1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä"

Transkriptio

1 0 5 Nauris MIKROTALOUSTIEDE A31C00100 Kevät 2017 HARJOITUKSET II Palautus klo 16:15 mennessä suoraan luennoitsijalle (esim. harjoitusten alussa) tai sähköpostitse Sähköpostilla lähetetyt vastaukset tulee toimittaa yhtenä liitetiedostona (mieluiten pdf- tai Office-dokumenttina). Nimeä tiedosto harjoituskerran numerolla sekä omalla nimelläsi (esim. H1_Buri). 1. Arvioi kummalla seuraavista hyödykkeistä on hintajoustavampi kysyntä a. Tietokoneet (yleisesti) vs. Applen MacBook Pro tietokoneet (1p) b. Kuulokkeilla vs. kuulolaitteilla (1p) 2. Jutan ruokavalio koostuu yksinomaan nauriista ja lantuista. Jutan hyötyfunktio on muotoa U(N,L) = 12NL. Tällä hetkellä Jutta on päättänyt kuluttaa kymmenen naurista ja kahdeksan lanttua. Vastaa seuraaviin kysymyksiin: a. Piirrä indifferenssikäyrä, jolla Jutan tämänhetkinen valinta sijaitsee. (1p) U(10,8) = 960. Piirrä indifferenssikäyrä esim. niin, että lanttujen lukumäärä on vaakaakselilla, nauristen pystyakselilla. Piirrä indifferenssikäyrän pisteet (L,N) seuraavasti 12NL=960 => N=960/12L=80/L Lanttu Lanttu Nauris

2 b. Mikä on Jutan rajahyöty yhdestä lisälantusta? (1p) c. Laske Jutan rajasubstituutioaste (valitussa korissa). (1p) Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on. Indifferenssikäyrällä hyöty on muuttumaton eli.. Tästä voidaan ratkaista indifferenssikäyrän kulmakerroin Voit laskea rajasubstituutioasteen myös ratkaisemalla, kuinka monesta nauriista Jutta olisi valmis luopumaan saadakseen yhden lantun lisää. Uudessa valinnassa pätee, missä on nyt uusi nauriiden lukumäärä ja vastaavasti lanttujen uusi lukumäärä (9). Sijoitetaan ja sievennetään:. Rajasubstituutioaste (tai sen approksimaatio) on alkuperäisen ja uuden valinnan kautta kulkevan suoran kulmakerroin:. d. Oletetaan, että nauriit maksavat euron kappale. Jos Jutan tulot ovat 20 euroa, kuinka paljon lantut maksavat? (1p) Tiedämme, että Jutalla on optimissaan juuri varaa valitsemaansa koriin, joten voimme kirjoittaa budjettirajoitteen seuraavasti: eli

3 e. Piirrä Jutan budjettisuora. (1p) Suoran yhtälö on N = 20-(5/4)L, eli suoran leikkauspiste pystyakselilla on 20 ja leikkauspiste vaaka-akselilla 20/(5/4)=16. Lanttu Nauris Pienessä kylässä on vain kaksi lounasravintolaa: meksikolainen ja nepalilainen ravintola. Meksikolaisen ravintolan lounaan päivittäinen kysyntäfunktio on muotoa Q M =10-5P M +4P N +I ja nepalilaisen ravintolan muotoa Q N =25-6P N +3P M +I. Kysyntäfunktioissa I tarkoittaa kaupungin keskimääräistä tulotasoa, joka on tällä hetkellä I = 100. Meksikolaisen ravintolan lounaan hinta on tällä hetkellä 16.1 euroa ja nepalilaisen ravintolan 12.8 euroa. a. Kumman ravintolan lounaan kysyntä on joustavampi ravintolan oman hintatason suhteen? (1p) Omahintajouston kaava meksikolaisravintolalle on (ja vastaavasti nepalilaisravintolalle). Omahintajoustot ovat siten Ts. meksikolaisen ravintolan kysyntä on joustavampi. ja.

4 b. Meksikolainen ravintola laskee lounaansa hintaa eurolla. Mitä tapahtuu nepalilaisen ravintolan kysynnälle? Mikä on nepalilaisen ravintolan kysynnän ristijousto lähtötilanteessa meksikolaisen ravintolan hinnan suhteen? Miten tulkitset ristijouston? (2p) Muutos voidaan laskea suoraan nepalilaisen lounaan kysyntäfunktiosta: kysyntä laskee kolme annosta, kun. Nepalilaisen ravintolan kysynnän ristijousto on. Ts. kun meksikolaisen lounaan hinta nousee prosentilla, nepalilaisen lounaan kysyntä kasvaa 0.5%. c. Laske meksikolaisen ravintolan kysynnän tulojousto lähtötilanteessa. Miten tulkitset tulojouston? (2p) Tulojoustojen kaavat ovat ja. Esimerkiksi nepalilaisen lounaan kysytty määrä nousee siis 1.04%, kun tulotaso nousee yhdellä prosentilla. 4. Markkinatutkimuksen tulokset osoittavat, että pienessä laitilalaisessa Kodjalan kylässä on kaksi jogurtin kuluttajaa. Ensimmäisen kuluttajan käänteiskysyntäfunktio on muotoa P = 5 0.5Q. Toinen kuluttaja tykkää erittäin paljon jogurtista. Hänen käänteiskysyntäfunktio on P = 20 Q. a. Käyttäen yksittäisiä kysyntäfunktioita johda markkinakysyntä jogurtille Kodjalan kylässä. (2p) Ensimmäisen ryhmän kysyntä Toisen ryhmän kysyntä

5 Yhteenlaskettu kysyntä siis Yhdistetty kysyntäkäyrä b. Oletetaan, että tarjontafunktio Kodjalassa on Q = 2 + P. Selvitä tasapainohinta ja kysyntä. (2p) Tasapainossa P = 9 ja Q = 11 ja vain jogurttia paljon arvostavat ostavat.

6 5. Saat työtehtäväksesi analysoida teräsmarkkinoita. Julkisista tietokannoista pystyt selvittämään, että viime vuonna teräksen hinta oli 20 euroa per tonni. Tällä hinnalla myytiin yhteensä 100 miljoonaa tonnia terästä. Toimeksiannon antaneen toimialayhdistyksen tietokannoista selviää, että viime vuonna teräksen kysynnän hintajousto oli ja tarjonnan hintajousto 0.5. Oletetaan, että tarjonta ja kysyntä ovat lineaarisia. (Eli kysyntä X = a bp ja tarjonta X = c + dp). Lisäksi oletetaan, että teräsmarkkinat ovat kilpailulliset. a. Selvitä kysyntä ja tarjonta yhtälöt ja piirrä tarjonta- ja kysyntäkäyrät. (2p) Käyttämällä Kysynnän hintajouston kaavaa voidaan selvittää muuttujan b arvo: Muuttujan b arvoksi saadaan Sijoittamalla b:n arvon kysyntäfunktioon voimme taas ratkaista muuttujan a arvon. X = a-1.25p eli 100 = a 1.25*20, a = 125. Täten saamme, että viime vuoden kysyntäkäyrä oli muotoa X = P. Tarjontakäyrä voidaan ratkaista samalla logiikalla. Tarjonnan hintajoustosta voidaan laskea muuttujan d arvo: Muuttujan d arvo on 2.5. Sijoittamalla sen tarjontafunktiioon voimme taas laskea muuttujan c arvon. X = c +2.5P, eli 100 = c +2.5*20, c=50. Tarjontakäyrä on siis X = P b. Oletetaan, että havaitset teräksen nykyhinnan olevan 15 euroa ja myyntimäärän 150 miljoonaa tonnia. Toimialayhdistyksen päivitetyt laskelmat joustoille ovat kysynnän osalta ja tarjonnan osalta Kuvaile mitä markkinoilla on tapahtunut käyttäen kysyntä ja tarjonta diagrammia. Minkä tyyppiset tapahtumat ovat saattaneet johtaa muutokseen teräsmarkkinoilla? (2p) Uudet kysyntä- ja tarjontayhtälöt voidaan laskea kuten kohdassa a. Uusi tarjontafunktio on X = P ja kysyntäfunktio X = P. Kysyntäja tarjontakäyrien kulmakertoimet ovat pysyneet samoina, mutta tasapaino on muuttunut. Sekä tarjonta- että kysyntäkäyrä ovat nousseet ylöspäin. Kysyntäkäyrän nousu voi johtua useasta eri tekijästä, jotka lisäävät kuluttajien valmiutta maksaa teräksestä. Kuluttajien tulot ovat esimerkiksi saattaneet nousta. Tarjontakäyrän nousu voi myös johtua useista muista tekijöistä. Esimerkiksi tuottajien määrä on voinut lisääntyä tai palkat alalla laskea.

c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L

c. Indifferenssikäyrän kulmakerroin eli rajasubstituutioaste on MRS NL = MU L MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi HARJOITUKSET II 1. Jutan ruokavalio koostuu yksinomaan nauriista ja lantuista. Jutan hyötyfunktio on muotoa U(N,L) = 12NL. Tällä hetkellä Jutta on päättänyt

Lisätiedot

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto

Viime kerralta Luento 9 Myyjän tulo ja kysynnän hintajousto Viime kerralta Luento 9 Markkinatasapaino Markkinakysyntä kysyntöjen aggregointi Horisontaalinen summaaminen Eri kuluttajien kysynnät eri hintatasoilla Huom! Kysyntöjen summaaminen käänteiskysyntänä Jousto

Lisätiedot

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset

TU Kansantaloustieteen perusteet Syksy www-harjoitusten mallivastaukset TU-91.1001 Kansantaloustieteen perusteet Syksy 2017 5. www-harjoitusten mallivastaukset Tehtävä 1: Tuotteen X kysyntäkäyrä on P = 25-2Q ja tarjontakäyrä vastaavasti P = Q + 10. Mikä on markkinatasapinopiste

Lisätiedot

TU Kansantaloustieteen perusteet Syksy 2016

TU Kansantaloustieteen perusteet Syksy 2016 TU-91.1001 Kansantaloustieteen perusteet Syksy 2016 5. www-harjoitusten mallivastaukset Tehtävä 1 Ratkaistaan tasapainopiste yhtälöparista: P = 25-2Q P = 10 + Q Ratkaisu on: Q = 5, P = 15 Kuluttajan ylijäämä

Lisätiedot

1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on

1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on 1. Hyödykkeen tarjonta on p = 10 + q ja kysyntä puolestaan p = 40-2q. Markkinatasapainossa kysynnän hintajousto on D. ε = 1 Ratkaistaan ensin markkinatasapaino asettamalla kysyntä ja tarjonta yhtä suuriksi.

Lisätiedot

Kuluttajan valinta ja kysyntä. Viime kerralta. Onko helppoa ja selvää? Mitä tänään opitaan?

Kuluttajan valinta ja kysyntä. Viime kerralta. Onko helppoa ja selvää? Mitä tänään opitaan? 6..00 Viime kerralta Kuluttajan valinta ja kysyntä Y56 Luento 3 5..00 Preferenssit valintojen arvostus, järjestäminen Indifferenssikäyrät Rajakorvattavuussuhde Hyöty Hyötyfunktiot Rajahyöty Onko heloa

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto BIZ 31C00100 Syksy 2017 Assist. Jan Jääskeläinen Kauppakorkeakoulu Harjoitukset 1. Kysynnän ja tarjonnan perusteet (kertausta ja lämmittelyä). 1. Jampan

Lisätiedot

Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2

Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Y56 Mikrotaloustieteen jatkokurssi kl 2010: HARJOITUSTEHTÄVÄT 2 Palautus ke 10.2. klo 16 mennessä Piian lokeroon Koetilantie 5, 3. krs tai B-talon vahtimestarien kopin luona olevaan kurssikansioon. En

Lisätiedot

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n.

ja nyt tässä tapauksessa a = 1, b=4 ja c= -5, ja x:n paikalle ajattelemme P:n. Harjoitukset 2, vastauksia. Ilmoittakaa virheistä ja epäselvyyksistä! 1. b (kysyntäkäyrä siirtyy vasemmalle) 2. c (kysyntäkäyrä siirtyy oikealle) 3. ei mikään edellisistä; oikea vastaus olisi p 2

Lisätiedot

Luku 14 Kuluttajan ylijäämä

Luku 14 Kuluttajan ylijäämä 56 Luku 4 Kuluttajan ylijäämä Kuluttajan ylijäämän käsite on erittäin aljon käytetty hyvinvointitaloustieteessä. Käsite erustuu hyödyn maksimoinnin ja kysyntäkäyrän väliseen yhteyteen, eli siihen, että

Lisätiedot

2. Hyödykkeen substituutit vaikuttavat kyseisen hyödykkeen kysynnän hintajoustoon.

2. Hyödykkeen substituutit vaikuttavat kyseisen hyödykkeen kysynnän hintajoustoon. TU-91.1001 Kansantaloustieteen perusteet WWW-harjoitus 2, syksy 2016 Vastaukset 1. Millä hyödykkeistä on pienin kysynnän hintajousto? V: D. Maito. Pienin kysynnän hintajousto (eli hinnanmuutoksen vaikutus

Lisätiedot

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä

Kuluttajan teoriaa tähän asti. Luento 6. Hyötyfunktion ja indifferenssikäyrien yhteys. Kuluttajan hyöty. Laajennuksia. Kuluttajan ylijäämä Kuluttajan teoriaa tähän asti Valintojen tekemistä niukkuuden vallitessa - Tavoitteen optimointia rajoitteella Luento 6 Kuluttajan ylijäämä 8.2.2010 Budjettirajoite (, ) hyödykeavaruudessa - Kulutus =

Lisätiedot

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P

Jos Q = kysytty määrä, Q = kysytyn määrän muutos, P = hinta ja P = hinnan muutos, niin hintajousto on Q/Q P/P Osa 5. Joustoista Kysynnän hintajousto (price elasticity of demand) mittaa, miten kysynnän määrä reagoi hinnan muutokseen = kysytyn määrän suhteellinen muutos jaettuna hinnan suhteellisella muutoksella

Lisätiedot

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10 Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,

Lisätiedot

ill 'l' L r- i-ir il_i_ lr-+ 1r l

ill 'l' L r- i-ir il_i_ lr-+ 1r l ir a I - --+,.---+-,- i-ir il_i_ lr-+ 1r l rl ill 'l' L r- T- 'l rl *r- I s. ;l -' --S"[nJ+&L rlr D Ur-r^^;lA_e^ 3. Piirrä indi erenssikäyrät korille ( ; x 2 ); kun on tavallinen hyödyke, ja x 2 on tavallinen

Lisätiedot

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ

https://xlitemprod.pearsoncmg.com/api/v1/print/en-us/econ Page 1 of 5 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 201 Assignment: 201 www5 1. Tuotteen X kysyntäkäyrä on P=25 2 Q ja tarjontakäyrä vastaavasti P=Q+10. Mikä

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI

MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI MIKROTEORIA, HARJOITUS 6 YRITYKSEN JA TOIMIALAN TARJONTA JA VOITTO TÄYDELLISESSÄ KILPAILUSSA, SEKÄ MONOPOLI 1a. Täydellisen kilpailun vallitessa yrityksen A tuotteen markkinahinta on 18 ja kokonaiskustannukset

Lisätiedot

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää.

a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. .. Markkinakysyntä ja joustot a) Markkinakysyntä - Aikaisemmin tarkasteltiin yksittäisen kuluttajan kysyntää. - Seuraavaksi tarkastellaan koko markkinoiden kysyntää. Markkinoiden kysyntäkäyrä saadaan laskemalla

Lisätiedot

Luku 14 Kuluttajan ylijäämä

Luku 14 Kuluttajan ylijäämä Luku 4 Kuluttajan ylijäämä Tähän asti johdettu kysyntä hyötyfunktioista ja preferensseistä, nyt päinvastainen ongelma: eli kuinka estimoida hyöty havaitusta kysynnästä. Mitattavat ja estimoitavat kysyntäkäyrät

Lisätiedot

MIKROTALOUSTIEDE A31C00100

MIKROTALOUSTIEDE A31C00100 MIKROTALOUSTIEDE A31C00100 Kevät 2016 Olli Kauppi, KTT olli.kauppi@aalto.fi Päivän ohjelma Joustot Yksilön kysynnästä markkinakysyntään (kirja: 5.5) Kuluttajan ylijäämä (kirja: 3.1) Pikajohdatus kuluttajan

Lisätiedot

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT

I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT I MIKROTALOUSTIEDE LUKU 5 KILPAILUMUODOT Tehtävä 1! " # $%& ' ( ' % %' ' ) ) * ' + )$$$!," - '$ '' ' )'( % %' ) '%%'$$%$. /" 0 $$ ' )'( % %' +$%$! &" - $ * %%'$$%$$ * '+ ' 1. " - $ ' )'( % %' ' ) ) * '

Lisätiedot

1 Komparatiivinen statiikka ja implisiittifunktiolause

1 Komparatiivinen statiikka ja implisiittifunktiolause Taloustieteen matemaattiset menetelmät 27 materiaali 4 Komparatiivinen statiikka ja implisiittifunktiolause. Johdanto Jo opiskeltu antaa nyt valmiu tutkia taloudellisia malleja Kiinnostava malli voi olla

Lisätiedot

Harjoitus 7: vastausvihjeet

Harjoitus 7: vastausvihjeet Taloustieteen matemaattiset menetelmät 31C01100 Kevät 2017 Topi Hokkanen topi.hokkanen@aalto.fi Harjoitus 7: vastausvihjeet 1. (Epäyhtälörajoitteet) Olkoon f (x, y) = 6x + 4y ja g (x, y) = x 2 + y 2 2.

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

I I K UL U UT U T T A T JANTE T O E R O I R A

I I K UL U UT U T T A T JANTE T O E R O I R A II KULUTTAJANTEORIA.. Budjettirajoite * Ihmisten kaikkea toimintaa rajoittavat erilaiset rajoitteet. * Mikrotalouden kurssilla tärkein rajoite on raha. * Kuluttaja maksimoi hyötyään, mutta ei kykene toteuttamaan

Lisätiedot

3. www-harjoitusten mallivastaukset 2016

3. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 3. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Reaalitulo perunoina on 0 = 40 20*P, mistä seuraa 2 perunaa. Reaalitulo korkokenkinä on M = 40-0*P = 40 makkaraa.

Lisätiedot

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w)

Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) 4. MARKKINOIDEN TASAPAINOTTUMINEN 4.1. Tasapainoperiaate Kysyntä (D): hyötyfunktiot, hinta, tulot X = X(P,m) Tarjonta (S): tuotantofunktiot, hinta, panoshinta y = y(p,w) Markkinat tasapainossa, kun löydetään

Lisätiedot

talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa?

talletetaan 1000 euroa, kuinka paljon talouteen syntyy uutta rahaa? TALOUSTIETEEN PÄÄSYKOE 1.6.2017 1. Kerro lyhyesti (korkeintaan kolmella lauseella ja kaavoja tarvittaessa apuna käyttäen), mitä tarkoitetaan seuraavilla käsitteillä: (a) moraalikato (moral hazard) (b)

Lisätiedot

Luku 16 Markkinatasapaino

Luku 16 Markkinatasapaino 76 Luku 16 Markkinatasaaino 16.1 Markkinatasaainon määritys Tarkastelemme kilailullisia markkinoita kaikki talouenitäjät hinnanottajia kaikki määrittävät arhaat ratkaisunsa suhteessa maksimihintoihin talouenitäjien

Lisätiedot

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2

Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 1 Y56 Mikron jatkokurssi kl 2009: HARJOITUSTEHTÄVÄT 2 Palautus to 5.2. klo 16 mennessä Chiaran lokerolle Koetilantie 5, 3. krs. Tehtävät voidaan palauttaa myös to 5.2. luennon alussa. En ota vastaan myöhään

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 5.6.2014 MALLIVASTAUKSET Jokaisen tehtävän perässä on pistemäärä sekä sivunumero (Matti ohjola, Taloustieteen oppikirja, 2012) josta vastaus löytyy. (1) (a) Suppea raha sisältää

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 6.6.013: MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja, 01] sivuihin. (1) (a) igou -verot: Jos markkinoilla

Lisätiedot

3. www-harjoitusten mallivastaukset 2017

3. www-harjoitusten mallivastaukset 2017 TU-91.1001 Kansantaloustieteen perusteet 3. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Reaalitulo perunoina on 0 = 40 20*P, mistä seuraa 2 perunaa. Reaalitulo makkaroina on M = 40-0*P = 40 makkaraa.

Lisätiedot

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 tudent: ate: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 016 Assignment: 016 www 1. Millä seuraavista tuotteista on itseisarvoltaan pienin kysynnän hintajousto? A. Viini B. Elokuvat

Lisätiedot

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1 40 Luku 6 Kysyntä Edellisessä luvussa näie, että ratkaisealla kuluttajan valintaongelan pitäällä paraetrit (p, p, ) yleisinä, saae eksplisiittisen kysyntäfunktion kuallekin hyödykkeelle. Ilaisie kysyntäfunktiot

Lisätiedot

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit

Lisätiedot

3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21)

3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 3 Kuluttajan valintateoria: työn tarjonta ja säästäminen ( Mankiw & Taylor, 2 nd ed, ch 21) 1. Työn tarjonta Kuluttajan valintateorian perusmalli soveltuu suoraan kotitalouksien työn tarjontapäätöksen

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 6 A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 6 1. Monopolin kysyntäkäyrä on P = 11-Q (P on hinta per yksikkö ja Q on mitattu tuhansina yksiköinä). Monopolin vakioinen keskikustannus (AC) on 6. a.

Lisätiedot

Voitonmaksimointi esimerkkejä, L9

Voitonmaksimointi esimerkkejä, L9 Voitonmaksimointi esimerkkejä, L9 (1) Yritys Valmistaa kuukaudessa q tuotetta. Kysyntäfunktio on p = 15 0, 05q ja kustannusfunktio on C(q) = 350 + 2q + 0, 05q 2. a) Yritys valmistaa nyt tuotteita kuukaudessa

Lisätiedot

Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset

Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset Y55 Kansantaloustieteen perusteet sl 2010 tehtävät 2 Mallivastaukset 1 Tehtävä 1 Lähde M&T (2006, 84, luku 4 tehtävä 1, muokattu ja laajennettu) Selitä seuraavat väittämät hyödyntämällä kysyntä- ja tarjontakäyrän

Lisätiedot

2 Kuluttajan valintateoria: hyödykkeiden kysyntä (Taloustieteen oppikirja, luku 4; Mankiw & Taylor, 2 nd ed, ch 21)

2 Kuluttajan valintateoria: hyödykkeiden kysyntä (Taloustieteen oppikirja, luku 4; Mankiw & Taylor, 2 nd ed, ch 21) 2 Kuluttajan valintateoria: hyödykkeiden kysyntä (Taloustieteen oppikirja, luku 4; Mankiw & Taylor, 2 nd ed, ch 21) Suhteellisen edun periaatteen mukaan ihmisten (ja maiden) kannattaa erikoistua tuotannossa

Lisätiedot

1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin.

1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin. Mikrotalousteorian uusintatentti 19.1.1995 Vastaa neljään seuraavista viidestä kysymyksestä. 1. Käsitteitä ja määrityksiä Anna mahdollisimman täsmällinen määritys tai vastaus seuraaviin kysymuksiin. a)määritä

Lisätiedot

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto 31C00100 Syksy 2016 Assist. Jan Jääskeläinen Kauppakorkeakoulu

Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto 31C00100 Syksy 2016 Assist. Jan Jääskeläinen Kauppakorkeakoulu Mikrotaloustiede Prof. Marko Terviö Aalto-yliopisto 31C00100 Syksy 2016 Assist. Jan Jääskeläinen Kauppakorkeakoulu Vastaukset 1. 1. Pirjon väite huonosta huumevalistuksesta vastaa näkemystä, jonka mukaan

Lisätiedot

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016

Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 Student: Date: Instructor: hannele wallenius Course: Kansantaloustieteen perusteet 2016 Assignment: 2016 www1 1. Mitkä seuraavista asioista kuuluvat mikrotaloustieteen ja mitkä makrotaloustieteen piiriin?

Lisätiedot

Osa 4 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4 ja Pohjolan luennot)

Osa 4 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4 ja Pohjolan luennot) Osa 4 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4 ja Pohjolan luennot) Opimme tässä osiossa ja myöhemmissä luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa

Lisätiedot

Kuluttajan valinta. Tulovaikutukset. Hyvinvointiteoreemat. Samahyötykäyrät. Variaatiot (kompensoiva ja ekvivalentti) Hintatason mittaamisesta

Kuluttajan valinta. Tulovaikutukset. Hyvinvointiteoreemat. Samahyötykäyrät. Variaatiot (kompensoiva ja ekvivalentti) Hintatason mittaamisesta Kuluttajan valinta Tulovaikutukset Hyvinvointiteoreemat Samahyötykäyrät Variaatiot (kompensoiva ja ekvivalentti) Hintatason mittaamisesta 1 Mikrotaloustiede (31C00100) Prof. Marko Terviö Aalto-yliopisto

Lisätiedot

MIKROTALOUSTIEDE A31C00100

MIKROTALOUSTIEDE A31C00100 MIKROTALOUSTIEDE A31C00100 Kevät 2017: Luento I Olli Kauppi, KTT olli.kauppi@aalto.fi Päivän ohjelma 1. Kurssin yleiset asiat 2. Esimerkki mikrotaloustieteellisestä malliajattelusta (niputtaminen) 3. Kysyntä

Lisätiedot

5 Markkinat, tehokkuus ja hyvinvointi

5 Markkinat, tehokkuus ja hyvinvointi 5 Markkinat, tehokkuus ja hyvinvointi Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja kuluttaa sellaisen määrän

Lisätiedot

3 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4-5)

3 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4-5) 3 Kysyntä, tarjonta ja markkinatasapaino ( Mankiw & Taylor, Chs 4-5) Opimme edellä, että ihmisten (ja maiden) kannattaa erikoistua tuotannossa ja käydä keskenään kauppaa Markkinat ovat paikka, jossa ostajat

Lisätiedot

MIKROTEORIA, HARJOITUS 8

MIKROTEORIA, HARJOITUS 8 MIKROTEORI, HRJOITUS 8 PNOSMRKKINT, KILPILU, OLIGOPOLI, PELITEORI J VIHTOTLOUS. Jatkoa tehtävään 4 (ja 5) harjoituksessa 7. a. Laske kolluusioratkaisu. Kahden samaa tuotetta tuottavan yrityksen kustannusfunktiot

Lisätiedot

3. Kuluttajan valintateoria

3. Kuluttajan valintateoria 3. Kuluttajan valintateoria (Taloustieteen oppikirja, luku 4) Suhteellisen edun periaatteen mukaan ihmisten (ja maiden) kannattaa erikoistua tuotannossa ja käydä keskenään kauppaa Markkinataloudessa kotitaloudet

Lisätiedot

Seuraavaksi kysymme, onko tällainen markkinatasapaino yhteiskunnan kannalta hyvä vai huono eli toimivatko markkinat hyvin vai huonosti

Seuraavaksi kysymme, onko tällainen markkinatasapaino yhteiskunnan kannalta hyvä vai huono eli toimivatko markkinat hyvin vai huonosti Osa 7: Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7, Pohjolan mukaan) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu

Monopoli. Tommi Välimäki S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu Monopoli Tommi Välimäki 29.1.2003 Peruskäsitteitä: kysyntä ja tarjonta Hyödykkeen arvo kuluttajalle on maksimihinta, jonka hän olisi siitä valmis maksamaan Arvon raja-arvo vähenee määrän funktiona, D=MV

Lisätiedot

Kysyntä ja tarjonta kilpailullisilla markkinoilla

Kysyntä ja tarjonta kilpailullisilla markkinoilla Kysyntä ja tarjonta kilpailullisilla markkinoilla Kysyntäkäyrä on hinnan ja kysytyn määrän välinen relaatio tietyllä aikavälillä, tietyillä muiden tekijöiden tasoilla - tulot - muiden tuotteiden hinnat

Lisätiedot

TENTTIKYSYMYKSET

TENTTIKYSYMYKSET MIKROTALOUSTEORIA (PKTY1) Ari Karppinen TENTTIKYSYMYKSET 20.10.2006 OHJE: Tentin läpäisee 9 pisteellä. Vastaa tehtäväpaperiin ja palauta se, vaikket vastaisi yhteenkään kysymykseen! Muista kirjoittaa nimesi

Lisätiedot

Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola)

Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Osa 8. Markkinoiden tehokkuusanalyysin sovelluksia (M & T, Chs 6, 8-9, Pohjola) Hyvinvointiteoria tarkastelee sitä, miten resurssien allokoituminen kansantaloudessa vaikuttaa ihmisten hyvinvointiin Opimme

Lisätiedot

4. www-harjoitusten mallivastaukset 2017

4. www-harjoitusten mallivastaukset 2017 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2017 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

TU Kansantaloustieteen perusteet Mallivastaukset www1

TU Kansantaloustieteen perusteet Mallivastaukset www1 TU-91.11 Kansantaloustieteen perusteet Mallivastaukset www1 1. Mitkä seuraavista asioista kuuluvat mikro- ja mitkä makrotaloustieteen piiriin? Vuokrakaton vaikutus asuntojen tarjottuun määrään Mikrotaloustiede

Lisätiedot

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus Kulutus Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 13.11.2013 Antti Ripatti (HECER) Kulutus 13.11.2013 1 / 11 Indifferenssikäyrät ja kuluttajan teoria Tarkastellaan edustavaa kotitaloutta.

Lisätiedot

1. Lineaarinen optimointi

1. Lineaarinen optimointi 0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on

Lisätiedot

Kuluttajan valinta. Tulovaikutukset. Hyvinvointiteoreemat. Samahyötykäyrät. Variaatiot (kompensoiva ja ekvivalentti) Hintatason mittaamisesta

Kuluttajan valinta. Tulovaikutukset. Hyvinvointiteoreemat. Samahyötykäyrät. Variaatiot (kompensoiva ja ekvivalentti) Hintatason mittaamisesta Kuluttajan valinta Tulovaikutukset Hyvinvointiteoreemat Samahyötykäyrät Variaatiot (kompensoiva ja ekvivalentti) Hintatason mittaamisesta 1 Mikrotaloustiede (31C00100) Prof. Marko Terviö Aalto-yliopisto

Lisätiedot

Prof. Marko Terviö Assist. Jan Jääskeläinen

Prof. Marko Terviö Assist. Jan Jääskeläinen Harjoitukset 5. 1. (a) Tarkastellaan uuden työntekijän palkkaamisen tuottoja ja kustannuksia eri skenaarioissa. Toimijat oletetaan aina riskineutraaleiksi, jos ei toisin mainita. Työntekijän tuottavuus

Lisätiedot

Paraabeli suuntaisia suoria.

Paraabeli suuntaisia suoria. 15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki

Lisätiedot

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7)

4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) 4 Markkinat, tehokkuus ja hyvinvointi (Mankiw & Taylor, Ch 7) Opimme edellä, että markkinat ovat tasapainossa silloin, kun hinta on sellainen, että kysyntä = tarjonta tällä hinnalla jokainen kuluttaja

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Taloustieteen perusteet 31A00110 2016 Mallivastaukset 2, viikko 3 Tehtävä 1.Tarkastellaan opiskelijaa, jolla opiskelun ohella jää 8 tuntia päivässä käytettäväksi työntekoon ja vapaa-aikaan. Olkoot hänen

Lisätiedot

Y56 laskuharjoitukset 6

Y56 laskuharjoitukset 6 Y56 Kevät 00 Y56 laskuharjoitukset 6 Palautus joko luennolle/mappiin tai Katjan lokerolle (Koetilantie 5, 3. krs) to.4. klo 6 mennessä (purku luennolla ti 7.4.) Ole hyvä ja vastaa suoraan tähän paperiin.

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

A31C00100 MIKROTALOUSTIEDE. Kevät Riku Buri. HARJOITUKSET I: vastaukset

A31C00100 MIKROTALOUSTIEDE. Kevät Riku Buri. HARJOITUKSET I: vastaukset A31C00100 MIKROTALOUSTIEDE Kevät 2017 Riku Buri HARJOITUKSET I: vastaukset 1. Vastaa seuraaviin kysymyksiin a. Miten hyödykkeen kysyntään vaikuttaa jos, i. Substituutin hinta nousee Kysyntä kasvaa ii.

Lisätiedot

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT

KYSYNTÄ, TARJONTA JA HINTA. Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT KYSYNTÄ, TARJONTA JA HINTA Tarkastelussa käsitellään markkinoiden toimintaa tekijä kerrallaan MARKKINAT Paikka, jossa ostaja ja myyjä kohtaavat, voivat hankkia tietoa vaihdettavasta tuotteesta sekä tehdä

Lisätiedot

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä:

Luku 22 Yrityksen tarjonta. Nyt kiinnostava kysymys on, kuinka yrityksen tarjonta määräytyy. Yrityksen on periaatteessa tehtävä kaksi päätöstä: 1 Luku 22 Yrityksen tarjonta Edellisissä luvuissa olemme yrityksen teoriasta tarkastelleet yrityksen tuotantopäätöstä, ts. panosten optimaalista valintaa, yrityksen voiton maksimoinnin ja kustannusten

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle / MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. Suora Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..07 Ennakkotehtävät. a) Kumpaankin hintaan sisältyy perusmaksu ja minuuttikohtainen maksu. Hintojen erotus on kokonaan minuuttikohtaista

Lisätiedot

4. www-harjoitusten mallivastaukset 2016

4. www-harjoitusten mallivastaukset 2016 TU-91.1001 Kansantaloustieteen perusteet 4. www-harjoitusten mallivastaukset 2016 Tehtävä 1. Oikea vastaus: C Voitto maksimoidaan, kun MR=MC. Kyseisellä myyntimäärällä Q(m) voittomarginaali yhden tuotteen

Lisätiedot

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.

Lisätiedot

1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO

1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO 1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Lämpötila maanpinnalla nähdään suoran ja y-akselin leikkauspisteen y- koordinaatista, joka on noin 10. Kun syvyys on 15 km, nähdään suoralta, että lämpötila

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi

Luku 26 Tuotannontekijämarkkinat. Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi 1 Luku 26 Tuotannontekijämarkkinat Tuotannontekijämarkkinat ovat tärkeä osa taloutta. Esimerkiksi TYÖMARKKINOIDEN toiminta on keskeisessä asemassa tulonjaon ja työllisyyden suhteen. Myös muut tuotannontekijämarkkinat

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 4

A31C00100 Mikrotaloustiede. Kevät 2017 HARJOITUKSET 4 A31C00100 Mikrotaloustiede Kevät 2017 HARJOITUKSET 4 1. Jukan yritys tarjoaa pikaruoka-annosten kotiinkuljetuspalvelua. Asiakkaat tekevät tilauksensa Jukan verkkosivuilla. Jukka ostaa tilatut annokset

Lisätiedot

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset

1. Tutkitaan regressiomallia Y i = β 0 + β 1 X i + u i ja oletetaan, että tavanomaiset TA7, Ekonometrian johdantokurssi HARJOITUS 7 RATKAISUEHDOTUKSET 16.3.2015 1. Tutkitaan regressiomallia Y i = β 0 + X i + u i ja oletetaan, että tavanomaiset regressiomallin oletukset pätevät (Key Concept

Lisätiedot

Taloustieteiden tiedekunta Opiskelijavalinta 07.06.2005 1 2 3 4 5 YHT Henkilötunnus

Taloustieteiden tiedekunta Opiskelijavalinta 07.06.2005 1 2 3 4 5 YHT Henkilötunnus 1 2 3 4 5 YHT 1. Selitä lyhyesti, mitä seuraavat käsitteet kohdissa a) e) tarkoittavat ja vastaa kohtaan f) a) Työllisyysaste (2 p) b) Oligopoli (2 p) c) Inferiorinen hyödyke (2 p) d) Kuluttajahintaindeksi

Lisätiedot

* Hyödyn maksimointi on ihmisten toimintaa ja valintoja ohjaava periaate.

* Hyödyn maksimointi on ihmisten toimintaa ja valintoja ohjaava periaate. KANSANTALOUSTIETEEN PERUSTEET Yrityksen teoria (Economics luvut 13-14) 14) KTT Petri Kuosmanen Optimointiperiaate a) Yksilöt pyrkivät maksimoimaan hyötynsä. * Hyödyn maksimointi on ihmisten toimintaa ja

Lisätiedot

A31C00100 Mikrotaloustiede. Kevät Olli Kauppi & Emmi Martikainen HARJOITUKSET 7

A31C00100 Mikrotaloustiede. Kevät Olli Kauppi & Emmi Martikainen HARJOITUKSET 7 A31C00100 Mikrotaloustiede Kevät 2016 Olli Kauppi & Emmi Martikainen HARJOITUKSET 7 1. Pesuainetta ostavat kuluttajat voidaan jakaa kahteen ryhmään. Ensimmäisen ryhmän kysyntä on Q H (P)=12-2P. Ryhmään

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

MS-C2105 Optimoinnin perusteet Malliratkaisut 5

MS-C2105 Optimoinnin perusteet Malliratkaisut 5 MS-C2105 Optimoinnin perusteet Malliratkaisut 5 Ehtamo Demo 1: Arvaa lähimmäksi Jokainen opiskelija arvaa reaaliluvun välillä [0, 100]. Opiskelijat, joka arvaa lähimmäksi yhtä kolmasosaa (1/3) kaikkien

Lisätiedot

Viime kerralta Epävarmuus ja riski Optimaalinen kulutus-säästämispäätös: Tulo- ja substituutiovaikutus analyyttinen tarkastelu Epävarmuus Epävarmuus

Viime kerralta Epävarmuus ja riski Optimaalinen kulutus-säästämispäätös: Tulo- ja substituutiovaikutus analyyttinen tarkastelu Epävarmuus Epävarmuus Viie kerralta Epävaruus ja riski Luento 5 4..010 Tulo- ja substituutiovaikutus hinnan uutoksessa Substituutiovaikutus budjettisuora kiertyi alkuperäisen valinnan ypärillä Tulovaikutus uusi budjettisuora

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5)

4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) 4 Kysyntä, tarjonta ja markkinatasapaino (Mankiw & Taylor, 2 nd ed., chs 4-5) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Ensimmäisen asteen polynomifunktio

Ensimmäisen asteen polynomifunktio Ensimmäisen asteen polnomifunktio Yhtälön f = a+ b, a 0 määrittelemää funktiota sanotaan ensimmäisen asteen polnomifunktioksi. Esimerkki. Ensimmäisen asteen polnomifuktioita ovat esimerkiksi f = 3 7, v()

Lisätiedot