Markov-ketjut pitkällä aikavälillä
|
|
- Minna Hukkanen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton; oppia tunnistamaan, milloin ketjun tilajakauma suppenee pitkällä aikavälillä; ja oppia laskemaan annetun siirtymämatriisin tasapainojakauma Jos mahdollista, harjoituksiin kannattaa tuoda mukaan kannettava tietokone tai laskin, jolla voi laskea tehtävissä esiintyvien laskujen lukuarvoja Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä Tuntitehtävät 2A1 Yhtenäisen ketjun jaksollisuus Perustele, miksi seuraavat tulokset ovat totta yleiselle äärellisen tilajoukon S Markov-ketjulle ja sen siirtymämatriisille P = (p x,y x,y S (a Jos p x,x > 0, niin tällöin myös (P t x,x > 0 kaikilla t = 1, 2, Ratkaisu (Leskelä, luvut 21 ja 23 Epäyhtälö p x,x > 0 tarkoittaa, että tilasta x on linkki itseensä, kun taas (P t x,x > 0 tarkoittaa, että tilasta x on mahdollista päästä t:llä askeleella takaisin tilaan x Jälkimmäinen on ensimmäisen nojalla totta, sillä nyt prosessi voi siirtyä t kertaa peräkkäin tilasta x takaisin itseensä Päättely voidaan esittää formaalisti esimerkiksi seuraavasti: (P t x,x = P(X t = x X 0 = x P(X t = x, X t 1 = x,, X 1 = x X 0 = x = p t x,x > 0, koska p x,x > 0 (b Jos p x,x > 0, niin tilan x jakso on 1 Ratkaisu (Leskelä, luku 34 Jos p(x, x > 0, niin mahdollisten paluuhetkien joukkon on T x = {1, 2, 3, }, jonka suurin yhteinen tekijä on 1 äin ollen tilan x jakso on 1, eli tila on jaksoton (c Jos p x,x > 0 ja x y (ks luentomoniste, Luku 32, niin on olemassa s siten, että (P t y,y > 0 kaikilla t = s, s + 1, s + 2, Ratkaisu Jos x y, niin on olemassa luvut s 1 ja s 2 se P s 1 (y, x > 0 ja P s 2 (x, y > 0 Merkitään s = s 1 +s 2 Tällöin P s+k (y, y P s 1 (y, xp k (x, xp s 2 (x, y > 0 kaikilla k 1 (d Yhtenäinen ketju on jaksoton, jos p x,x > 0 pätee jollekin tilalle x Ratkaisu Ketju on yhtenäinen, jos kaikille tiloille z, y pätee z y Valitaan z = x yt edellisen kohdan perusteella jokaisella y on olemassa s 1, jolle P t (y, y > 0 kaikilla t = s, s + 1, äin ollen tilan y mahdollisten paluuhetkien joukko sisältää T y {s, s + 1, s + 2, } Ainoa positiivinen kokonaisluku, jolla sekä s että s+1 ovat jaollisia, on 1 äin ollen lukujoukon T y suurin yhteinen tekijä on 1, eli tilan y jakso on 1 1 / 6
2 Lisäys Yleisemmin kaikkien yhtenäisen Markov-ketjun tilojen jakso on sama (tai vielä yleisemmin kunkin yhtenäisen komponentin kaikkien tilojen jakso on sama Todistus on oleellisesti sama kuin kohta (d yllä Kotitehtävät (palautettava kirjallisina pe 229 klo 10:15 mennessä 2A3 Selvitä seuraavien Markov-ketjujen pitkän aikavälin käyttäytyminen (a Työmatkapyöräilijän pyörä on kunakin työpäivänä joko kunnossa tai rikki Kun pyörä on jonakin työpäivänä ollut kunnossa, se on seuraavanakin kunnossa todennäköisyydellä 95%, muuten rikki ja kun se on ollut rikki, se on seuraavana työpäivänä kunnossa todennäköisyydellä 33%, muuten edelleen rikki riippumatta aiemmista tiloista Kuinka suuren osuuden työpäivistä pyörä on pitkällä aikavälillä rikki? Ratkaisu (1: Markov-teorian tavat Muistetaan, että Markov-ketjun tilojen aikaosuuksia pitkällä aikavälillä kuvaa tasapainojakauma Formaalisti: olkoon (X t t äärellisen tila-avaruuden yhtenäinen Markov-ketju ja T (y sen vierailulaskuri tilassa y aikaan T mennessä, T (y = T I{X t = y} t=0 Tällöin pätee kaikille tiloille y ja kaikille alkujakaumille µ 0 ( lim E T (y 1 = lim T T + 1 T T + 1 (µ 0P t y = π(y, missä π on ketjun yksikäsitteinen 1 tasapainojakauma Ylläoleva on suoraviivainen seuraus hetkittäisten tilajakaumien µ 0 P t suppenemisesta (Leskelä, lause 311 Lisäys Yo formaalin muotoilun mukaan Markov-ketjun tilojen odotusarvoisia aikaosuuksia pitkällä aikavälillä kuvaa tasapainojakauma Sana odotusarvoisia voidaan kuitenkin poistaa, koska seuraava vahvempi tulos pätee (Leskelä, Lause 44: äärellisen tila-avaruuden yhtenäiselle Markov-ketjulle (X t t, pätee kaikille tiloille y ja kaikille alkujakaumille todennäköisyydellä 1 T (y lim T T + 1 = π(y, missä π on ketjun yksikäsitteinen tasapainojakauma Olkoon tila kunnossa tila 1 ja tila rikki tila 2 Tällöin siirtymämatriisiksi saadaan: [ ] P = Katso Leskelä, Lause 38 2 / 6
3 Vastaava Markov-ketju on yhtenäinen Tehtävän Markov-ketjulle siis se osuus työpäivistä, jonka pyörä on pitkällä aikavälillä rikki, on π(rikki, missä π on tasapainojakauma Alla on ratkaistu tasapainojakauma kahdella eri Markov-teorian tavalla (1a: Analyyttinen tapa; Leskelä, Luku 31 Tasapainojakauma saadaan tasapainoyhtälöistä π = πp ja π(x i = 1 äistä saadaan 095π π 2 = π 1 π 2 = 5/33π 1 005π π 2 = π 2 π 1 + π 2 = 1 Ensimmäinen ja toinen yhtälö ovat yhtäpitävät; tämä voidaan tarkastaa sijoittamalla ensimmäinen rivi toiseen Sijoittamalla ensimmäinen rivi kolmanteen saadaan π 1 = 33/38, joten π 2 = 5/38 Tasapaino- ja rajajakauma on siis π = [33/38, 5/38] [08684, 01316] Pyörä on siis pitkällä aikavälillä noin 13, 2% päivistä rikki (1b: umeerinen tapa; vrt Leskelä, esimerkki 32 Tehtävän Markov-ketju on yhtenäinen ja jaksoton äin ollen hetkittäiset tilajakaumat suppenevat alkujakaumasta riippumatta kohti rajajakaumaa, joka on ketjun tasapainojakauma π (Leskelä, Lause 311 Rajajakauman taas voi päätellä laskemalla tietokoneella siirtymämatriisin suuria potensseja; P 100 [ ] Ja numeerisen tarkkuuden rajoissa P 101 = P 100, joten jakauma on ajautunut sadassa askeleessa tasapainotilaansa [08684, 01316] alkutilasta riippumatta Pyörä on siis pitkällä aikavälillä noin 13, 2% päivistä rikki (2: Geometrisen jakauman tapa Tutkitaan nyt pitkän aikavälin käytöstä suoraan ilman Markov-ketjujen teoriaa Aika, jonka pyörä on kerralla kunnossa on geometrisesti jakautunut joukolla Z >0 parametrilla 005 Vastaavasti aika, jonka pyörä on kerralla rikki on geometrisesti jakautunut joukolla Z >0 parametrilla 033 Vastaavat odotusarvot ovat 1/005 ja 1/033 Tarkastellaan nyt sykliä, jolloin pyörä on ollut kertaa rikki ja kertaa kunnossa Tämän aikavälin pituus T toteuttaa suurten lukujen lain mukaan melkein varmasti T / 1/ /033 kun Vastaavasti kertaa rikki oleminen T (rikki oleminen T (kunnossa toteuttavat T (rikki / 1/033, T (kunnossa / 1/005 i ja kertaa kunnossa 3 / 6
4 Tästä saadaan rikki- ja kunnossaolemisen osuudet: melkein varmasti T (rikki /T 08684, T (kunnossa /T Pyörä on siis pitkällä aikavälillä noin 13, 2% päivistä rikki (b Tarkastellaan harjoitustehtävän 1B3 Markov-ketjua tilajoukolla S = {AA, Aa, aa} ja siirtymämatriisilla 0 P = 1/4 1/4, 0 missä tilat on lueteltu järjestyksessä AA, Aa, aa Laske eri genotyyppien osuudet tässä jälkeläisten ketjussa pitkällä aikavälillä Ratkaisu Siirtymäkaavio on AA Aa aa 1/4 mistä nähdään, että ketju on yhtenäinen Genotyyppien osuudet pitkällä aikavälillä tulevat näin ollen ketjun yksikäsitteisestä tasapainojakaumasta π Perusteltu on kuten kohdassa (a (Analyyttinen tapa Tasapainoyhtälöt ovat 1/4 π 1 + 1/4π 2 = π 1 π 2 = 2π 1 π 1 + π 2 + π 3 = π 2 1/4π 2 + π 3 = π 3 π 2 = 2π 3 π 1 + π 2 + π 3 = 1 ja oikealla olevista yhtälöistä nähdään suoraan, että π = [1/4,, 1/4] (umeerinen tapa Siirtymäkaaviosta nähdään, että ketju on yhtenäinen ja jaksoton äin ollen yksikäsitteinen tasapainojakauma on myös kaikkien alkujakaumien rajajakauma (Leskelä, lause 311 Laskemalla siirtymämatriisin suuria potensseja saadaan rajajakauma: 1/4 1/4 P 100 1/4 1/4 1/4 1/4 (Johtopäätös Tasapainojakauma on siis π = [1/4,, 1/4] eli genotyyppien osuudet pitkällä aikavälillä ovat: AA: 1/4, Aa:, aa: 1/4 4 / 6
5 2A4 Korkean ja matalan tuloasteen solmun PageRank Tarkastellaan suunnattua verkkoa, jonka solmujoukko on V = {1, 2,, n}, ja joka sisältää linkit 1 2, 2 1 sekä x 2, kun x = 3, 4,, n Olkoon (X 0, X 1, luentomonisteen PageRank-algoritmin (Esimerkki 23 mukainen tätä verkkoa vastaava Markov-ketju (a Luonnostele paperille ketjun siirtymäkaavio ja selvitä, millä vaimennuskertoimen c arvoilla Markov-ketju on yhtenäinen Ratkaisu Verkko V on n PageRank-siirtymätodennäköisyydet ovat P (x, y = c 1 n + (1 c G(x, y y V G(x, y, missä G on verkon V naapuruusmatriisi ja c [0, 1] vapaa parametri Yllä piirretty verkko V on myös PageRank-Markov-ketjun siirtymäkaavio, kun c = 0 Tällöin kaikkien kaarien paino on 1 Kun c > 0, kaikkien solmuparien välillä on molempiin suuntiin kaari Tällöin yläpuolella kuvassa olevien verkon V kaarien paino on c/n + (1 c ja muiden c/n Markov-ketju on yhtenäinen, joss c > 0 (b Laske verkon solmujen PageRank-arvot ratkaisemalla Markov-ketjun tasapainoyhtälöt Ratkaisu Tasapainoyhtälöt (Leskelä, luku 31 ovat π(1 = π(1cn 1 + π(2 ( cn 1 + (1 c ( n + π(x cn 1 π(2 = π(1 ( cn 1 + (1 c ( n (cn + π(2cn 1 + π(x 1 + (1 c π(3 = π(n = n π(x = 1 x=1 ( n π(x x=1 ( n π(x x=1 cn 1 cn 1 x=3 x=3 5 / 6
6 Sijoittamalla normalisaatioehto x π(x = 1, ylemmät yhtälöt sievenevät muotoon Tästä voidaan ratkaista π(1 = π(1 = cn 1 + π(2(1 c, π(2 = cn 1 + (1 π(2(1 c, π(3 = cn 1, π(n = cn 1 ( 1 + π(2 = cn 1 + (1 c, 1 + (1 c π(3 = cn 1, π(n = cn 1 1 c cn (1 c (1 c2 1 + (1 c, (c Miten PageRank-arvot käyttäytyvät, kun c = 0 ja c = 1? Ratkaisu Kun c = 0, saadaan π(1 = π(2 = 1 ja π(x = 0 kun x 3 Kun 2 c = 1, saadaan π(x = 1/n kaikilla x (d Miten PageRank-arvot käyttäytyvät, kun n? Ratkaisu Kun n, saadaan rajalla π(1 = (1 c2 1 + (1 c, π(2 = (1 c 1 + (1 c, π(j = 0, j 3 Huomaa, että raja-arvoille pätee π(1 + π(2 = 1 c, joten [π(1, π(2] ei ole tilajoukon {1, 2} tn-jakauma, vaan c:n verran tn-massaa on karannut äärettömiin rajankäynnin yhteydessä 6 / 6
Markov-ketjut pitkällä aikavälillä
MS-C2111 Stokastiset prosessit 2A Markov-ketjut pitkällä aikavälillä Tämän harjoituksen tavoitteena on oppia lukemaan siirtymämatriisista tai siirtymäkaaviosta, milloin Markov-ketju on yhtenäinen ja jaksoton;
LisätiedotMarkov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
LisätiedotErilaisia Markov-ketjuja
MS-C2 Stokastiset prosessit Syksy 207 3A Erilaisia Markov-ketjuja Tuntitehtävät 3A Lepakoiden rengastaja (tai kuponkien keräilijä) Lepakkoluolassa on lepakkoa, joista jokainen lentää luolasta ulos joka
LisätiedotJatkuva-aikaisia Markov-prosesseja
5B Jatkuva-aikaisia Markov-prosesseja Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tasapainojakaumia. Laskuharjoitukseen kannattaa
LisätiedotMarkov-ketjuja suurilla tila-avaruuksilla
3B Markov-ketjuja suurilla tila-avaruuksilla Tuntitehtävät 3B1 Sekoaako korttipakka sekoittamalla? Olkoon S kaikkien 52 kortin korttipakan mahdollisten järjestysten joukko. (a) Perustele, miksi joukossa
Lisätiedot1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
LisätiedotJatkuva-aikaisten Markov-prosessien aikakehitys
5A Jatkuva-aikaisten Markov-prosessien aikakehitys Tämän harjoituksen tavoitteena on harjoitella jatkuva-aikaisiin Markov-prosesseihin liittyviä hetkittäisiä jakaumia ja tutkia niien muutoksia ajassa.
LisätiedotMarkov-ketjun hetkittäinen käyttäytyminen
Matematiika ja systeemiaalyysi laitos 1B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava
LisätiedotEsimerkki: Tietoliikennekytkin
Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen
LisätiedotMarkov-kustannusmallit ja kulkuajat
2B Markov-kustannusmallit ja kulkuajat Tämän harjoituksen tavoitteena on oppia laskemaan Markov-kustannusmallien kustannuskertymiä ja -vauhteja, ketjujen odotettuja kulkuaikoja sekä todennäköisyyksiä osua
LisätiedotMarkov-ketjun hetkittäinen käyttäytyminen
Matematiika ja systeemiaalyysi laitos B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava
LisätiedotJatkuvan aikavälin stokastisia prosesseja
6A Jatkuvan aikavälin stokastisia prosesse Tämän harjoituksen tavoitteena on tutustua uusiutumisprosesseihin tkuva-aikaisiin Markovprosesseihin harjoitella laskemaan niihin liittyviä hetkittäisiä kaumia
LisätiedotMartingaalit ja informaatioprosessit
4A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on tutustua satunnaisvektorin informaation suhteen lasketun ehdollisen odotusarvon käsitteeseen sekä oppia tunnistamaan, milloin annettu
LisätiedotGeneroivat funktiot, Poisson- ja eksponenttijakaumat
4A Generoivat funktiot, Poisson- ja eksponenttijakaumat Tämän harjoituksen tavoitteena on edelleen tutustua generoivien funktioiden sovelluksiin ja lisäksi harjoitella ratkaisemaan Poisson- ja eksponenttijakaumiin
LisätiedotValintahetket ja pysäytetyt martingaalit
4B Valintahetket ja pysäytetyt martingaalit Tämän harjoituksen tavoitteena on oppia tunnistamaan, mitkä satunnaishetket ovat valintahetkiä ja oppia laskemaan lukuarvoja ja estimaatteja satunnaisprosessien
LisätiedotPoisson-prosessien ominaisuuksia ja esimerkkilaskuja
5B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Alla on kuhunkin tehtävään esitetty malliratkaisut punaisella sekä malliratkaisujen lisämateriaalit sinisellä. Tuntitehtävät 5B1 Teemu Selänne on
Lisätiedot1 p p P (X 0 = 0) P (X 0 = 1) =
Mat-2.3 Stokastiset rosessit Syksy 2007 Laskuharjoitustehtävät 3 Poroudas/Kokkala. Tarkastellaan Markov-ketjua, jonka tilajoukko on {0, } ja tilansiirtotodennäköisyysmatriisi P Olkoon alkujakauma α 0 a
LisätiedotMartingaalit ja informaatioprosessit
6A Martingaalit ja informaatioprosessit Tämän harjoituksen tavoitteena on oppia tunnistamaan, milloin satunnaisprosessi on martingaali annetun informaatioprosessin suhteen ja milloin satunnaishetki on
LisätiedotEpäyhtälöt ovat yksi matemaatikon voimakkaimmista
6 Epäyhtälöitä Epäyhtälöt ovat yksi matemaatikon voimakkaimmista työvälineistä. Yhtälö a = b kertoo sen, että kaksi ehkä näennäisesti erilaista asiaa ovat samoja. Epäyhtälö a b saattaa antaa keinon analysoida
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
LisätiedotTehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Lisätiedotisomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
LisätiedotAnalyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
Lisätiedot8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
LisätiedotYhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt
Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.
Lisätiedota) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lisätiedot3.6 Su-estimaattorien asymptotiikka
3.6 Su-estimaattorien asymptotiikka su-estimaattorit ovat usein olleet puutteellisia : ne ovat usein harhaisia ja eikä ne välttämättä ole täystehokkaita asymptoottisilta ominaisuuksiltaan ne ovat yleensä
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotStokastiset prosessit. Lasse Leskelä Aalto-yliopisto
Stokastiset prosessit Lasse Leskelä Aalto-yliopisto 7. elokuuta 2018 Sisältö 1 Satunnaisluvut ja satunnaisvektorit 5 1.1 Todennäköisyysjakauma...................... 5 1.2 Satunnaismuuttuja.........................
LisätiedotTehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Lisätiedoty x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1
1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y
LisätiedotSTOKASTISET PROSESSIT Peruskäsitteitä
J. Virtamo 38.3143 Jonoteoria / Stokastiset prosessit 1 STOKASTISET PROSESSIT Peruskäsitteitä Usein tarkasteltava järjestelmä kehittyy ajan mukana ja meitä kiinnostaa sen dynaaminen, yleensä satunnaisuutta
LisätiedotFourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
Lisätiedot= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
LisätiedotPoisson-prosessien ominaisuuksia ja esimerkkilaskuja
4B Poisson-prosessien ominaisuuksia ja esimerkkilaskuja Tuntitehtävät 4B1 Eksponentiaalisten odotusaikojen toistuva odottaminen. Satunnaisluvun X sanotaan noudattavan Gamma-jakaumaa parametrein k ja λ,
LisätiedotDiskreetin matematiikan perusteet Esimerkkiratkaisut 3 / vko 10
Diskreetin matematiikan perusteet Esimerkkiratkaisut / vko 0 Tuntitehtävät - lasketaan alkuviikon harjoituksissa ja tuntitehtävät - loppuviikon harjoituksissa. Kotitehtävät - tarkastetaan loppuviikon harjoituksissa.
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotYhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014
Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A050 Todennäköisyyslaskennan ja tilastotieteen peruskurssi B Satunnaismuuttujat ja todennäköisyysjakaumat Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotTodennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotMS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x
LisätiedotMATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
LisätiedotHY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
LisätiedotTäydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
LisätiedotDiskreettiaikainen dynaaminen optimointi
Diskreettiaikainen dynaaminen optimointi Usean kauden tapaus 2 kauden yleistys Ääretön loppuaika Optimaalinen pysäytys Optimointiopin seminaari - Syksy 2000 / Ongelma t 0 x 0 t- t T x t- + x t + x T u
Lisätiedotk S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
LisätiedotRistitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti
14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on
LisätiedotMATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
LisätiedotKonvergenssilauseita
LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n
LisätiedotTodista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.
2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na
Lisätiedotverkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari
Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on
LisätiedotToispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
Lisätiedot3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin
Lisätiedot031021P Tilastomatematiikka (5 op) viikot 5 6
031021P Tilastomatematiikka (5 op) viikot 5 6 Jukka Kemppainen Mathematics Division Jakauman tunnusluvut Jakauman tärkeimmät tunnusluvut ovat odotusarvo ja varianssi. Odotusarvo ilmoittaa jakauman keskikohdan
LisätiedotT Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi
T-79.179 Rinnakkaiset ja hajautetut digitaaliset järjestelmät Stokastinen analyysi 12. maaliskuuta 2002 T-79.179: Stokastinen analyysi 8-1 Stokastinen analyysi, miksi? Tavallinen Petri-verkkojen saavutettavuusanalyysi
Lisätiedot6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
LisätiedotEstynyt puheluyritys menetetään ei johda uusintayritykseen alkaa uusi miettimisaika: aika seuraavaan yritykseen Exp(γ) pitoaika X Exp(µ)
J Virtamo 383143 Jonoteoria / Engsetin järjestelmä 1 Äärellinen lähdepopulaatio: M/M/s/s/n-järjestelmä Tarkastellaan estojärjestelmää (ei odotuspaikkoja) tapauksessa, jossa saapumiset tulevat äärellisestä
LisätiedotMitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.
Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden
LisätiedotJAKSO 2 KANTA JA KOORDINAATIT
JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause
LisätiedotKopuloiden teoria pähkinänkuoressa
Kopuloiden teoria pähkinänkuoressa Lasse Leskelä 8. toukokuuta 2012 Tiivistelmä Tässä luentomonisteessa esitetään kopuloiden teorian perusteet suurin piirtein sillä tasolla, mitä niitä käsiteltiin kurssilla
LisätiedotHarjoitus 3 (3.4.2014)
Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
Lisätiedot1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
LisätiedotÄärellisten mallien teoria
Äärellisten mallien teoria Harjoituksen 5 ratkaisut (Hannu Niemistö) Tehtävä 1 OlkootGjaG neljän solmun verkkoja Määritä, milloing = 2 G eli verkot ovat osittaisesti isomorfisia kahden muuttujan suhteen
LisätiedotDerivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2
MS-C50 Osittaisdifferentiaaliyhtälöt Harjoitukset syksy 07. Oletetaan että vektorikenttä E E E E : R R on kaksi kertaa jatkuvasti derivoituva E C R. Näytä että E E. Derivaatat lasketaan komponenteittain
LisätiedotHarjoitus 3 (31.3.2015)
Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman
LisätiedotLuku 7. Verkkoalgoritmit. 7.1 Määritelmiä
Luku 7 Verkkoalgoritmit Verkot soveltuvat monenlaisten ohjelmointiongelmien mallintamiseen. Tyypillinen esimerkki verkosta on tieverkosto, jonka rakenne muistuttaa luonnostaan verkkoa. Joskus taas verkko
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen
Lisätiedotx 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3A Satunnaismuuttujien summa ja keskihajonta Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
LisätiedotKuinka määritellään 2 3?
Kuinka määritellään 2 3? y Nyt 3 = 1,7320508.... Luvut 3 2 x x 3 2 x 2 1 = 2, 2 1,7 3,2490, 2 1,73 3,3173, 2 1,732 3,3219,... ovat hyvin määriteltyjä koska näihin tarvitaan vain rationaalilukupotenssin
Lisätiedot1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ
Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän
LisätiedotMatematiikka ja teknologia, kevät 2011
Matematiikka ja teknologia, kevät 2011 Peter Hästö 27. tammikuuta 2011 Matemaattisten tieteiden laitos Sisältö Kurssi koostuu kuudesta (seitsemästä) toisistaan riippumattomasta luennosta. Aihepiirit ovat:
Lisätiedot0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
LisätiedotMS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
LisätiedotTehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1
Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla
LisätiedotTehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin
HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin
Lisätiedotj(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)
MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!
LisätiedotYmpyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora
Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen
Lisätiedot2.2.1 Ratkaiseminen arvausta sovittamalla
2.2.1 Ratkaiseminen arvausta sovittamalla Esimerkki: lomitusjärjestäminen (edellä) Yleistys: Ratkaistava T (1) c T (n) g(t (1),..., T (n 1), n) missä g on n ensimmäisen parametrin suhteen kasvava. (Ratkaisu
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
LisätiedotLiikenneongelmien aikaskaalahierarkia
J. Virtamo 38.3141 Teleliikenneteoria / HOL-esto 1 Liikenneongelmien aikaskaalahierarkia AIKASKAALAHIERARKIA Kiinnostavat aikaskaalat kattavat laajan alueen, yli 13 dekadia! Eri aikaskaaloissa esiintyvät
LisätiedotLineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.
Lineaariavaruudet aiheita 1 määritelmä Nelikko (L, R, +, ) on reaalinen (eli reaalinen vektoriavaruus), jos yhteenlasku L L L, ( u, v) a + b ja reaaliluvulla kertominen R L L, (λ, u) λ u toteuttavat seuraavat
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
Lisätiedot1 Reaaliset lukujonot
Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot
Lisätiedot