Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2"

Transkriptio

1 Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Palautus ke klo 16 mennessä Piian lokeroon Koetilantie 5, 3. krs tai B-talon vahtimestarien kopin luona olevaan kurssikansioon. En ota vastaan myöhässä tai sähköpostitse palautettuja harjoituksia. Jokainen tekee harjoitukset itsenäisesti. Kopioituja tehtäviä ei hyväksytä. Ole hyvä ja vastaa kysymyksiin tähän paperiin. Kirjoitathan mahdollisimman selkeällä käsialalla. Nimi Opiskelijanumero.. 1. Olkoon Kallen ravintolassa syöntiä ( ja muuta vapaa-ajan kulutusta ( kuvaava budjettirajoite muotoa. Kalle on valmis vaihtamaan yhden lisäkerran ravintolassa muuhun kulutukseen siten, että. Laske Kallen optimivalinta (.

2 2. Risto käyttää suklaapatukoihin (x) ja kahviin (y) yhteensä m euroa päivässä. Hänen hyötyfunktionsa näistä hyödykkeistä on muotoa, jossa a > 0. Hyödykkeiden hinnat ovat px ja py. (a) Ratkaise suklaapatukoiden ja kahvin kysyntäfunktiot ja? (b) Kuinka monta suklaapatukkaa ja kahvikuppia Risto kuluttaa, jos a = 1, m = 9, px = 2 ja py = 1?

3 3. Liisa on lukemassa tenttejä varten. Hänellä on enää 12 tuntia aikaa lukea kahteen tenttiin: matematiikka ja psykologia. Liisa välittää enemmän psykologian arvosanasta kuin matematiikan. Itse asiassa hän haluaa saada mahdollisimman hyvän arvosanan psykologian tentissä, koska hän aikoo pyytää psykologian professorilta suosituskirjeen tentin jälkeen. Olkoon x tuntien määrä, jonka Liisa käyttää psykologian opiskeluun ja y määrä, jonka hän käyttää matematiikan opiskeluun. Täten Liisan aikarajoite on. Olkoon Liisan hyötyfunktio y. a) Kuinka suuret ovat optimissa x ja y eli kuinka paljon aikaa Liisa käyttää kumpaankin tenttiin lukemiseen? b) Havainnollista optimiratkaisu kuvaajalla (laita y pysty-akselille). c) Millaiset preferenssit Liisalla on? d) Ovatko Liisan indifferenssikäyrät hyvin käyttäytyviä? Perustele. Vinkki: ratkaise optimi x* ja y* täyttämällä alla oleva taulukko! psykologia matematiikka hyöty x y u(x,y)=4x+y 0 8 4(0)+1(8)= a) Kuinka suuret ovat optimissa x ja y eli kuinka paljon aikaa Liisa tulee käyttämään kuhunkin tenttiin opiskelulle? Liisa lukee matematiikan tenttiin Liisa lukee psykologian tenttiin tuntia tuntia Perustelu:

4 b) Havainnollista optimiratkaisu kuvaajalla (laita y pysty-akselille). y c) Millaiset preferenssit Liisalla on? x d) Ovatko Liisan indifferenssikäyrät hyvin käyttäytyviä? Perustele. 4. Tulo- ja substituutiovaikutus Veikko syö appelsiineja ja banaaneja. Veikon hyötyfunktio on. Appelsiinit maksavat 1 /kg ja banaanit 2 /kg ja Veikon viikkotulot ovat 40 ja hän käyttää ne kaikki appelsiineihin ja banaaneihin.

5 (a) Ratkaise appelsiinien ja banaanien kysynnät ja merkitse pisteeksi A viikossa syötyjen appelsiinien ja banaanien optimimäärät. Appelsiinit vaaka-akselille.

6 b) Hyvän sadon ansiosta banaanien hinta laskee 1 /kg. Kuinka suuret tulot riittäisivät täsmälleen entisen kulutuksen ostamiseen? Kuinka paljon hedelmiä Veikko ostaisi ko. tuloilla uusilla hinnoilla? Merkitse kuvioon pisteenä B. Johtaako substituutiovaikutus banaaneiden kulutuksen kasvuun vai pienenemiseen? (c) Kuinka paljon hedelmiä Veikko kuluttaa hinnanlaskun jälkeen? Piirrä uusi budjettisuora ja merkitse uusi kulutuspiste C. Merkitse pystyakselille tulo- ja substituutiovaikutus.

7 (d) Kuluttaako Veikko enemmän vai vähemmän appelsiineja kuin aikaisemmin? 5. Intertemporaalinen valinta Mari elää vain kaksi periodia. Ensimmäisellä periodilla hänen tulonsa ovat m. Toisella periodilla hän on eläkkeellä eli hänellä ei ole tuloja periodilla 2 ja niinpä Mari elää omilla säästöillään periodilla 2. Hänen hyötyfunktionsa on muotoa. Mari voi lainata tai säästää korolla r. Kuinka paljon Mari kuluttaa ensimmäisellä ja toisella periodilla, jos m = ja r = 0.10?

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 1 Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 Palautus to 5.2. klo 16 mennessä Chiaran lokerolle Koetilantie 5, 3. krs. Tehtävät voidaan palauttaa myös to 5.2. luennon alussa. En ota vastaan myöhään

Lisätiedot

Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Mallivastaus

Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Mallivastaus Y56 Mikrotaloustieteen jatkokurssi kl 00: HRJOITUSTEHTÄVÄT Mallivastaus. Olkoon Kallen ravintolassa söntiä ( ja muuta vaaa-ajan kulutusta ( kuvaava budjettirajoite muotoa. Kalle on valmis vaihtamaan hden

Lisätiedot

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus Kulutus Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 13.11.2013 Antti Ripatti (HECER) Kulutus 13.11.2013 1 / 11 Indifferenssikäyrät ja kuluttajan teoria Tarkastellaan edustavaa kotitaloutta.

Lisätiedot

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä

1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä 0 5 Nauris 10 15 20 MIKROTALOUSTIEDE A31C00100 Kevät 2017 HARJOITUKSET II Palautus 24.1.2017 klo 16:15 mennessä suoraan luennoitsijalle (esim. harjoitusten alussa) tai sähköpostitse (riku.buri@aalto.fi).

Lisätiedot

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä Kuluttajan teoriaa tähän asti Valintojen tekemistä niukkuuden vallitessa - Tavoitteen optimointia rajoitteella Luento 6 Kuluttajan ylijäämä 8.2.2010 Budjettirajoite (, ) hyödykeavaruudessa - Kulutus =

Lisätiedot

Millaisia ovat finanssipolitiikan kertoimet

Millaisia ovat finanssipolitiikan kertoimet Millaisia ovat finanssipolitiikan kertoimet Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 20.3.2013 Antti Ripatti (HECER) fipon kerroin 20.3.2013 1 / 1 Johdanto Taustaa Finanssipolitiikkaa ei

Lisätiedot

I I K UL U UT U T T A T JANTE T O E R O I R A

I I K UL U UT U T T A T JANTE T O E R O I R A II KULUTTAJANTEORIA.. Budjettirajoite * Ihmisten kaikkea toimintaa rajoittavat erilaiset rajoitteet. * Mikrotalouden kurssilla tärkein rajoite on raha. * Kuluttaja maksimoi hyötyään, mutta ei kykene toteuttamaan

Lisätiedot

ill 'l' L r- i-ir il_i_ lr-+ 1r l

ill 'l' L r- i-ir il_i_ lr-+ 1r l ir a I - --+,.---+-,- i-ir il_i_ lr-+ 1r l rl ill 'l' L r- T- 'l rl *r- I s. ;l -' --S"[nJ+&L rlr D Ur-r^^;lA_e^ 3. Piirrä indi erenssikäyrät korille ( ; x 2 ); kun on tavallinen hyödyke, ja x 2 on tavallinen

Lisätiedot

Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat

Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat Kuluttajan valinta KTT Olli Kauppi Kuluttaja valitsee erilaisten hyödykekorien välillä. Kuluttajan preferenssijärjestyksen perusoletukset ovat 1. Täydellisyys: kuluttaja pystyy asettamaan mitkä tahansa

Lisätiedot

3. www-harjoitusten mallivastaukset 2016

3. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 3. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Reaalitulo perunoina on 0 = 40 20*P, mistä seuraa 2 perunaa. Reaalitulo korkokenkinä on M = 40-0*P = 40 makkaraa.

Lisätiedot

3. www-harjoitusten mallivastaukset 2017

3. www-harjoitusten mallivastaukset 2017 TU-91.1001 Kansantaloustieteen perusteet 3. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Reaalitulo perunoina on 0 = 40 20*P, mistä seuraa 2 perunaa. Reaalitulo makkaroina on M = 40-0*P = 40 makkaraa.

Lisätiedot

Luku 14 Kuluttajan ylijäämä

Luku 14 Kuluttajan ylijäämä Luku 4 Kuluttajan ylijäämä Tähän asti johdettu kysyntä hyötyfunktioista ja preferensseistä, nyt päinvastainen ongelma: eli kuinka estimoida hyöty havaitusta kysynnästä. Mitattavat ja estimoitavat kysyntäkäyrät

Lisätiedot

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n.

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n. Harjoitukset 2, vastauksia. Ilmoittakaa virheistä ja epäselvyyksistä! 1. b (kysyntäkäyrä siirtyy vasemmalle) 2. c (kysyntäkäyrä siirtyy oikealle) 3. ei mikään edellisistä; oikea vastaus olisi p 2

Lisätiedot

Viime kerralta Epävarmuus ja riski Optimaalinen kulutus-säästämispäätös: Tulo- ja substituutiovaikutus analyyttinen tarkastelu Epävarmuus Epävarmuus

Viime kerralta Epävarmuus ja riski Optimaalinen kulutus-säästämispäätös: Tulo- ja substituutiovaikutus analyyttinen tarkastelu Epävarmuus Epävarmuus Viie kerralta Epävaruus ja riski Luento 5 4..010 Tulo- ja substituutiovaikutus hinnan uutoksessa Substituutiovaikutus budjettisuora kiertyi alkuperäisen valinnan ypärillä Tulovaikutus uusi budjettisuora

Lisätiedot

TU Kansantaloustieteen perusteet Syksy 2016

TU Kansantaloustieteen perusteet Syksy 2016 TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä

Lisätiedot

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset TU-91.1001 Kansantaloustieteen perusteet Syksy 2017 5. www-harjoitusten mallivastaukset Tehtävä 1: Tuotteen X kysyntäkäyrä on P = 25-2Q ja tarjontakäyrä vastaavasti P = Q + 10. Mikä on markkinatasapinopiste

Lisätiedot

3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21)

3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 1. Työn tarjonta Kuluttajan valintateorian perusmalli soveltuu suoraan kotitalouksien työn tarjontapäätöksen

Lisätiedot

TENTTIKYSYMYKSET

TENTTIKYSYMYKSET MIKROTALOUSTEORIA (PKTY1) Ari Karppinen TENTTIKYSYMYKSET 20.10.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään kysymykseen! Muista kirjoittaa nimesi

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

Y56 laskuharjoitukset 6

Y56 laskuharjoitukset 6 Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.

Lisätiedot

c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L

c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi HARJOITUKSET II 1. Jutan ruokavalio koostuu yksinomaan nauriista ja lantuista. Jutan hyötyfunktio on muotoa U(N,L) = 12NL. Tällä hetkellä Jutta on päättänyt

Lisätiedot

Kuluttajan valinta ja kysyntä. Viime kerralta. Onko helppoa ja selvää? Mitä tänään opitaan?

Kuluttajan valinta ja kysyntä. Viime kerralta. Onko helppoa ja selvää? Mitä tänään opitaan? 6..00 Viime kerralta Kuluttajan valinta ja kysyntä Y56 Luento 3 5..00 Preferenssit valintojen arvostus, järjestäminen Indifferenssikäyrät Rajakorvattavuussuhde Hyöty Hyötyfunktiot Rajahyöty Onko heloa

Lisätiedot

Y56 Mikrotalousteorian jatkokurssi Laskutehtävät 1 - Mallivastaukset

Y56 Mikrotalousteorian jatkokurssi Laskutehtävät 1 - Mallivastaukset Y56 Mikrotalousteorian jatkokurssi Laskutehtävät - Mallivastaukset..00. Bujettirajoite Kuluttajalla on 50 euroa kulutettavana kahteen hyöykkeeseen ja. Hyöyke maksaa euroa er yksikkö ja hyöyke maksaa 5

Lisätiedot

Y55 Kansantaloustieteen perusteet sl 2010

Y55 Kansantaloustieteen perusteet sl 2010 Y55 Kansantaloustieteen perusteet sl 2010 1 Ole hyvä ja vastaa kysymyksiin tähän paperiin. Tehtävät on palautettava joko luennolla tai kurssilaatikkoon (Latokartanonkaari 9., 3 krs.) ehdottomasti niitattuina

Lisätiedot

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto

Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu

Lisätiedot

Aikaisemmin on havaittu, että kuluttajan valinnat riippuvat hallussa olevasta rahamäärästä (m) ja hyödykkeiden hinnoista (P).

Aikaisemmin on havaittu, että kuluttajan valinnat riippuvat hallussa olevasta rahamäärästä (m) ja hyödykkeiden hinnoista (P). 2.5. Kysyntä Aikaisemmin on havaittu, että kuluttajan valinnat riippuvat hallussa olevasta rahamäärästä (m) ja hyödykkeiden hinnoista (P). Esim. X1(m, P) = X1(m, P) = P m + P 1 2 a m P 1 (Cobb-Douglas

Lisätiedot

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit

Lisätiedot

* Taloudellisen ajattelun kurssi. * Tarkastelun lähtökohtana yksilöiden ja yritysten käyttäytyminen.

* Taloudellisen ajattelun kurssi. * Tarkastelun lähtökohtana yksilöiden ja yritysten käyttäytyminen. Vaasan yliopisto MIKROTALOUS I Kansantaloustiede KTT etri Kuosmanen 0 . JOHDANTO * Taloudellisen ajattelun kurssi. * Tarkastelun lähtökohtana yksilöiden ja yritysten käyttäytyminen. * Mikrotaloudellisen

Lisätiedot

Luku 1 Toimijat, käyttäytyminen, instituutiot, tasapaino

Luku 1 Toimijat, käyttäytyminen, instituutiot, tasapaino Y56 Mikrotalousteorian jatkokurssi, kl 009 Luku Toimijat, käyttäytyminen, instituutiot, tasaaino Mikrotalousteoria käsittelee yksittäisten talousyksiköiden taloudellista käyttäytymistä ja talousyksiköiden

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Tekstikoe ja Ongelmanratkaisu HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

MIKROTEORIA 1, HARJOITUS 1 BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA

MIKROTEORIA 1, HARJOITUS 1 BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA MIKROTEORIA, HARJOITUS BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA tilasto (600 00) 00 a. Kulmakerroin: = = =, koska 00 sivua lisää ta aiheuttaa (00 400) 00 luopumisen 00 sivusta tilastoa. Toisin

Lisätiedot

Tietokoneverkot. T Tietokoneverkot (4 op) viimeistä kertaa CSE-C2400 Tietokoneverkot (5 op) ensimmäistä kertaa

Tietokoneverkot. T Tietokoneverkot (4 op) viimeistä kertaa CSE-C2400 Tietokoneverkot (5 op) ensimmäistä kertaa Tietokoneverkot T-110.4100 Tietokoneverkot (4 op) viimeistä kertaa CSE-C2400 Tietokoneverkot (5 op) ensimmäistä kertaa ja Matti Siekkinen Tietokoneverkot 2014 sanna.suoranta@aalto.fi Kurssista kaksi versiota

Lisätiedot

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Tehtävä 1.Tarkastellaan opiskelijaa, jolla opiskelun ohella jää 8 tuntia päivässä käytettäväksi työntekoon ja vapaa-aikaan. Olkoot hänen

Lisätiedot

Y56 laskuharjoitukset 5

Y56 laskuharjoitukset 5 Y56 Keät 2010 1 Y56 laskuharjoitukset 5 Palautus joko luennolle/mappiin to 8.4. tai Katjan lokerolle (Koetilantie 5, 3. krs) to 8.4. klo 16 mennessä (purku luennolla ti 13.4.) Huom. Tehtäät eiät ole aikeusjärjestyksessä,

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2010 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Luku 10 Intertemporaalinen valinta

Luku 10 Intertemporaalinen valinta Y56 Mikotalousteoian jatkokussi Kl 9 5 uku Intetepoaalinen valinta Huo. ee käsittele Vaianin lukua 9. Monet kulutukseen liittyvät päätökset koskevat tulevaisuutta esi. pitkän aikavälin hankinnat ja kulutussuunnitelat.

Lisätiedot

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin.

1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin. Mikrotalousteorian uusintatentti 19.1.1995 Vastaa neljään seuraavista viidestä kysymyksestä. 1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin. a)määritä

Lisätiedot

10. Kerto- ja jakolaskuja

10. Kerto- ja jakolaskuja 10. Kerto- ja jakolaskuja * Kerto- ja jakolaskun käsitteistä * Multiplikare * Kertolaatikot * Lyhyet kertotaulut * Laskujärjestys Aiheesta muualla: Luku 14: Algoritmien konkretisointia s. 87 Luku 15: Ajan

Lisätiedot

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen muutos jaettuna hinnan suhteellisella muutoksella

Lisätiedot

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w)

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) 4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) Markkinat tasapainossa, kun löydetään

Lisätiedot

Taloustieteiden tiedekunta Opiskelijavalinta 07.06.2005 1 2 3 4 5 YHT Henkilötunnus

Taloustieteiden tiedekunta Opiskelijavalinta 07.06.2005 1 2 3 4 5 YHT Henkilötunnus 1 2 3 4 5 YHT 1. Selitä lyhyesti, mitä seuraavat käsitteet kohdissa a) e) tarkoittavat ja vastaa kohtaan f) a) Työllisyysaste (2 p) b) Oligopoli (2 p) c) Inferiorinen hyödyke (2 p) d) Kuluttajahintaindeksi

Lisätiedot

Harjoitus 8: Excel - Optimointi

Harjoitus 8: Excel - Optimointi Harjoitus 8: Excel - Optimointi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Lineaarisen optimointimallin muodostaminen

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2010 Nimi: Henkilötunnus: VASTAUSOHJEET: 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan

Lisätiedot

Väestötaloustiede taloustieteen erityisalueena. Menetelmiä ja tuloksia Ulla Lehmijoki Taloudelliset termit tutuiksi

Väestötaloustiede taloustieteen erityisalueena. Menetelmiä ja tuloksia Ulla Lehmijoki Taloudelliset termit tutuiksi Väestötaloustiede taloustieteen erityisalueena. Menetelmiä ja tuloksia Ulla Lehmijoki Taloudelliset termit tutuiksi 20.3.2014 Taloustieteen menetelmät Taloudellinen imperialismi : taloustieteen menetelmät

Lisätiedot

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa.

b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. 2.9. Epävarmuus ja odotetun hyödyn teoria Testi. Kumman valitset a) 10 euroa varmasti. b) Arvonnan, jossa 50 % mahdollisuus saada 15 euroa ja 50 % mahdollisuus saada 5 euroa. Odotettu arvo 0,5* 15 + 0,5*5

Lisätiedot

LUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut.

LUKUJONOT. 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. LUKUJONOT 2 1) Jatka lukujonoja. 0, 1, 2,,,, 6, 8, 10,,,, 8, 12, 16,,,, 18, 15, 12,,,, 30, 25, 20,,,, 2) Täydennä lukujonoihin puuttuvat luvut. 2, 4,, 8,, 12,,, 7,, 3, 1 3) Keksi oma lukujono ja kerro

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista x + αd, α 0, on pisteestä x R n alkava puolisuora, joka on vektorin d suuntainen. Samoin

Lisätiedot

Tietokone työvälineenä

Tietokone työvälineenä Tietokone työvälineenä Aloitusluento 30.8.2013 Emilia Hjelm Yleistä kurssista Pakollinen Mahtava Työläs Palkitseva Kurssin laajuus 1 opintopiste ei vastaa kurssin todellista laajuutta. NYYH! Mutta TVT-ajokortista

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on

Sarake 1 Sarake 2 Sarake 3 Sarake 4. Vahvistumisen jälkeen tavaran hinta on 70. Uusi tilavuus on AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE 1/5 TEHTÄVÄOSA / Ongelmanratkaisu 1.6. 2017 TEHTÄVÄOSA ONGELMANRATKAISU Vastaa kullekin tehtävälle varatulle ratkaisusivulle. Vastauksista tulee selvitä tehtävien

Lisätiedot

Seuraavaksi kysymme, onko tällainen markkinatasapaino yhteiskunnan kannalta hyvä vai huono eli toimivatko markkinat hyvin vai huonosti

Seuraavaksi kysymme, onko tällainen markkinatasapaino yhteiskunnan kannalta hyvä vai huono eli toimivatko markkinat hyvin vai huonosti Osa 7: Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7, Pohjolan mukaan) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ Page 1 of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 201 Assignment: 201 www5 1. Tuotteen X kysyntäkäyrä on P=25 2 Q ja tarjontakäyrä vastaavasti P=Q+10. Mikä

Lisätiedot

Luku 4 Yhtälönratkaisun harjoittelua

Luku 4 Yhtälönratkaisun harjoittelua Luku 4 Yhtälönratkaisun harjoittelua 4.1. Yhtälönratkaisu tehtäviä Tehtävä 4.1.1 Ratkaise yhtälöistä tuntematon muuttuja käyttäen oppimiasi muunnoksia. Valitse sarja. Sarja 1) 6 5 37 = 0 Kun eräs luku

Lisätiedot

Luku 1 Toimijat, käyttäytyminen, instituutiot, tasapaino

Luku 1 Toimijat, käyttäytyminen, instituutiot, tasapaino Y56 Mikrotalousteorian jatkokurssi Kevät 00 Luku Toimijat, käyttäytyminen, instituutiot, tasaaino Mikrotaloustieteessä kuvataan sitä, miten ihmiset (ml. yritykset) käyttävät rajallisia resurssejaan tyydyttääkseen

Lisätiedot

1. Vastaa seuraavaan tehtävään. Tehtävään liittyvä kuva on seuraavalla sivulla

1. Vastaa seuraavaan tehtävään. Tehtävään liittyvä kuva on seuraavalla sivulla A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 3 1. Vastaa seuraavaan tehtävään. Tehtävään liittyvä kuva on seuraavalla sivulla (i) Alla olevan kuvan kuluttaja A) on riskinkaihtaja B) on riskineutraali

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: MAA Koe 8.1.014 Arto Hekkanen ja Jussi Tyni Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT: 1. a) Laske polynomien x x

Lisätiedot

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 3 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivastaukset KA5-kurssin laskareihin, kevät 009 Harjoitukset 4 (viikko 9) Tehtävä Tässä on tarkoitus soveltaa luentokalvojen sivulla 7 annettua kaavaa firman arvolle V. Tämä yritys tosin käyttää myös

Lisätiedot

IIZT4020 Projektitoiminta

IIZT4020 Projektitoiminta IIZT4020 Projektitoiminta Jouni Huotari S2010 http://student.labranet.jamk.fi/~huojo/opetus/iizt4020/ Tutustumiskierros Kuka minä olen miksi minä opetan projektitoimintaa Keitä te olette mitä te haluatte

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 4 Ratkaisuehdotuksia 1. Olkoon herra K.:n hyötyfunktio u(x) = ln x. (a) Onko herra K. riskinkaihtaja, riskinrakastaja vai riskineutraali?

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero

Y56 Laskuharjoitukset 4 Palautus viim. ti klo (luennolla!) Opiskelijan nimi. Opiskelijanumero Y56 Kevät 2010 1 Y56 Laskuharjoitukset 4 Palautus viim. ti 30.3. klo 12-14 (luennolla!) Opiskelijan nimi Opiskelijanumero Harjoitus 1. Tuotantoteknologia Tavoitteena on oppia hahmottamaan yrityksen tuotantoa

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ YLIOPPILSTUTKINTO- LUTKUNT..7 MTEMTIIKN KOE PITKÄ OPPIMÄÄRÄ -osa Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän alla olevaan ruudukkoon.

Lisätiedot

TENTTIKYSYMYKSET 8.12.2006

TENTTIKYSYMYKSET 8.12.2006 MIKROTALOUSTEORIA (PKTY1) TuKKK Porin yksikkö/avoin yliopisto Ari Karppinen TENTTIKYSYMYKSET 8.12.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään

Lisätiedot

2 Kuluttajan valintateoria: hyödykkeiden kysyntä (Taloustieteen oppikirja, luku 4; Mankiw & Taylor, 2 nd ed, ch 21)

2 Kuluttajan valintateoria: hyödykkeiden kysyntä (Taloustieteen oppikirja, luku 4; Mankiw & Taylor, 2 nd ed, ch 21) 2 Kuluttajan valintateoria: hyödykkeiden kysyntä (Taloustieteen oppikirja, luku 4; Mankiw & Taylor, 2 nd ed, ch 21) Suhteellisen edun periaatteen mukaan ihmisten (ja maiden) kannattaa erikoistua tuotannossa

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Harjoitukset 1. Kysynnän ja tarjonnan perusteet (kertausta ja lämmittelyä). 1. Jampan

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1 40 Luku 6 Kysyntä Edellisessä luvussa näie, että ratkaisealla kuluttajan valintaongelan pitäällä paraetrit (p, p, ) yleisinä, saae eksplisiittisen kysyntäfunktion kuallekin hyödykkeelle. Ilaisie kysyntäfunktiot

Lisätiedot

Taloustieteen mat.menetelmät 2017 materiaali 1

Taloustieteen mat.menetelmät 2017 materiaali 1 Taloustieteen mat.menetelmät 2017 materiaali 1 1 Taloustiede tutkii niukkojen resurssien kohdentamista kilpaileviin tarkoituksiin mikä on hyvä tapa kohdentaa? miten arvioida tuloksia? mitä niukkuus tarkoittaa?

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

6. Harjoitusjakso II. Vinkkejä ja ohjeita

6. Harjoitusjakso II. Vinkkejä ja ohjeita 6. Harjoitusjakso II Seuraavaksi harjoitellaan algebrallisten syötteiden, komentojen ja funktioiden käyttöä GeoGebrassa. Tarjolla on ensimmäisen harjoittelujakson tapaan kahden tasoisia harjoituksia: perustaso

Lisätiedot

Perustiedot. Mikrotalousteorian jatkokurssi. Aikataulu. Mitä kansantaloustiede tutkii?

Perustiedot. Mikrotalousteorian jatkokurssi. Aikataulu. Mitä kansantaloustiede tutkii? Perustiedot Mikrotalousteorian jatkokurssi 18.1.010 Oettajina Piia Aatola (eriodi III) sekä Katja Moliis (eriodi IV) 11 o kurssi, joka sisältää luentoja 4 h sekä harjoituksia 1 h. Harjoitukset vetää Karoliina

Lisätiedot

Insinöörimatematiikan tentin toteuttaminen EXAM-järjestelmällä

Insinöörimatematiikan tentin toteuttaminen EXAM-järjestelmällä Insinöörimatematiikan tentin toteuttaminen EXAM-järjestelmällä Matematiikan ja luonnontieteiden opetuksen tutkimuspäivät 27.-28.10.2016 Simo Ali-Löytty Jorma Joutsenlahti Jesse Kela Salla Koskinen Sisällys

Lisätiedot

OSTOSLI STA. I: Entä leipää? S: Otamme kaksi patonkia ja kaksi ruisleipää. I: Onko tässä kaikki? S: On kaikki ostoslistalta.

OSTOSLI STA. I: Entä leipää? S: Otamme kaksi patonkia ja kaksi ruisleipää. I: Onko tässä kaikki? S: On kaikki ostoslistalta. 7. kappale ( seitsemäs kappale ) KAUPASTA POSTIIN 7.1. Isä ja Samir ovat kaupassa. Samirin kädessä on ostoslista. I: Mitä ostamme ensin? S: Hedelmät. Viisi appelsiinia, neljä punaista omenaa ja puoli ananasta.

Lisätiedot

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.

Lisätiedot

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita.

Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tentissä on viisi tehtävää, jotka arvosteellaan asteikolla 0-6. Tehtävien alakohdat ovat keskenään samanarvoisia ellei toisin mainita. Tehtävä 1 Mitä seuraavat käsitteet tarkoittavat? Monitahokas (polyhedron).

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Matematiikan peruskurssi (MATY020) Harjoitus 10 to Matematiikan peruskurssi (MATY00) Harjoitus 10 to 6.3.009 1. Määrää funktion f(x, y) = x 3 y (x + 1) kaikki ensimmäisen ja toisen kertaluvun osittaisderivaatat. Ratkaisu. Koska f(x, y) = x 3 y x x 1, niin

Lisätiedot

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus

Taloustieteen perusteet 31A00110 18.04.2016. Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Taloustieteen perusteet 31A00110 18.04.2016 Opiskelijanumero Nimi (painokirjaimin) Allekirjoitus Pisteytys: 1 2 3 4 5 6 Yht Vastaukseen käytetään vain tätä vastauspaperia. Vastaa niin lyhyesti, että vastauksesi

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 2010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN MATEMATIIKAN V. 010 VALINTAKOETEHTÄVIEN PISTEYTYSOHJEET Pisteytys on pyritty tekemään pelkistetyksi, jotta kaikki korjaajat päätyisivät samaan arvosteluun.

Lisätiedot

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi.

Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Luento 12: Duaalitehtävä. Tarkennuksia Lagrangen kertoimen tulkintaan. Hajautettu optimointi. Konveksisuus Muista. + αd, α 0, on pisteessä R n alkava puolisuora, joka on vektorin d suuntainen. Samoin 2

Lisätiedot

Mat-2.3114 Investointiteoria - Kotitehtävät

Mat-2.3114 Investointiteoria - Kotitehtävät Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea

Lisätiedot

MATEMATIIKKA 3 VIIKKOTUNTIA

MATEMATIIKKA 3 VIIKKOTUNTIA EB-TUTKINTO 010 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4 kesäkuuta 010 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa olla

Lisätiedot

Harjoitus 1: Globaalit vesikysymykset 16.9.2015

Harjoitus 1: Globaalit vesikysymykset 16.9.2015 Harjoitus 1: Globaalit vesikysymykset 16.9.2015 Harjoitusten aikataulu Aika Paikka Teema Ke 16.9. klo 12-14 R002/R1 1) Globaalit vesikysymykset Ke 23.9 klo 12-14 R002/R1 1. harjoitus: laskutupa Ke 30.9

Lisätiedot

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x) Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.

Lisätiedot

2 Perintö ja sosiaaliturva. 2.1 Perintö julkishyödykkeenä avioliitossa 2.2 Perintö ja lasten koulutus 2.3 Sosiaaliturva

2 Perintö ja sosiaaliturva. 2.1 Perintö julkishyödykkeenä avioliitossa 2.2 Perintö ja lasten koulutus 2.3 Sosiaaliturva 2 Perintö ja sosiaaliturva 2.1 Perintö julkishyödykkeenä avioliitossa 2.2 Perintö ja lasten koulutus 2.3 Sosiaaliturva Onko perintö iso juttu? Perintö on tärkeä: USA Vuonna 1981 Kotlikoff ja Summers laskivat,

Lisätiedot

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön

Lisätiedot

MAA1.1 Koe Jussi Tyni Kastellin lukio Tee pisteytysruudukko! Vastaa yhteensä 6 tehtävään. Muista kirjoittaa selkeät välivaiheet

MAA1.1 Koe Jussi Tyni Kastellin lukio Tee pisteytysruudukko! Vastaa yhteensä 6 tehtävään. Muista kirjoittaa selkeät välivaiheet MAA. Koe Jussi Tyni 0.9.0 Tee pisteytysruudukko! Vastaa yhteensä tehtävään. Muista kirjoittaa selkeät välivaiheet A-OSIO Vastaa tehtävistä A A kahteen ja palauta vastaukset. Tähän osioon on käytettävissä

Lisätiedot

Tehtävät 1/11. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin)

Tehtävät 1/11. TAMPEREEN YLIOPISTO Informaatiotieteiden tiedekunta Valintakoe Matematiikka ja tilastotiede. Sukunimi (painokirjaimin) 1/11 Tehtävä 1 2 3 4 5 6 7 8 9 10 Yhteensä Pisteet (tarkastaja merkitsee) Kokeessa on kymmenen tehtävää, joista jokainen on erillisellä paperilla. Jokaisen tehtävän maksimipistemäärä on 6 pistettä. Ratkaise

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 4

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 4 A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 4 1. Jukan yritys tarjoaa pikaruoka-annosten kotiinkuljetuspalvelua. Asiakkaat tekevät tilauksensa Jukan verkkosivuilla. Jukka ostaa tilatut annokset

Lisätiedot