Y56 Mikrotalousteorian jatkokurssi Laskutehtävät 1 - Mallivastaukset
|
|
- Kirsi-Kaisa Jokinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Y56 Mikrotalousteorian jatkokurssi Laskutehtävät - Mallivastaukset..00. Bujettirajoite Kuluttajalla on 50 euroa kulutettavana kahteen hyöykkeeseen ja. Hyöyke maksaa euroa er yksikkö ja hyöyke maksaa 5 euroa er yksikkö. i) Kirjoita ja ratkaise bujettirajoitus (leikkausisteet ja akselilla sekä kulmakerroin) ja iirrä bujettisuora. Laita ystyakselille hyöyke. Bujettirajoite imlisiittisessä muoossa 5 0 Bujettirajoite ekslisiittisessä muoossa
2 Leikkausisteet akseleihin ii) Valtio asettaa tuloille kertasummaveron T = 0 ja yksikköveron vero t = hyöykkeelle. Ratkaise uusi bujettirajoite ja iirrä bujettisuora. Bujettirajoite imlisiittisessä muoossa (5 ) Bujettirajoite ekslisiittisessä muoossa
3 Leikkausisteet akseleihin Bujettirajoite XX Energia laskuttaa 0 senttiä /kwh ensimmäisistä kuukauen aikana kulutetuistan 000 kwh. Sähkön kulutuksesta, joka ylittää 000 kwh/kuukausi, XX Energiafirma laskuttaa 5 senttiä/kwh. Oleta, että hyöyke on sähkö ja hyöyke on komosiittihyöyke. Komosiittihyöykehinta on yksi. Piirrä bujettirajoite olettaen, että tulot ovat 400 euroa. Laita ystyakselille hyöyke. (Lähe Frank 007, 6, 3.6) Tässä taauksessa bujettisuorassa on oikkeama. Bujettirajoite on 0.s y 400 kun 0 s 000 Ekslisiittisessä muoossa bujettirajoite on y s eli kulmakerroin on. 0 Kun ei osteta sähköä ollenkaan, elis 0 sitten bujettirajoite leikkaa ystyakselin isteessä y 400 Kun sähkönkulutus on 000, sitten y (000) 300 Kun sähkönkulutus ylittää 000 kwh eli s 000sitten kulutukselle, joka ylittää 000 kwh, hinta on 0.5 senttiä/kwh eli bujettirajoite on z y 400 kun s 000 jossa kokonaissähkökulutus on s 000 z ja kulmakerroin on Jos kulutetaan kaikki rahat sähköön, sitten y = 0 ja kokonaissähkönkulutus on z z z s 000 z ,
4 4 Y 400 kulmakerroin -/ kulmakerroin -/ kwh/kk 3. Preferenssit Maria ja Teo itävät teatterista ja rok-konserteista ja kumikin on äättänyt allokoia 80 euroa vuoessa viihebujettiin, johon kuuluvat elkästään nämä kaksi viihettä. Teo kuitenkin itää enemmän rok-konserteista kuin teatterista ja Maria enemmän teatterista kuin rok-konserteista. Piirrä Maria ja Teo inifferenssikäyrien joukot. Hyöyntämällä MRSkäsitettä selitä, miten Marian inifferenssikäyrän joukko eroaa Teo inifferenssikäyrän joukosta. Oletetaan, että alkutilassa Teon ja Marian hyöykekori on A { T, R}. Oletetaan nyt, että teatterikäyntien määrä vähenee yhellä yksiköllä eli T. Verrattuna teatterin rakastajaan Mariaan, rok-konserteista innostunut Teo tarvitsee ienemmän kasvun rok-konserttien määrään, jotta hän saisi yhtä suuren hyöyn kuin isteessä A, T muutoksen jälkeen. Toisin sanoen R R ja Marian inifferenssikäyrä on kaltevami kuin Teon. Maria Teo R R Maria b Teo b MRSMaria MRSTeo T T Marian rajasubstituutiosuhe on ABSOLUUTTISENA ARVONA suuremi, eli Marian inifferenssikäyrä on kaltevami.
5 5 Rok-konsertit R Maria b R Teo T A U (Teo) U (Maria) Teatteri Rok-konserteista itävän Teon ja teatteria rakastavan Marian inifferenssikäyrät 4. Rajasubstituutiosuhe, MRS Pieni sorminääryys on aikallaan hyötyfunktioien käsittelyssä. Luennoilla osoitettiin, että / MRS. Oetellaan erivoimaan ehtoon erilaisia hyötyfunktioita. Laske, ja MRS seuraaville hyötyfunktioille. u(, ) a b u u u u a b MRS a b u(, ) a b = a b
6 u u a a u u b a 6 MRS a b u(, ) a ln b u a u u u b MRS a b u(, ) Heloin tie u(, ) u u lnu ln ln u u MRS tai
7 u(, ) 7 u u u u MRS u(, ) ( a)( b) = b a ab u u u u b a MRS b a
8 5. Hyöyn maksimointi & MRS 8 Kalle kuluttaa kaksi hyöykettä ja. Kalle valitussa hyöykekorissa hyöykkeen rajahyöty on = 4 ja hyöykkeen rajahyöty = 7. Hyöykkeen hinta on euroa/yksikkö ja hyöykkeen hinta on 3 euroa/yksikkö. Maksimoiko Kalle hyötynsä? Perustele vastauksesi. Oikea vastaus on ei Tehtävän mukaan MRS ja Hyöyn maksimointiehto on ( MRS ) tai mutta Siis Kalle ei ole valitsemassa otimaalista hyöykekoria, toisin sanoen hän ei maksimoi hyötyänsä.
Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2
1 Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 Palautus to 5.2. klo 16 mennessä Chiaran lokerolle Koetilantie 5, 3. krs. Tehtävät voidaan palauttaa myös to 5.2. luennon alussa. En ota vastaan myöhään
Perustiedot. Mikrotalousteorian jatkokurssi. Aikataulu. Mitä kansantaloustiede tutkii?
Perustiedot Mikrotalousteorian jatkokurssi 18.1.010 Oettajina Piia Aatola (eriodi III) sekä Katja Moliis (eriodi IV) 11 o kurssi, joka sisältää luentoja 4 h sekä harjoituksia 1 h. Harjoitukset vetää Karoliina
Luku 1 Toimijat, käyttäytyminen, instituutiot, tasapaino
Y56 Mikrotalousteorian jatkokurssi Kevät 00 Luku Toimijat, käyttäytyminen, instituutiot, tasaaino Mikrotaloustieteessä kuvataan sitä, miten ihmiset (ml. yritykset) käyttävät rajallisia resurssejaan tyydyttääkseen
Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Mallivastaus
Y56 Mikrotaloustieteen jatkokurssi kl 00: HRJOITUSTEHTÄVÄT Mallivastaus. Olkoon Kallen ravintolassa söntiä ( ja muuta vaaa-ajan kulutusta ( kuvaava budjettirajoite muotoa. Kalle on valmis vaihtamaan hden
3. www-harjoitusten mallivastaukset 2016
TU-91.1001 Kansantaloustieteen perusteet 3. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Reaalitulo perunoina on 0 = 40 20*P, mistä seuraa 2 perunaa. Reaalitulo korkokenkinä on M = 40-0*P = 40 makkaraa.
Luku 1 Toimijat, käyttäytyminen, instituutiot, tasapaino
Y56 Mikrotalousteorian jatkokurssi, kl 009 Luku Toimijat, käyttäytyminen, instituutiot, tasaaino Mikrotalousteoria käsittelee yksittäisten talousyksiköiden taloudellista käyttäytymistä ja talousyksiköiden
3. www-harjoitusten mallivastaukset 2017
TU-91.1001 Kansantaloustieteen perusteet 3. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Reaalitulo perunoina on 0 = 40 20*P, mistä seuraa 2 perunaa. Reaalitulo makkaroina on M = 40-0*P = 40 makkaraa.
I I K UL U UT U T T A T JANTE T O E R O I R A
II KULUTTAJANTEORIA.. Budjettirajoite * Ihmisten kaikkea toimintaa rajoittavat erilaiset rajoitteet. * Mikrotalouden kurssilla tärkein rajoite on raha. * Kuluttaja maksimoi hyötyään, mutta ei kykene toteuttamaan
Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä
Kuluttajan teoriaa tähän asti Valintojen tekemistä niukkuuden vallitessa - Tavoitteen optimointia rajoitteella Luento 6 Kuluttajan ylijäämä 8.2.2010 Budjettirajoite (, ) hyödykeavaruudessa - Kulutus =
ill 'l' L r- i-ir il_i_ lr-+ 1r l
ir a I - --+,.---+-,- i-ir il_i_ lr-+ 1r l rl ill 'l' L r- T- 'l rl *r- I s. ;l -' --S"[nJ+&L rlr D Ur-r^^;lA_e^ 3. Piirrä indi erenssikäyrät korille ( ; x 2 ); kun on tavallinen hyödyke, ja x 2 on tavallinen
Kuluttajan valinta ja kysyntä. Viime kerralta. Onko helppoa ja selvää? Mitä tänään opitaan?
6..00 Viime kerralta Kuluttajan valinta ja kysyntä Y56 Luento 3 5..00 Preferenssit valintojen arvostus, järjestäminen Indifferenssikäyrät Rajakorvattavuussuhde Hyöty Hyötyfunktiot Rajahyöty Onko heloa
Luku 16 Markkinatasapaino
76 Luku 16 Markkinatasaaino 16.1 Markkinatasaainon määritys Tarkastelemme kilailullisia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaisunsa suhteessa maksimihintoihin talouenitäjien
Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2
Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Palautus ke 10.2. klo 16 mennessä Piian lokeroon Koetilantie 5, 3. krs tai B-talon vahtimestarien kopin luona olevaan kurssikansioon. En
Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat
Kuluttajan valinta KTT Olli Kauppi Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat 1. Täydellisyys: kuluttaja pystyy asettamaan mitkä tahansa
c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L
MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi HARJOITUKSET II 1. Jutan ruokavalio koostuu yksinomaan nauriista ja lantuista. Jutan hyötyfunktio on muotoa U(N,L) = 12NL. Tällä hetkellä Jutta on päättänyt
Luku 14 Kuluttajan ylijäämä
Luku 4 Kuluttajan ylijäämä Tähän asti johdettu kysyntä hyötyfunktioista ja preferensseistä, nyt päinvastainen ongelma: eli kuinka estimoida hyöty havaitusta kysynnästä. Mitattavat ja estimoitavat kysyntäkäyrät
MIKROTEORIA 1, HARJOITUS 1 BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA
MIKROTEORIA, HARJOITUS BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA tilasto (600 00) 00 a. Kulmakerroin: = = =, koska 00 sivua lisää ta aiheuttaa (00 400) 00 luopumisen 00 sivusta tilastoa. Toisin
Y56 Mikron jatkokurssi kl 2008: HARJOITUSTEHTÄVÄT 2 Mallivastaukset
Y6 Mikron jtkokurssi kl 008: HARJOITUSTEHTÄVÄT Mllivstukset Kuluttjn vlint (Muokttu Burketist 006, 07) Olkoon Mrkon udjettirjoite = 40 Mrkoll on hvin kättätvät referenssit j Mrkon rjusustituutiosuhde on
TU Kansantaloustieteen perusteet Syksy 2016
TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä
TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset
TU-91.1001 Kansantaloustieteen perusteet Syksy 2017 5. www-harjoitusten mallivastaukset Tehtävä 1: Tuotteen X kysyntäkäyrä on P = 25-2Q ja tarjontakäyrä vastaavasti P = Q + 10. Mikä on markkinatasapinopiste
Luku 4 Hyöty. Kuluttajan teorialla & hyötyteorialla on kiinnostava historia:
Kl 009 0 Luku 4 Hyöty Preferenssirelaatioien käsittely oniutkaisissa analyysissa on hankalaa. Siksi ne käännetään hyötyfunktion uotoon, joka konstruoiaan niin, että kuvaa referenssejä. Kuluttajan teorialla
a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.
.. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla
Millaisia ovat finanssipolitiikan kertoimet
Millaisia ovat finanssipolitiikan kertoimet Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 20.3.2013 Antti Ripatti (HECER) fipon kerroin 20.3.2013 1 / 1 Johdanto Taustaa Finanssipolitiikkaa ei
1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä
0 5 Nauris 10 15 20 MIKROTALOUSTIEDE A31C00100 Kevät 2017 HARJOITUKSET II Palautus 24.1.2017 klo 16:15 mennessä suoraan luennoitsijalle (esim. harjoitusten alussa) tai sähköpostitse (riku.buri@aalto.fi).
MIKROTEORIA, HARJOITUS 8
MIKROTEORI, HRJOITUS 8 PNOSMRKKINT, KILPILU, OLIGOPOLI, PELITEORI J VIHTOTLOUS. Jatkoa tehtävään 4 (ja 5) harjoituksessa 7. a. Laske kolluusioratkaisu. Kahden samaa tuotetta tuottavan yrityksen kustannusfunktiot
yleisessä muodossa x y ax by c 0. 6p
MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y
Harjoitus 7: vastausvihjeet
Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.
3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21)
3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 1. Työn tarjonta Kuluttajan valintateorian perusmalli soveltuu suoraan kotitalouksien työn tarjontapäätöksen
* Taloudellisen ajattelun kurssi. * Tarkastelun lähtökohtana yksilöiden ja yritysten käyttäytyminen.
Vaasan yliopisto MIKROTALOUS I Kansantaloustiede KTT etri Kuosmanen 0 . JOHDANTO * Taloudellisen ajattelun kurssi. * Tarkastelun lähtökohtana yksilöiden ja yritysten käyttäytyminen. * Mikrotaloudellisen
4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7)
4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja
Varian luku 12. Lähde: muistiinpanot on muokattu Varianin (2006, instructor s materials) muistiinpanoista
Epävaruus Varian luku 12 Lähde: uistiinpanot on uokattu Varianin (2006, instructor s aterials) uistiinpanoista Epävaruus Tähän asti ollaan tarkasteltu kuluttajan optiaalista valintaa sivuuttaen kokonaan
5 Markkinat, tehokkuus ja hyvinvointi
5 Markkinat, tehokkuus ja hyvinvointi Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja kuluttaa sellaisen määrän
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu
Mikrotaloustiede Prof. Marko Terviö Aalto-yliopiston 31C00100 Syksy 2015 Assist. Salla Simola kauppakorkeakoulu Mallivastaukset - Loppukoe 10.12. Monivalinnat: 1c 2a 3e 4a 5c 6b 7c 8e 9b 10a I (a) Sekaniputus
Pari sanaa kuluttajan valintateoriasta
TU-91.1001, Kansantaloustieteen perusteet 10.10.2018 3. WWW-harjoitukset, vastaukset Pari sanaa kuluttajan valintateoriasta Kuluttajan valintateorian taustalla on kuluttajan hyödyn optimointi budjettisuoran
Viime kerralta Epävarmuus ja riski Optimaalinen kulutus-säästämispäätös: Tulo- ja substituutiovaikutus analyyttinen tarkastelu Epävarmuus Epävarmuus
Viie kerralta Epävaruus ja riski Luento 5 4..010 Tulo- ja substituutiovaikutus hinnan uutoksessa Substituutiovaikutus budjettisuora kiertyi alkuperäisen valinnan ypärillä Tulovaikutus uusi budjettisuora
Eksponenttifunktio ja Logaritmit, L3b
ja Logaritmit, L3b eksponentti-funktio Eksponentti-funktio Linkkejä kurssi8, / Etälukio (edu.) kurssi8, logaritmifunktio / Etälukio (edu.) Potenssifunktio y = f (x) = 2 Vakiofunktion y = a kuvaaja on vaakasuora
MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7.1 Koe Jussi Tyni 9.1.01 1. Laske raja-arvot: a) 5 lim 5 10 b) lim 9 71. a) Määritä erotusosamäärän avulla funktion f (). f ( ) derivaatta 1 b) Millä välillä funktio f ( ) 9 on kasvava? Perustele
B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?
Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3
Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Tehtävä 1.Tarkastellaan opiskelijaa, jolla opiskelun ohella jää 8 tuntia päivässä käytettäväksi työntekoon ja vapaa-aikaan. Olkoot hänen
Luku 16 Markkinatasapaino
68 Luku 16 Markkinataaaino 16.1 Markkinataaainon määrity Tarkatelemme kilailulliia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaiuna uhteea makimihintoihin talouenitäjien
Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus
Kulutus Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 13.11.2013 Antti Ripatti (HECER) Kulutus 13.11.2013 1 / 11 Indifferenssikäyrät ja kuluttajan teoria Tarkastellaan edustavaa kotitaloutta.
1. Vastaa seuraavaan tehtävään. Tehtävään liittyvä kuva on seuraavalla sivulla
A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 3 1. Vastaa seuraavaan tehtävään. Tehtävään liittyvä kuva on seuraavalla sivulla (i) Alla olevan kuvan kuluttaja A) on riskinkaihtaja B) on riskineutraali
2 Kuluttajan valintateoria: hyödykkeiden kysyntä (Taloustieteen oppikirja, luku 4; Mankiw & Taylor, 2 nd ed, ch 21)
2 Kuluttajan valintateoria: hyödykkeiden kysyntä (Taloustieteen oppikirja, luku 4; Mankiw & Taylor, 2 nd ed, ch 21) Suhteellisen edun periaatteen mukaan ihmisten (ja maiden) kannattaa erikoistua tuotannossa
Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset
Maatalous-metsätieteellisen tiedekunnan valintakoe 18.5.2015 Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset 7. a) Matti ja Maija lähtevät kävelemään samasta pisteestä vastakkaisiin
Seuraavaksi kysymme, onko tällainen markkinatasapaino yhteiskunnan kannalta hyvä vai huono eli toimivatko markkinat hyvin vai huonosti
Osa 7: Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7, Pohjolan mukaan) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla
4 Kysyntä, tarjonta ja markkinatasapaino
4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön
, tuottoprosentti r = X 1 X 0
Ostat osakkeen hintaan ja myyt sen vuoden myöhemmin hintaan X 1. Kokonaistuotto on tällöin R = X 1, tuottoprosentti r = X 1 ja pätee R = 1 + r. Lyhyeksimyymisellä tarkoitetaan, että voit myydä osakkeen
Prof. Marko Terviö Assist. Jan Jääskeläinen
Harjoitukset 3. 1. (a) Dismalandissa eri puolueiden arvostukset katusiivoukselle ovat Q A (P ) = 60 6P P A (Q) = 10 Q/6 Q B (P ) = 80 5P P B (Q) = 16 Q/5 Q C (P ) = 50 2P P C (Q) = 25 Q/2 Katusiivous on
1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin.
Mikrotalousteorian uusintatentti 19.1.1995 Vastaa neljään seuraavista viidestä kysymyksestä. 1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin. a)määritä
määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.
MAA8 Juuri- ja logaritmifunktiot 70 Jussi Tyni 5 a) Derivoi f ( ) e b) Mikä on funktion f () = ln(5 ) 00 c) Ratkaise yhtälö määrittelyjoukko log Käyrälle g( ) e 8 piirretään tangeti pisteeseen, jossa käyrä
Nollasummapelit ja bayesilaiset pelit
Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI
MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset
Suomalaiset sähköyhtiöiden valitsemisesta ja sähkön säästämisestä. Sakari Nurmela
Suomalaiset sähköyhtiöiden valitsemisesta ja sähkön säästämisestä Sakari Nurmela Tutkimuksen toteuttaminen Tutkimuksen toteuttaminen Aineiston kerääminen Tutkimusaineisto kerättiin Gallup Kanavalla 25.
3. Kuluttajan valintateoria
3. Kuluttajan valintateoria (Taloustieteen oppikirja, luku 4) Suhteellisen edun periaatteen mukaan ihmisten (ja maiden) kannattaa erikoistua tuotannossa ja käydä keskenään kauppaa Markkinataloudessa kotitaloudet
Taloustieteen perusteet 31A Ratkaisut 3, viikko 4
Taloustieteen perusteet 31A00110 2018 Ratkaisut 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden
MAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 ESITYS pisteitykseksi Yleisohje tarkkuuksista: Ellei tehtävässä vaadittu tiettyä tarkkuutta, kelpaa numeerisissa vastauksissa ohjeen vastauksen lisäksi yksi merkitsevä
3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö
3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)
4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen
Luku 14 Kuluttajan ylijäämä
56 Luku 4 Kuluttajan ylijäämä Kuluttajan ylijäämän käsite on erittäin aljon käytetty hyvinvointitaloustieteessä. Käsite erustuu hyödyn maksimoinnin ja kysyntäkäyrän väliseen yhteyteen, eli siihen, että
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo -. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x +9, b) log (x) 7, c) x + x 4 =.. Määrää kaikki ne
OPAS JÄRKEVÄÄN VEDEN KÄYTTÖÖN
1 7 6 7 2 3 4 5 Kun tiedät mitä kulutat, tiedät mitä voit säästää OPAS JÄRKEVÄÄN VEDEN KÄYTTÖÖN Suomalainen käyttää vettä keskimäärin 160 litraa vuorokaudessa. Tällä kulutuksella vesimaksun pitäisi olla
Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero
Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa
Tenttiin valmistautuminen ja kertaus. Taloustieteen perusteet Matti Sarvimäki
Tenttiin valmistautuminen ja kertaus Taloustieteen perusteet Matti Sarvimäki Tentin logistiikka Tentti: pe 26.1 klo 9.-12. salissa U2 ole ajoissa! uusinnat: 7.12.218 ja 1.2.219 Tenttiin saa (ja pitää)
talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa?
TALOUSTIETEEN PÄÄSYKOE 1.6.2017 1. Kerro lyhyesti (korkeintaan kolmella lauseella ja kaavoja tarvittaessa apuna käyttäen), mitä tarkoitetaan seuraavilla käsitteillä: (a) moraalikato (moral hazard) (b)
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
10 y 2 3 x D 100; D 30 29 59 6 D 10 5. 100 10 2 3 a: Vastaavasti sadalla kilometrillä kulutettavan polttoaineen E10 energiasisältö on 90 100 x a C 10
Helsingin ylioisto, Itä-Suomen ylioisto, Jyväskylän ylioisto, Oulun ylioisto, Tamereen ylioisto ja Turun ylioisto Matematiikan valintakokeen 3.6.0 ratkaisut. Oletetaan, että litralla (uhdasta) bensiiniä
määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.
MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen,
Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w)
4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) Markkinat tasapainossa, kun löydetään
Viime kerralta. Y56 Luento2. Kuinka valita piste budjettisuoralta? Mitä tänään opitaan?
..00 Viime kerralta Taloustiede mallintaa yhteiskunnan toimintaa Y56 Luento Preferenssit ja Hyöty Valintojen tekemistä niukkuuden vallitessa Vaihtoehtoiskustannus ja trade-off Valinnoista aiheutuvien hyötyjen
2 arvo muuttujan arvolla
Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran
4. www-harjoitusten mallivastaukset 2017
TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen
MAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
2 Perintö ja sosiaaliturva. 2.1 Perintö julkishyödykkeenä avioliitossa 2.2 Perintö ja lasten koulutus 2.3 Sosiaaliturva
2 Perintö ja sosiaaliturva 2.1 Perintö julkishyödykkeenä avioliitossa 2.2 Perintö ja lasten koulutus 2.3 Sosiaaliturva Onko perintö iso juttu? Perintö on tärkeä: USA Vuonna 1981 Kotlikoff ja Summers laskivat,
Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016
Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 Assignment: 2016 www1 1. Mitkä seuraavista asioista kuuluvat mikrotaloustieteen ja mitkä makrotaloustieteen piiriin?
a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on
Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)
Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus
Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio
b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.
2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5
YLIOPPILASTUTKINTO 22. 3. 2000 MATEMATIIKAN KOE - PITKÄ OPPIMÄÄRÄ
INTERNETIX Ylioppilaskirjoitusten tehtävät Page YLIOPPILSTUTINTO MTEMTIIN OE PITÄ OPPIMÄÄRÄ okeessa saa vastata enintään kymmeneen tehtävään Eräät tehtävät sisältävät useita osia [merkittynä a), b) jne],
1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.
ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.
Miksi rajoittaa omaa veden ja energian kulutustaan? Vinkkejä energian säästöön Vinkkejä veden säästöön
HARAKATKIN HIKOILEVAT Asumisen veden- ja energiansäästö Sisältö Miksi rajoittaa omaa veden ja energian kulutustaan? Vinkkejä energian säästöön Vinkkejä veden säästöön Omien kokemusten vaihto ja keskustelu
Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV
* Hyödyn maksimointi on ihmisten toimintaa ja valintoja ohjaava periaate.
KANSANTALOUSTIETEEN PERUSTEET Yrityksen teoria (Economics luvut 13-14) 14) KTT Petri Kuosmanen Optimointiperiaate a) Yksilöt pyrkivät maksimoimaan hyötynsä. * Hyödyn maksimointi on ihmisten toimintaa ja
Algebran ja Geometrian laskukokoelma
Algebran ja Geometrian laskukokoelma A. Potenssien laskusäännöt Sievennä 1. (r 3 ) 4 2. (2a 3 ) 3 3. x 3 x 5 4. k11 k 5 5. 2a2 a 7 5a 3 6. (-3x 2 y 3 ) 3 7. ( 1 4 ) 3 8. (2 a2 Lisätehtäviä b 3)3 9. (a
Entalpia - kuvaa aineen lämpösisältöä - tarvitaan lämpötasetarkasteluissa (usein tärkeämpi kuin sisäenergia)
Luento 4: Entroia orstai 12.11. klo 14-16 47741A - ermodynaamiset tasaainot (Syksy 215) htt://www.oulu.fi/yomet/47741a/ ermodynaamisten tilansuureiden käytöstä Lämökaasiteetti/ominaislämö - kuvaa aineiden
Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden sisältöjen isteitysten luonnehdinta ei
https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ
Page 1 of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 201 Assignment: 201 www5 1. Tuotteen X kysyntäkäyrä on P=25 2 Q ja tarjontakäyrä vastaavasti P=Q+10. Mikä
TENTTIKYSYMYKSET
MIKROTALOUSTEORIA (PKTY1) Ari Karppinen TENTTIKYSYMYKSET 20.10.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään kysymykseen! Muista kirjoittaa nimesi
Luvun 8 laskuesimerkit
Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20
Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.
x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä
Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A
Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit
Hyvän vastauksen piirteet
Hyvän vastauksen piirteet Hakukohteen nimi: Taloustieteen kandiohjelma Kokeen päivämäärä ja aika: 24.4.2018 kl. 10.00-15.00 1. Määrittele lyhyesti seuraavat käsitteet. (a) Käytettävissä olevat tulot (disposable
Pystysuuntainen hallinta 2/2
Pystysuuntainen hallinta 2/2 Noora Veijalainen 19.2.2003 Yleistä Tarkastellaan tilannetta jossa: - Ylävirran tuottajalla on yhä monopoliasema - Alavirran sektorissa vallitsee kilpailu - Tuottaja voi rajoitteillaan
Polynomi ja yhtälö Sievennä. a) 4a + 3a b) 11x x c) 9x + 6 3x. Ratkaisu a) 7a b) 12x c) 6x + 6
Polynomi ja yhtälö 103. Sievennä. a) 4a + 3a b) 11x x c) 9x + 6 3x a) 7a b) 12x c) 6x + 6 104. Ratkaise yhtälöt. a) 2x + 3 = 9 b) 8x + 2 = 5x + 17 a) 2x + 3 = 9 3 2x = 6 : 2 x = 3 b) 8x + 2 = 5x + 17 2
Maatalous metsätieteellisen tiedekunnan valintakoe
Maatalous metsätieteellisen tieekunnan valintakoe.6.009 Ympäristöekonomia mallivastaukset matematiikan valintakoekysymyksiin: 1. Markkinat ovat tasapainossa, kun hyöykkeen kysyntä ja tarjonta ovat yhtä
MAA7 7.3 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!
MAA7 7. Koe Jussi Tyni 1..01 1. Laske raja-arvot: a) 5 x lim x5 x 10 b) x 8x16 lim x x 9 x. a) Määritä erotusosamäärän avulla funktion f (5). b) Onko funktio f x vastauksesi lyhyesti 1 9 x ( ) x f ( x)