäisessä osassa tutkit kuulan, sylinterin ja sylinterirenkaan vierimistä pitkin kaltevaa tasoa.

Lisätiedot

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia Kolmioitten harjoituksia Piirrä kolmio, jonka sivujen pituudet ovat 4cm, 5 cm ja 10 cm. Minkä yleisen kolmion sivujen pituuksia ja niitten eroja koskevan johtopäätöksen vedät? Määritä huippukulman α suuruus,

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2008 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 5. kesäkuuta 2008 (aamupäivä) KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Europpa-koulun antama taulukkovihkonen Funktiolaskin,

Lisätiedot

Optiikkaa. () 10. syyskuuta 2008 1 / 66

Optiikkaa. () 10. syyskuuta 2008 1 / 66 Optiikkaa Kaukoputki on oikeastaan varsin yksinkertainen optinen laite. Siihen liitettävissä mittalaitteissa on myös optiikkaa, joskus varsin mutkikastakin. Vaikka havaitsijan ei tarvitsekaan tietää, miten

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I Geometrinen optiikka 3. Optiikka Lauri Jetsu Fysiikan laitos Helsingin yliopisto Geometrinen optiikka Geometrinen optiikka Geometrinen optiikka (kuva: @www.goldastro.com) Ei huomioi, että valo on aaltoliikettä

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

FYSA220/1 (FYS222/1) HALLIN ILMIÖ

FYSA220/1 (FYS222/1) HALLIN ILMIÖ FYSA220/1 (FYS222/1) HALLIN ILMIÖ Työssä perehdytään johteissa ja tässä tapauksessa erityisesti puolijohteissa esiintyvään Hallin ilmiöön, sekä määritetään sitä karakterisoivat Hallin vakio, varaustiheys

Lisätiedot

Kenguru 2015 Student (lukiosarja)

Kenguru 2015 Student (lukiosarja) sivu 1 / 9 NIMI RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Fysiikan perusteet 3 Optiikka

Fysiikan perusteet 3 Optiikka Fysiikan perusteet 3 Optiikka Petri Välisuo petri.valisuo@uva.fi 27. tammikuuta 2014 1 FYSI.1040 Fysiikan perusteet III / Optiikka 2 / 37 Sisältö 1 Heijastuminen ja taittuminen 4 1.1 Joitain hyödyllisiä

Lisätiedot

AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla

AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla AVOMERINAVIGOINTI eli paikanmääritys taivaankappaleiden avulla Tähtitieteellinen merenkulkuoppi on oppi, jolla määrätään aluksen sijainti taivaankappaleiden perusteella. Paikanmääritysmenetelmänäon ristisuuntiman

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

, k = jousivakio F F. ) x x / m. kx 2, työ: W = 1

, k = jousivakio F F. ) x x / m. kx 2, työ: W = 1 3. KURSSI: Aallot (FOTONI 3: PÄÄKOHDAT) VÄRÄHTELYT: harmoie voima ja värähdysliike - harmoie voima: F = -kx, taajuus eli frekvessi: f = T O T - T = jaksoaika = yhtee värähdyksee kuluut aika (s) - f = frekvessi

Lisätiedot

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi)

Kenguru 2012 Student sivu 1 / 8 (lukion 2. ja 3. vuosi) Kenguru 2012 Student sivu 1 / 8 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta

Lisätiedot

Essee Laserista. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE

Essee Laserista. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE Jyväskylän Ammattikorkeakoulu, IT-instituutti IIZF3010 Sovellettu fysiikka, Syksy 2005, 5 ECTS Opettaja Pasi Repo Essee Laserista Laatija - Pasi Vähämartti Vuosikurssi - IST4SE Sisällysluettelo: 1. Laser

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0

eli HUOM! - VALEASIAT OVAT AINA NEGATIIVISIA ; a, b, f, r < 0 - KOVERALLE PEILILLE AINA f > 0 - KUPERALLE PEILILLE AINA f < 0 PEILIT KOVERA PEILI JA KUPERA PEILI: r = PEILIN KAAREVUUSSÄDE F = POLTTOPISTE eli focus f = POLTTOVÄLI eli polttopisteen F etäisyys pelin keskipisteestä; a = esineen etäisyys peilistä b = kuvan etäisyys

Lisätiedot

Geometriaa kuvauksin. Siirto eli translaatio

Geometriaa kuvauksin. Siirto eli translaatio Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

PAINOPISTE JA MASSAKESKIPISTE

PAINOPISTE JA MASSAKESKIPISTE PAINOPISTE JA MASSAKESKIPISTE Kappaleen painopiste on piste, jonka kautta kappaleeseen kohdistuvan painovoiman vaikutussuora aina kulkee, olipa kappale missä asennossa tahansa. Jos ajatellaan kappaleen

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3

Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3 : http://users.metropolia.fi/~pasitr/2014-2015/ti00aa43-3004/kt/03/ratkaisut/ Tehtävä 1. (1 piste) Tee ohjelma K03T01.cpp, jossa ohjelmalle syötetään kokonaisluku. Jos kokonaisluku on positiivinen, niin

Lisätiedot

1.2 Yhtälön avulla ratkaistavat probleemat

1.2 Yhtälön avulla ratkaistavat probleemat 1.2 Yhtälön avulla ratkaistavat probleemat Kun matemaattista probleemaa lähdetään ratkaisemaan yhtälöä hyväksi käyttäen, tilanne on vaikeampi kuin ratkaistaessa yhtälöä mekaanisesti. Nyt on näet itse laadittava

Lisätiedot

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Analyyttinen geometria. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Analttinen geometria Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Analttinen geometria (MAA) Pikatesti ja Kertauskokeet Tehtävien

Lisätiedot

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS

AVOIMEN SARJAN VASTAUKSET JA PISTEITYS AVOIME SARJA VASTAUKSET JA PISTEITYS 1. Käytössäsi on viivoitin, 10 g:n punnus, 2 :n kolikko sekä pyöreä kynä. Määritä kolikon ja viivoittimen massa. Selosta vastauksessa käyttämäsi menetelmät sekä esitä

Lisätiedot

35. Kahden aallon interferenssi

35. Kahden aallon interferenssi 35. Kahden aallon interferenssi 35.1 Interferenssi ja koherentit lähteet Superpositioperiaate: Aaltojen resultanttisiirtymä (missä tahansa pisteessä millä tahansa hetkellä) on yksittäisiin aaltoliikkeisiin

Lisätiedot

LÄPINÄKYVYYS JA HEIJASTUMINEN MALLINNUKSESSA

LÄPINÄKYVYYS JA HEIJASTUMINEN MALLINNUKSESSA LÄPINÄKYVYYS JA HEIJASTUMINEN MALLINNUKSESSA LAHDEN AMMATTIKORKEAKOULU Mediatekniikan koulutusohjelma Teknisen visualisoinnin suuntautumisvaihtoehto Opinnäytetyö 9.5.2006 Ville Helppi Lahden ammattikorkeakoulu

Lisätiedot

1. Johdanto...2. 2. Ohjelman asentaminen ja asetukset...2. 3. Ohjelman yleisrakenne...2 3.1. Harjoitusten rakenne...3 3.2. Teorian yleisrakenne...

1. Johdanto...2. 2. Ohjelman asentaminen ja asetukset...2. 3. Ohjelman yleisrakenne...2 3.1. Harjoitusten rakenne...3 3.2. Teorian yleisrakenne... 1. Johdanto...2 2. Ohjelman asentaminen ja asetukset...2 3. Ohjelman yleisrakenne...2 3.1. Harjoitusten rakenne...3 3.2. Teorian yleisrakenne...4 4. Harjoitukset...4 4.1. SI-järjestelmä...4 4.2. Mekaniikka...5

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot

Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V

Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V Aukko-antennit Neljästä an ten n ien p ääry h m ästä o n en ää k äsittelem ättä y k si, au k k o an ten n it. A u k k o an ten n ien rak en teessa o n jo k in au k k o, jo n k a k au tta säh k ö m ag n

Lisätiedot

Rihtausohje. J.Puhakka

Rihtausohje. J.Puhakka Rihtausohje Pyörän vanteen pinnoitus (rihtaus) on aikaa vievä toimenpide, joka vaatii kärsivällisyyttä tekijältään. Tässä on ohje, joka toivottavasti helpottaa osaltaan työn onnistumista. J.Puhakka 1 Pinnat

Lisätiedot

Kappaleiden tilavuus. Suorakulmainensärmiö.

Kappaleiden tilavuus. Suorakulmainensärmiö. Kappaleiden tilavuus Suorakulmainensärmiö. Tilavuus (volyymi) V = pohjan ala kertaa korkeus. Tankomaisista kappaleista puhuttaessa nimitetään korkeutta tangon pituudeksi. Pohjan ala A = b x h Korkeus (pituus)

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

7. laskuharjoituskierros, vko 10, ratkaisut

7. laskuharjoituskierros, vko 10, ratkaisut 7. laskuharjoituskierros, vko 10, ratkaisut D1. a) Oletetaan, että satunnaismuuttujat X ja Y noudattavat kaksiulotteista normaalijakaumaa parametrein E(X) = 0, E(Y ) = 1, Var(X) = 1, Var(Y ) = 4 ja Cov(X,

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

IVK-Tuote Oy Jani Saarvo Äänenhallinnan esitelmä 19.10.2009 JYVÄSKYLÄN ROTARYKLUBI

IVK-Tuote Oy Jani Saarvo Äänenhallinnan esitelmä 19.10.2009 JYVÄSKYLÄN ROTARYKLUBI IVK-Tuote Oy Jani Saarvo Äänenhallinnan esitelmä 19.10.2009 JYVÄSKYLÄN ROTARYKLUBI IVK-TUOTE OY perustettiin vuonna 1988. Pienestä 7 henkilön työpajasta on kehittynyt Suomen johtava ilmastointijärjestelmien

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA7 Derivaatta Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Derivaatta (MAA7) Pikatesti ja kertauskokeet Tehtävien ratkaisut Pikatesti

Lisätiedot

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali-

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

34 GEOMETRINEN OPTIIKKA (Geometric Optics)

34 GEOMETRINEN OPTIIKKA (Geometric Optics) 90 34 GEOMETRINEN OPTIIKKA (Geometric Optics) Omat kasvot kylpyhuoneen peilissä, kuu kaukoputken läpi katsottuna, kaleidoskoopin kuviot. Kaikki nämä ovat esimerkkejä optisista kuvista (images). Kuva muodostuu,

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

35 VALON INTERFERENSSI (Interference)

35 VALON INTERFERENSSI (Interference) 13 35 VALON INTERFERENSSI (Interference) Edellisissä kappaleissa tutkimme valon heijastumista ja taittumista peileissä ja linsseissä geometrisen optiikan approksimaation avulla. Approksimaatiossa aallonpituutta

Lisätiedot

Mikroskooppisten kohteiden

Mikroskooppisten kohteiden Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε

Lisätiedot

Asennusohje ColoRex SD och EC

Asennusohje ColoRex SD och EC Asennusohje ColoRex SD och EC ColoRex on sähköä johtava PVC-laatta, jonka mitat ovat 610 x 610 x 2 mm. ColoRex on ESD-hyväksytty (Sveriges Provnings- och Forskningsinstitut). ColoRex-asennuksessa käytetään

Lisätiedot

Matematiikan ilmiöiden tutkiminen GeoGebran avulla

Matematiikan ilmiöiden tutkiminen GeoGebran avulla Johdatus GeoGebraan Matematiikan ilmiöiden tutkiminen GeoGebran avulla Harjoitus 1B. Konstruoi tasakylkinen kolmio ABC, jonka kyljen pituus on 5. Vihje: käytä Kiinteä jana työvälinettä kahdesti. Ota kolmion

Lisätiedot

Laser-kuumennus. Janne Komi 0336621. Petteri Mustonen 0371444

Laser-kuumennus. Janne Komi 0336621. Petteri Mustonen 0371444 Laser-kuumennus Janne Komi 0336621 Petteri Mustonen 0371444 2 SISÄLLYS 1. 2. 3. Johdanto... 3 Laser... 3 Sovelluskohteita... 4 3.1 Laserhitsaus... 5 3.2 Laserleikkaus... 6 3.3 Kirurgia... 7 3.4 Sotilaskäyttö...

Lisätiedot

ClassPad 330 plus ylioppilaskirjoituksissa apuna

ClassPad 330 plus ylioppilaskirjoituksissa apuna ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 4.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka 4..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN

OHJEITA TYÖSELOSTUKSEN LAATIMISEEN OHJEITA TYÖSELOSTUKSEN LAATIMISEEN Raportointi kuuluu tärkeänä osana jokaisen fyysikon työhön riippumatta siitä työskenteleekö hän tutkijana yliopistossa, opettajana koulussa vai teollisuuden palveluksessa.

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

AVOIN MATEMATIIKKA 7 lk. Osio 2: Kuvioiden luokittelua ja pinta-aloja

AVOIN MATEMATIIKKA 7 lk. Osio 2: Kuvioiden luokittelua ja pinta-aloja Marika Toivola ja Tiina Härkönen AVOIN MATEMATIIKKA 7 lk. Osio 2: Kuvioiden luokittelua ja pinta-aloja Sisältö on lisensoitu avoimella CC BY 3.0 -lisenssillä. 1 Osio 2: Kuvioiden luokittelua ja pinta-aloja

Lisätiedot

Snowek Oy:n harjalaitteiden päästöjen mittaus Nuuskija-autolla

Snowek Oy:n harjalaitteiden päästöjen mittaus Nuuskija-autolla Snowek Oy:n harjalaitteiden päästöjen mittaus Nuuskija-autolla Liisa Pirjola Aleksi Malinen Oskari Raiskio Metropolia ammattikorkeakoulu Teollinen tuotanto Tulokset 1. Snowek Oy:n ja Dynaset Oy:n yhdessä

Lisätiedot

AQUATRON ASENNUS- JA KÄYTTÖOHJEET

AQUATRON ASENNUS- JA KÄYTTÖOHJEET AQUATRON ASENNUS- JA KÄYTTÖOHJEET 1. ASENNUKSEEN HANKITTAVAT TARVIKKEET Seuraavat tarvikkeet tarvitaan laitteistotoimituksen lisäksi Aquatron-laitteiston asennukseen: 1.1 Wc-istuin. - 3 L huuhteleva pientalon

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Suora. Hannu Lehto. Lahden Lyseon lukio

Suora. Hannu Lehto. Lahden Lyseon lukio Suora Hannu Lehto Lahden Lyseon lukio Suuntavektori Normaalivektori Hannu Lehto 4. syyskuuta 2010 Lahden Lyseon lukio 2 / 12 Esimerkki Suuntavektori Normaalivektori Tarkastellaan suoraa y = 2 3 x 1. kulmakerroin

Lisätiedot

Gyroskooppilinjaus. PARALIGN Sylinterien linjaus nyt nopeammin ja tarkemmin

Gyroskooppilinjaus. PARALIGN Sylinterien linjaus nyt nopeammin ja tarkemmin Gyroskooppilinjaus PARALIGN Sylinterien linjaus nyt nopeammin ja tarkemmin Ensimmäinen inertiaalinen yhdensuuntaisuusmittausjärjestelmä PARALIGN kuorien sisällä on kolme suur-tarkkuus laser-gyroskooppia

Lisätiedot

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat.

ellipsirata II LAKI eli PINTA-ALALAKI: Planeetan liikkuessa sitä Aurinkoon yhdistävä jana pyyhkii yhtä pitkissä ajoissa yhtä suuret pinta-alat. KEPLERIN LAI: (Ks. Physica 5, s. 5) Johannes Keple (57-60) yhtyi yko Bahen (546-60) havaintoaineiston pohjalta etsimään taivaanmekaniikan lainalaisuuksia. Keple tiivisti tutkimustyönsä kolmeen lakiinsa

Lisätiedot

Fysiikan luokan Työkansio. Peruskoulu ja lukio

Fysiikan luokan Työkansio. Peruskoulu ja lukio Fysiikan luokan Työkansio Peruskoulu ja lukio PERUSKOULUN TYÖT (P) LUKIO TYÖT (L) P1 Aurinkopaneelitutkimus...1 P2 Sähköparit...2 P3 Vaihtovirran tutkiminen...3 P4 Ohmin laki...4 P5 Induktio...5 P6 Resistanssin

Lisätiedot

1 Laske ympyrän kehän pituus, kun

1 Laske ympyrän kehän pituus, kun Ympyrään liittyviä harjoituksia 1 Laske ympyrän kehän pituus, kun a) ympyrän halkaisijan pituus on 17 cm b) ympyrän säteen pituus on 1 33 cm 3 2 Kuinka pitkä on ympyrän säde, jos sen kehä on yhden metrin

Lisätiedot

Reaktioyhtälö. Sähköisen oppimisen edelläkävijä www.e-oppi.fi. Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava

Reaktioyhtälö. Sähköisen oppimisen edelläkävijä www.e-oppi.fi. Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava Reaktioyhtälö Sähköisen oppimisen edelläkävijä www.e-oppi.fi Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava Empiirinen kaava (suhdekaava) ilmoittaa, missä suhteessa yhdiste sisältää eri alkuaineiden

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

5.2 Ensimmäisen asteen yhtälö

5.2 Ensimmäisen asteen yhtälö 5. Ensimmäisen asteen ytälö 5. Ensimmäisen asteen yhtälö Aloitetaan antamalla nimi yhtälön osille. Nyt annettavat nimet eivät riipu yhtälön tyypistä tai asteesta. Tarkastellaan seuraavaa yhtälöä. Emme

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

FYSIIKAN HARJOITUSTEHTÄVIÄ

FYSIIKAN HARJOITUSTEHTÄVIÄ FYSIIKAN HARJOITUSTEHTÄVIÄ MEKANIIKKA Nopeus ja keskinopeus 6. Auto kulkee 114 km matkan tunnissa ja 13 minuutissa. Mikä on auton keskinopeus: a) Yksikössä km/h 1. Jauhemaalaamon kuljettimen nopeus on

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

782630S Pintakemia I, 3 op

782630S Pintakemia I, 3 op 782630S Pintakemia I, 3 op Ulla Lassi Puh. 0400-294090 Sposti: ulla.lassi@oulu.fi Tavattavissa: KE335 (ma ja ke ennen luentoja; Kokkolassa huone 444 ti, to ja pe) Prof. Ulla Lassi Opintojakson toteutus

Lisätiedot

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten?

Kokeile ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu täydellisesti lääkiksen pääsykokeeseen! Miten opit parhaiten? Miten opit parhaiten? Valmistaudu täydellisesti lääkiksen pääsykokeeseen! n Voit harjoitella kotoa käsin huippusuositulla Mafynetti-ohjelmalla. Mukaan kuuluu 4 täysimittaista harjoituskoetta!! n Harjoittelu

Lisätiedot

KORKEUDEN- MITTAUS. Vaaituskojeet ja tasolaserit. Korkeudenmittaus Rakennusmittauksen perusteet - 1-1988-1997 M-Mies Oy

KORKEUDEN- MITTAUS. Vaaituskojeet ja tasolaserit. Korkeudenmittaus Rakennusmittauksen perusteet - 1-1988-1997 M-Mies Oy KORKEUDEN- MITTAUS Vaaituskojeet ja tasolaserit Rakennusmittauksen perusteet - 1-1988-1997 M-Mies Oy LAITTEISTO VAAITUSKOJE Vaaituskalusto muodostuu vaaituskojeesta, jalustasta ja tarvittaessa vaaituslatasta.

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

Sähkömagneettiset aallot

Sähkömagneettiset aallot Luku 10 Sähkömagneettiset aallot Sähkömagneettisten aaltojen spektri on erittäin laaja. Esimerkkejä löytyy hyvin matalista taajuuksista aina gammasäteisiin, joiden taajuudet ovat suuruusluokkaa 10 20 10

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon

Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no

Lisätiedot

Laser FLS 90. Käyttöohje

Laser FLS 90. Käyttöohje Laser FLS 90 fi Käyttöohje L SE R R DI TIO N DO NO T ST R E IN TO BE M L SE R CL S S 2 5 1 2 4 3 3 6 7 B1 B2 1 C1 C2 C3 S1 =S2 = 90 C4 S1 90 S2 D1 D2 D3 D4 D5 D6 E1 S=10m 32 10 E2 C L 1 B E3 L 2 D C L

Lisätiedot