Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1
|
|
- Kalle Haapasalo
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat Be ja 4 Be, 4Si, 4Si ja 4Si sekä 50 Sn ja 50 Sn. ii) Isotoneilla on sama määrä neutroneja, eli N = A Z on sama. Tässä isotoneja ovat: N = 5: 3 3Li, 6 C ja O N = 63: Ag ja 50 Sn N = 70: Sn ja 54 Xe iii) Isobaareilla on sama massaluku A, joten isobaareja ovat 3 Li ja 4 4 4Be sekä 54 Xe ja 5 Te Tehtävä Alueessa jossa on sekä sähkö- että magneettikenttä läpipääseviksi ioneiksi valikoituvat sellaiset joiden nopeus on v = E B =. 0 4 V m 0.70 T = m/s. (Suoraan kulkeviin elektroneihin kohdistuva Lorenz-voima F = q(e +v B) = 0. Tällöin ionin nopeusvektori on kohtisuorassa sekä sähkö- että magneettikenttää kohtaan ja voidaan laskea suoraan skalaareilla E = vb.) Alueessa, jossa on magneettikenttä, ioniin kohdistuva Lorenz-voima toimii keskeisvoimana ja ioni päätyy ympyräradalle: qvb = Mv R = Mv R eb. Koska radat yhtyvät samassa kohdassa, mutta ovat eri säteisiä, ovat ne myös eri keskisiä. Näin ollen, jotta saadaan etäisyydet kohteessa, tarkastellaan säteen sijaan halkaisijaa d = R. Kyseessä ovat kertaalleen ionisoidut atomit, joten kaikkien varaus on e. Massat ovat M( 36Kr) =, 9344 u, M( 4 36Kr) = 3, 9507 u ja M( 6 36Kr) = 5, 906 u. Huomaa että massat täytyy vielä muuttaa kilogrammoiksi: u =, kg. Näillä tiedoilla voidaan laskea erot osumispaikoissa: d = v qb [M(4 36Kr) M( 36Kr)] =, 5 mm d = v qb [M(6 36Kr) M( 4 36Kr)] =, 59 mm Tehtävä 3 Ytimen säde varaustiheyden avulla saadaan kaavasta R e = CA /3, () jossa C =, 07 fm. Massatiheyden avulla säde on jossa r 0 =, 4 fm. a) R m = r 0 A /3, ()
2 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut ydin R e R m O, 07 fm /3 =, 696 fm, 4 fm /3 = 3, 5 fm 0 Sn, 07 fm 0 /3 = 5, 7 fm, 4 fm 0 /3 = 6, 905 fm 0 Pb, 07 fm 0 /3 = 6, 340 fm, 4 fm 0 /3 =, 95 fm b) = R x = A/3 x R P u A /3 P u A /3 x = A/3 P u A x = 3 A P u = 40 = 30 Eli ytimessä tulee olla 30 nukleonia, joten vaihtoehdot ovat Si ja 5 P Tehtävä 4 Massakato: Sidosenergia: Sidososuus: M = M( H) + M n M( O) =, u +, u 5, u = 0, u E b = Mc = 0, uc = 0, , 4943 MeV = 7, 6975 MeV 7, 6 MeV E b A = 7, 6975 MeV = 7, 9 MeV Kun ydin hajotetaan yhtäsuureen osaan, saadaan neljä 4 He-ydintä. Tällöin reaktion massakato: m = 4m( 4 He) m( O) = 4 4, u 5, u = 0, u Jolloin tästä saatava energia on: E = mc = 0, uc = 0, , 4943 MeV 4, 4 Mev. Tehtävä 5 i) Kun protoni irrotetaan 5 O:sta, jää jäljelle 7 protonia ja ydin on 7 N. Tarvittava energia: E = mc = [M( 5 7 N) + M( H) + m e M( O)]c = [5, 000 u +, u + 0, u 5, 9949 u]c Kun protoni irrotetaan 7 = 0, uc =, MeV O:sta, jää ydin N, tällöin energiaa tarvitaan: E = mc = [M( 7 N) + M( H) + m e M( 7 O)]c = [, 0045 u +, u + 0, u, 9993 u]c = 0, uc =, 0 MeV
3 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut 3 ii) Kun irrotetaan neutroni 5 O:sta, jää jäljelle ydin O ja energiaa tarvitaan: E = mc = [M( 5 O) + M( H) + m e M( O)]c = [5, u +, u + 0, u 5, 9949 u]c Kun irrotetaan neutroni 7 = 0, 049 uc = 5, 7 MeV O:sta, jää jäljelle ydin O ja energiaa tarvitaan: E = mc = [M( O) + M( H) + m e M( 7 O)]c = [5, 9949 u +, u + 0, u, 9993 u]c = 0, uc = 4, MeV Tehtävä 6 Heliumin sidosenergia: E b ( 3 He) = [m p + m n + m e m( 3 He)]c = 0, 0047 uc = 7, 77 MeV Tritiumin sidosenergia: E b ( 3 H) = [m n + m p + m e m( 3 H)]c = 0, uc =, 40 MeV Sidosenergioiden erotus: E b = 0, 763 MeV Kahden protonin sähköstaattinen potentiaalienergia, kun etäisyys on, 7 fm: E p = q q 4πɛ 0 r = (, As) 4π(, 5 0 As Vm )(, m) =, J = 0,47 MeV Potentiaalienergia ja sidosenergioiden erotus ovat samaa suuruusluokkaa, joten ero voidaan tulkita protonien välisen Coulombin repulsion aiheuttamaksi. Tehtävä 7 Spin-kvanttiluku I on kokonaisluku, jos massaluku A on parillinen. Jos A on pariton, I on parittoman kokonaisluvun puolikas (, 3, 5...). Jos sekä järjestysluku Z että neutroniluku N ovat parillisia, on ytimen spin 0. Näiden tietojen perusteella voidaan päättely koostaa taulukkoon: Nuklidi Z N A Spin I 6 C C puoliluku 4 7 N kokonaisluku O 0 4Si Si puoliluku 50 3V kokonaisluku 3 9 U Tehtävä a) 7 3Al:n spin I = 5. Spinimpulssimomentin vektorin pituus saadaan I = 5 I(I + ) = (5 + ) = 35 3, 0 34 Js
4 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut 4 Kuva : Spinimpulssimomenttivektori b) Spinimpulssimomentin z-komponentti I z saa arvot m l, missä m l = I, I,..., I +, I, eli tässä tapauksessa arvot 5, 3,,, 3, 5. Spinimpulssimomenttivektorin ja z-akselin välinen kulma voidaan laskea trigonometrian avulla kuvasta. cos α = I z I = m l = m l Tästä saatavat mahdolliset kulmien arvot vastaten m l :n arvoja: 3, 3, 59, 5, 0, 3, 99, 7, ja 4. c) Taulukoidaan edellä saatuja kulmia vastaavat spinimpulssimomentin z-komponentin arvot: α m l I z = m l 3, 3 5 5/ =, Js 59, 5 3 3/ =, Js 0, 3 / = 0, Js 99, 7 / = 0, Js 3/ 3 =, Js 4 5/ 5 =, Js d) Nyt spin I = 5 rad. Gyromagneettinen suhde γ = 6, Näiden avulla voidaan laskea: Ts 35 µ = µ = γ I = γ =, Am e) Landén tekijä: γ = g Nµ N g N = γ = 6, rad, Ts 0 34 Js µ N 5, J T =, 457 f ) Magneettisen momentin z-komponentti saadaan µ z = γm l. Arvot voidaan nyt taulukoida eri kvanttiluvun m l arvoille:
5 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut 5 m l µ z = γm l 5, Am = 3, 64µ N 3, Am =, µ N 0, Am = 0, 73µ N 0, Am = 0, 73µ N 3, Am =, µ N, Am = 3, 64µ N 5
766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 1 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 2011 1 Ytimen rakenne Luentomonisteen sivulla 3 oleva nuklidien N Z-diagrammi
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen
LisätiedotYdinfysiikkaa. Tapio Hansson
3.36pt Ydinfysiikkaa Tapio Hansson Ydin Ydin on atomin mittakaavassa äärimmäisen pieni. Sen koko on muutaman femtometrin luokkaa (10 15 m), kun taas koko atomin halkaisija on ångströmin luokkaa (10 10
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Lisätiedotfissio (fuusio) Q turbiinin mekaaninen energia generaattori sähkö
YDINVOIMA YDINVOIMALAITOS = suurikokoinen vedenkeitin, lämpövoimakone, joka synnyttämällä vesihöyryllä pyöritetään turbiinia ja turbiinin pyörimisenergia muutetaan generaattorissa sähköksi (sähkömagneettinen
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 4 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 01 6 Radioaktiivisuus Kuva 1 esittää radioaktiivisen aineen ydinten lukumäärää
LisätiedotAtomin ydin. Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N
Atomin ydin ytimen rakenneosia, protoneja (p + ) ja neutroneja (n) kutsutaan nukleoneiksi Z = varausluku (järjestysluku) = protonien määrä N = neutroniluku A = massaluku (nukleoniluku) A = Z + N saman
LisätiedotYdin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1
Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =
LisätiedotOppikirja (kertauksen vuoksi)
Oppikirja (kertauksen vuoksi) Luento seuraa suoraan oppikirjaa: Malcolm H. Levitt: Spin Dynamics Basics of Nuclear Magnetic Resonance Wiley 2008 Oppikirja on välttämätön sillä verkkoluento sisältää vain
LisätiedotNUKLIDIEN PYSYVYYS. Stabiilit nuklidit
VI NUKLIDIEN PYSYVYYS Stabiilit nuklidit Luonnon 92 alkuaineessa on kaiken kaikkiaan 275 pysyvää nuklidia. Näistä noin 60%:lla on sekä parillinen (even) protoniluku että parillinen (even) neutroniluku.
LisätiedotKemia 3 op. Kirjallisuus: MaoL:n taulukot: kemian sivut. Kurssin sisältö
Kemia 3 op Kirjallisuus: MaoL:n taulukot: kemian sivut Kurssin sisältö 1. Peruskäsitteet ja atomin rakenne 2. Jaksollinen järjestelmä,oktettisääntö 3. Yhdisteiden nimeäminen 4. Sidostyypit 5. Kemiallinen
LisätiedotTÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA
TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022
LisätiedotL a = L l. rv a = Rv l v l = r R v a = v a 1, 5
Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei
Lisätiedot763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2013
7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaisut 5 Keät 23. Aberraatio suhteellisuusteoriassa Tulkoon alo kuten tehtään kuassa (x, y)-tason x, y > neljänneksestä: u u x ˆx + u y ŷ c cos θ ˆx c sin θ ŷ. ()
LisätiedotMagneettikentät. Haarto & Karhunen. www.turkuamk.fi
Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan
LisätiedotS Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
LisätiedotSähköstatiikka ja magnetismi
Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän
LisätiedotLuku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan
Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää
Lisätiedotraudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia.
Vinkkejä tenttiin lukemiseen Virallisesti kurssin kirjoina on siis University Physics ja Eisberg&Resnick, mutta luentomoniste paljastaa, mitä olen pitänyt tärkeänä, joten jos et ymmärrä luentomuistiinpanojen
LisätiedotAtomimallit. Tapio Hansson
Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista
LisätiedotNyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
LisätiedotYdin- ja hiukkasfysiikka
Oulun yliopisto 766344A Ydin- ja hiukkasfysiikka Minna Patanen Nano- ja molekyylisysteemien tutkimusyksikkö Luonnontieteellinen tiedekunta 24. toukokuuta 2017 2 Sisältö 1 Ydinfysiikka 1 1.1 Ytimen ominaisuuksia........................
LisätiedotFysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Aine koostuu atomeista Nimitys tulee sanasta atomos = jakamaton (400 eaa, Kreikka) Atomin kuvaamiseen käytetään atomimalleja Pallomalli
LisätiedotTKK, TTY, LTY, OY, ÅA, TY ja VY insinööriosastojen valintakuulustelujen fysiikan koe 31.5.2006, malliratkaisut ja arvostelu.
1 Linja-autoon on suunniteltu vauhtipyörä, johon osa linja-auton liike-energiasta siirtyy jarrutuksen aikana Tätä energiaa käytetään hyväksi kun linja-autoa taas kiihdytetään Linja-auto, jonka nopeus on
LisätiedotLuku 2: Atomisidokset ja ominaisuudet
Luku 2: Atomisidokset ja ominaisuudet Käsiteltävät aiheet: Mikä aikaansaa sidokset? Mitä eri sidostyyppejä on? Mitkä ominaisuudet määräytyvät sidosten kautta? Chapter 2-1 Atomirakenne Atomi elektroneja
LisätiedotVaratun hiukkasen liike
Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
Lisätiedot763105P JOHDATUS SUHTEELLISUUSTEORIAAN 1 Ratkaisut 5 Kevät 2016
7635P JOHDATUS SUHTEELLISUUSTEORIAAN Ratkaist 5 Kevät 26. Aberraatio shteellissteoriassa a) Tlkoon valo kten tehtävän kvassa (x, y)-tason x, y > neljänneksestä: x ˆx + y ŷ c cos θ ˆx c sin θ ŷ. () Lorenz
Lisätiedotelektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni
3.1 Atomin rakenneosat Kaikki aine matter koostuu alkuaineista elements. Jokaisella alkuaineella on omanlaisensa atomi. Mitä osia ja hiukkasia parts and particles atomissa on? pieni ydin, jossa protoneja
LisätiedotVaratun hiukkasen liike
Luku 16 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
LisätiedotYdin- ja hiukkasfysiikka
Oulun yliopisto 766344A Ydin- ja hiukkasfysiikka Minna Patanen Nano- ja molekyylisysteemien tutkimusyksikkö Luonnontieteellinen tiedekunta 11. toukokuuta 018 Sisältö 1 Ydinfysiikka 1 1.1 Ytimen ominaisuuksia........................
LisätiedotAtomimallit. Tapio Hansson
Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista
LisätiedotCh2 Magnetism. Ydinmagnetismin perusominaisuuksia.
Ch2 Magnetism Ydinmagnetismin perusominaisuuksia. Sähkömagneettinen kenttä NMR-spectroskopia perustuu ulkoisten SM-kenttien ja ytimen magneettisen momentin väliseen vuorovaikutukseen. Sähkökenttä E ja
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
LisätiedotLuento Ydinfysiikka. Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot
Luento 3 7 Ydinfysiikka Ytimien ominaisuudet Ydinvoimat ja ytimien spektri Radioaktiivinen hajoaminen Ydinreaktiot Ytimien ominaisuudet Ydin koostuu nukleoneista eli protoneista ja neutroneista Ydin on
Lisätiedot2.2 RÖNTGENSÄTEILY. (yli 10 kv).
11 2.2 RÖNTGENSÄTEILY Erilaisiin sovellutustarkoituksiin röntgensäteilyä synnytetään ns. röntgenputkella, joka on anodista (+) ja katodista () muodostuva tyhjiöputki, jossa elektrodien välille on kytketty
Lisätiedot5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
Lisätiedot8. MONIELEKTRONISET ATOMIT
8. MONIELEKTRONISET ATOMIT 8.1. ELEKTRONIN SPIN Epärelativistinen kvanttimekaniikka selittää vetyatomin rakenteen melko tarkasti, mutta edelleen kokeellisissa atomien energioiden mittauksissa oli selittämättömiä
LisätiedotNIMI: Luokka: c) Atomin varaukseton hiukkanen on nimeltään i) protoni ii) neutroni iii) elektroni
Peruskoulun kemian valtakunnallinen koe 2010-2011 NIMI: Luokka: 1. Ympyröi oikea vaihtoehto. a) Ruokasuolan kemiallinen kaava on i) CaOH ii) NaCl iii) KCl b) Natriumhydroksidi on i) emäksinen aine, jonka
LisätiedotVaratun hiukkasen liike
Luku 17 Varatun hiukkasen liike SM-kentässä Tarkastellaan tässä luvussa varatun hiukkasen liikettä sähkömagneettisessa kentässä. Asiaa on käsitelty RMC:n luvussa 14 ja CL käsittelee Hamiltonin formalismia
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
Lisätiedot6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA
6 YDINFYSIIKKAA 6.1 YTIMEN RAKENTEESTA Atomin elektronirakenne tunnettiin paljon ennen ytimen rakenteen tuntemista: elektronien irrottamiseen atomista tarvitaan paljon pienempiä energioita (muutamia ev)
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
Lisätiedota) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
Lisätiedot, m s ) täytetään alimmasta energiatilasta alkaen. Alkuaineet joiden uloimmalla elektronikuorella on samat kvanttiluvut n,
S-114.6, Fysiikka IV (EST),. VK 4.5.005, Ratkaisut 1. Selitä lyhyesti mutta mahdollisimman täsmällisesti: a) Keskimääräisen kentän malli ja itsenäisten elektronien approksimaatio. b) Monen fermionin aaltofunktion
LisätiedotKEMIA. Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista.
KEMIA Kemia on tiede joka tutkii aineen koostumuksia, ominaisuuksia ja muuttumista. Kemian työturvallisuudesta -Kemian tunneilla tutustutaan aineiden ominaisuuksiin Jotkin aineet syttyvät palamaan reagoidessaan
LisätiedotTheory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)
Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan
Lisätiedotluku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio
Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2
LisätiedotSähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä
Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä
LisätiedotFysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto
ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä
LisätiedotJakso 8: Monielektroniset atomit
Jakso 8: Monielektroniset atomit Näytä tai palauta tämän jakson tehtävät viimeistään tiistaina 9.6.2015. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 6 ja 7. Suunnilleen samat asiat ovat
LisätiedotFysiikka 7. Sähkömagnetismi
Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla
LisätiedotYdinfysiikka. Luento. Jyväskylän synklotroni. Copyright 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.
Ydinfysiikka Atomin ydin kuuluu silmillemme näkymättömään maailmaan, mutta ydinfysiikan ilmiöt ovat osa modernia teknologiaa. Esim ydinvoima, ydinfysiikan käyttö lääketieteessä, ydinjätteet. Luennon tavoite:
LisätiedotFYSN300 Nuclear Physics I. Välikoe
Välikoe Vastaa neljään viidestä kysymyksestä 1. a) Hahmottele stabiilien ytimien sidosenergiakäyrä (sidosenergia nukleonia kohti B/A massaluvun A funktiona). Kuvaajan kvantitatiivisen tulkinnan tulee olla
LisätiedotFysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2
Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
LisätiedotPHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016
PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016 Prof. Filip Tuomisto Fuusion perusteet, torstai 10.3.2016 Päivän aiheet Fuusioreaktio(t) Fuusion vaatimat olosuhteet Miten fuusiota voidaan
LisätiedotMassaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus
11.5.2017 Massaspektrometria IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Määritelmä Massaspektrometria on tekniikka-menetelmä, jota käytetään 1) mitattessa orgaanisen molekyylin molekyylimassaa ja 2) määritettäessä
LisätiedotLääketiede Valintakoeanalyysi 2015 Fysiikka. FM Pirjo Haikonen
Lääketiede Valintakoeanalyysi 5 Fysiikka FM Pirjo Haikonen Fysiikan tehtävät Väittämä osa C (p) 6 kpl monivalintoja, joissa yksi (tai useampi oikea kohta.) Täysin oikein vastattu p, yksikin virhe/tyhjä
Lisätiedotn=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1
10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotLuvun 5 laskuesimerkit
Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
Lisätiedotψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
LisätiedotHavainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.
Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin w = w w = ( 4) 2 + ( 3) 2 = 25 = 5 v = v v = ( 3) 2 + 2 2 = 13. w =5 3 2 v = 13 4 3 LM1, Kesä 2014 76/102 Normin ominaisuuksia I Lause
LisätiedotBM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
LisätiedotKäytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.
1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
LisätiedotSuora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},
Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,
LisätiedotMassaspektrometria. magneetti negat. varautuneet kiihdytys ja kohdistus
Massaspektrometria IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Määritelmä Massaspektrometria on tekniikka-menetelmä, jota käytetään 1) mitattessa orgaanisen molekyylin molekyylimassaa ja 2) määritettäessä
Lisätiedotraudan ja nikkelin paikkeilla: on siis mahdollista vapauttaa ytimen energiaa joko fuusioimalla tätä pienempiä ytimiä tai fissioimalla raskaampia.
Vinkkejä tenttiin lukemiseen Friday 11 May 2018 Virallisesti kurssin kirjoina on siis University Physics ja Eisberg&Resnick, mutta luentomoniste paljastaa, mitä olen pitänyt tärkeänä, joten jos et ymmärrä
LisätiedotAlkeishiukkaset. perushiukkaset. hadronit eli kvarkeista muodostuneet sidotut tilat
Alkeishiukkaset perushiukkaset kvarkit (antikvarkit) leptonit (antileptonit) hadronit eli kvarkeista muodostuneet sidotut tilat baryonit mesonit mittabosonit eli vuorovaikutuksien välittäjähiukkaset Higgsin
Lisätiedotj = I A = 108 A m 2. (1) u kg m m 3, (2) v =
764A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 6 Kevät 28. Tehtävä: Aiemmi olemme laskeeet kupari johtavuuselektroie tiheydeksi 8.5 28 m. Kuparijohdossa, joka poikkipita-ala o mm 2, kulkee A: virta. Arvioi Drude
LisätiedotC. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
LisätiedotRatkaisuja, Tehtävät
ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden
LisätiedotHiukkaskiihdyttimet ja -ilmaisimet
Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan näkökulmasta, vastaavia
LisätiedotMagneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän
3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina
LisätiedotE p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis
763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion
Lisätiedot! 7! = N! x 8. x x 4 x + 1 = 6.
9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut
Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2009, insinöörivalinnan fysiikan koe 27.5.2009, malliratkaisut 1 Huvipuiston vuoristoradalla vaunu (massa m v = 1100 kg) lähtee levosta liikkeelle
LisätiedotCoulombin laki ja sähkökenttä
Luku 1 Coulombin laki ja sähkökenttä 1.1 Sähkövaraus ja Coulombin voima Sähköisten ilmiöiden olemassaolo ilmenee niiden aiheuttamista mekaanisista vaikutuksista (osittain myös optisista vaikutuksista;
LisätiedotQCD vahvojen vuorovaikutusten monimutkainen teoria
QCD vahvojen vuorovaikutusten monimutkainen teoria Aleksi Vuorinen Helsingin yliopisto Hiukkasfysiikan kesäkoulu Helsingin yliopisto, 18.5.2017 Päälähde: P. Hoyer, Introduction to QCD, http://www.helsinki.fi/~hoyer/talks/mugla_hoyer.pdf
LisätiedotHiukkaskiihdyttimet ja -ilmaisimet
Hiukkaskiihdyttimet ja -ilmaisimet Kati Lassila-Perini Fysiikan tutkimuslaitos Miksi hiukkasia kiihdytetään? Miten hiukkasia kiihdytetään? Mitä törmäyksessä tapahtuu? Miten hiukkasia mitataan? Esitys hiukkasfysiikan
LisätiedotC. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. 4Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
LisätiedotS Fysiikka III (Est) 2 VK
S-37 Fysiikka III (Est) VK 500 Tarkastellaan vedyn p energiatasoa a) Mikä on tämän tason energia Bohrin mallissa? b) Oletetaan että spinratavuorovaikutus voidaan jättää huomiotta Kirjoita kaikki tähän
LisätiedotJaksollinen järjestelmä ja sidokset
Booriryhmä Hiiliryhmä Typpiryhmä Happiryhmä Halogeenit Jalokaasut Jaksollinen järjestelmä ja sidokset 13 Jaksollinen järjestelmä on tärkeä kemian työkalu. Sen avulla saadaan tietoa alkuaineiden rakenteista
LisätiedotKorrelaatiofunktio ja pionin hajoamisen kinematiikkaa
Korrelaatiofunktio ja pionin hajoamisen kinematiikkaa Timo J. Kärkkäinen timo.j.karkkainen@helsinki.fi Teoreettisen fysiikan syventävien opintojen seminaari, Helsingin yliopiston fysiikan laitos 11. lokakuuta
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 4 Keät 207. Rekyyli Luentomonisteessa on käsitelty tilanne, jossa hiukkanen (massa M) hajoaa kahdeksi hiukkaseksi (massat m ja m 2 ). Tässä käytetään
LisätiedotKeski-Suomen fysiikkakilpailu
Keski-Suomen fysiikkakilpailu 28.1.2016 Kilpailussa on kolme kirjallista tehtävää ja yksi kokeellinen tehtävä. Kokeellisen tehtävän ohjeistus on laatikossa mittausvälineiden kanssa. Jokainen tehtävä tulee
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Lisätiedot766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 2 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 2011 3-3 Ydinmagneettinen resonanssi NMR-spektroskopiassa (NMR = Nuclear
LisätiedotVIII RADIOAKTIIVISEN HAJOAMISEN MUODOT
VIII RADIOAKTIIVISEN HAJOAMISEN MUODOT Radioaktiivisessa hajoamisessa on neljä perusmuotoa: fissio alfahajoaminen betahajoaminen sisäinen siirtymä Viime vuosikymmeninä on havaittu paljon harvinaisempiakin
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotTRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT
3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
Lisätiedot