PARTIKKELIN KINEMATIIKKA

Koko: px
Aloita esitys sivulta:

Download "PARTIKKELIN KINEMATIIKKA"

Transkriptio

1 PRTIKKELIN KINEMTIIKK Pikklill li msspisllä koi kppl, jok mi o päolllis pi ksl hää kl. Kimiik häää o sliää, mi oid määiää pikkli sm, opus j kiihyyys s liikkuss käyääsä piki. z τ P y R z φ x y Rkäyä x Tkslu suoi sopiss koodiisoss, joi o suokulmis koodii (x, y, z) syliikoodii (,, z) pllokoodii (R,, φ ). pikllisss gisoss käyä gi, pääomli j siuomli suu (,, b) Jos pikkli käyä o sokäyä, s o soliikkssä. Suoiiisss liikkssä pikkli käyä o suo ii. 1

2 PRTIKKELIN KINEMTIIKK Suoiii liik P P s s Δs + Δ Kskiopus ikälillä Δ o k Δs / Δ. Ku Δ 0, kskiopus k lähsyy opu hkllä li lim Δ 0 Δs Δ ds d s& Pikkli hklli opus o s smkoodii muuosopus li di j suh. Kskikiihyyys ikälillä muuos ikälillä Δ. Δ o k Δ / Δ, missä Δ o opud Ku Δ 0, kskikiihyyys k lähsyy kiihyyyä hkllä li lim Δ 0 Δ Δ d d d d s & && s Pikkli hklli kiihyyys o s opud muuosopus li di j suh. Elimioimll opud j kiihyyyd kois ikdiffili d, sd ulos d ds li s & ds& & s ds jo so dymiikss gidiffiliyhälöksi.

3 PRTIKKELIN KINEMTIIKK Käyäiii soliik Rkäyä ' + Δ Δ Δs ' Δ Pikkli kskiopus pisid j älillä o Δ / Δ. k Pikkli opus hkllä o s kskiopud k ikäli Δ 0 Δ d lim & Δ 0 Δ d j-o, ku Nopuskoi o käyä gi suui. Pikkli kskikiihyyys pisid j älillä o k Δ / Δ, jok o opud muuoks Δ suui koi. Nopuskoi muuos Δ ihuuu skä s suu ä suuuud muuokss. Pikkli kiihyyys hkllä o s kskikiihyyyd k ku ikäli Δ 0 d d Δ lim & & Δ 0 Δ d d j-o, Kiihyyyskoi ku opuskoi muuosopu j sisälää opuskoi suu j suuuud muuos ikuuks. Kiihyyyskoi osoi käyä kupll puolll. 3

4 PRTIKKELIN KINEMTIIKK Käyäiii soliik xy-koodiisoss y y Pikkli smkoi oid siää yksikkökoid i j j skä pis koodii x j y ull x i + yj Yksikkökoi i j j & o kiokoi, jo i 0 & j j 0! Nopus- j kiihyyyskoi sd dioimll puskois & y j x& i + yj & x i & & && x i + && yj Nopus- j kiihyyyskoi kompoill sd x x x-suu: y-suu: x y x& x & x & x y& & & y y y Nopud j kiihyyyd suuuud x + y x + y xy-koodiisoss soliik oid jk khdksi oisis iippumomksi kompoiliikkksi!!! 4

5 PRTIKKELIN KINEMTIIKK Käyäiii soliik -koodiisoss Yksikkökoi j suu muuuu liikk ik, jo iä ol kiokoi li & 0 j & 0. Rkäyä () ' (b) C β dβ ρ ' ds ρdβ ' d dβ β o ilusuus miu kulm-sm, d β s lisäys j ρ käyä kuussäd. Nopus o koi suui. ds ρ dβ opud suuuus o ds / d ρ dβ / d ρβ&. 5

6 Nopuskoi o ρβ& Kiihyyyskoiksi sd määilmäsä d d d d( ) d dβ & d d + & dβ d & β& ρ & + ρ Nopus- j kiihyyyskoi kompoill sd -suu: -suu: 0 & ρ Nopud j kiihyyyd suuuud + + 6

7 YMPYRÄLIIKE Kulmopus : ω & Kulmkiihyyys : α && ω α 0 / 7

8 PRTIKKELIN KINEMTIIKK Käyäiii soliik -pkoodiisoss () d ' d ' d d Rkäyä (b) Yksikkökoi j suu muuuu liikk ik, jo iä ol kiokoi li & 0 j & 0 d d d d d d d d d d Pikkli sm Nopuskoi o & + & d d & & + &. & & & & Kiihyyyskoiksi sd & (&& + & & ) + ( & & + && + & & ) 8

9 ) + ( && + & & ) (&& & Nopus- j kiihyyyskoi kompoill sd -suu: -suu: & & & & & + & & Nopud j kiihyyyd suuuud + + () & Rkäyä & (b) && & Rkäyä & + && 9

10 SUHTEELLINEN LIIKE J Y B j y B / B I X x i XY-koodiisoss o kiiä. xy-koodiiso o kiiiy pikklii B j o s muk slioss. B o ilupikkli, jok ull pikkli liikä ksll. sm: + x i + yj B / B / B Nopus: Kiihyyys: + x& i + y& j B B / B / B / B + && x i + && yj / B / B / B / B pikkli suhlli sm pikklii B ähd pikkli suhlli opus pikklii B ähd pikkli suhlli kiihyyys pikklii B ähd 10

2. PARTIKKELIN KINEMATIIKKA

2. PARTIKKELIN KINEMATIIKKA Dmiikk.1. PRTIKKELIN KINEMTIIKK.1 Yleiä Pikkelill eli mpieellä koie kpple, jok mi o epäoleellie piee kel ehää kl. Kpplee ei ie kuiek oll ihmie kl pieikokoie. Eimekiki leokoee leoeii kelu oid koe piää pikkeli,

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

TV13 Integraalimunnokset Tentti Metropolia/AK Vastauksia

TV13 Integraalimunnokset Tentti Metropolia/AK Vastauksia 3 Igrlimuoks i 7.4.5 Mropoli/K suksi. Jokiss kohds oss iää pisä. Kiroi kuki suks prää lyhy pruslu. Jksollis sigli ksopiuus o 8 ms. Kuik suuri o sigli prusuus hrsiä? sus: 5 Hz li ksopiuud kääisluku. b Shrällo

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

u = 2 u (9.1) x + 2 u

u = 2 u (9.1) x + 2 u 9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w

& # # w. œ œ œ œ # œ œ œ œ œ # œ w. # w nœ. # œ œ œ œ œ # œ w œ # œ œ œ Œ. œ œ œ œ œ œ œ œ # œ w. œ # œ œ œ w œ œ w w w w. W # w Epainn muis (1.1., 6.12.) # œ œ œ œ œ # œ w i nun Kris lis sä py hää muis tus Tofia (6.1.) jo Jo pai a, y lis n [Ba li nu a, os,] kun ni, l nä ru k, i dän Ju ma lis, y lis ka i dän h tm h nk sl nu a, o

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

Yykaakoo 1A opettajan oppaan liitteet

Yykaakoo 1A opettajan oppaan liitteet Yykaakoo A opettajan oppaan liitteet Kopiointipohjat. Laskemisen tukimateriaali 2 a. Kymppiruudukot 2 b. Pistenapit 3 c. Lukunapit 4 d. Geometriset tasokuviot 5 e. Rahat 6 2. Ruutupohjia 7 a. Ruutupohja

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

! #! %! & #!!!!! ()) +

! #! %! & #!!!!! ()) + ! #! %! & #!!!!! ()) + Tiedekunta/Osasto Fakultet/Sektion Faculty Humanistinen tiedekunta Laitos Institution Department Taiteiden tutkimuksen laitos Tekijä Författare Author Matti Pesonen Työn nimi Arbetets

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

S , Fysiikka IV (ES) Tentti

S , Fysiikka IV (ES) Tentti S-1436, Fysiikk IV (S) Tetti 81 35 19 1 Vierekkäiste spektriviivje piei hvittu tjuuser Cl F mlekyyli 1 rttispektrissä 1,1 1 Hz Lske tmie välie etäisyys mlekyylissä Rtkisu Kksitmise mlekyyli pyörimiseergi

Lisätiedot

Usko, toivo ja rakkaus

Usko, toivo ja rakkaus Makku Lulli-Seppälä sko toivo a akkaus 1. Ko. 1 baitoille viululle alttoviululle a uuille op. kummityttöi Päivi vihkiäisii 9.8.1986 iulu a alttoviulu osuude voi soittaa sama soittaa. Tavittaessa alttoviulu

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia 10. Toisen asteen käyrien ja pintojen geometriaa 10.1. Ympyrän ja pallon ominaisuuksia 446. Minkä käyrän muodostavat ne tason E 2 pisteet, joista pisteitä ( a,0) ja (a,0) yhdistävä jana (a > 0) näkyy 45

Lisätiedot

5 JÄYKÄN KAPPALEEN TASOKINEMATIIKKA

5 JÄYKÄN KAPPALEEN TASOKINEMATIIKKA Dymiikk 5.1 5 JÄYKÄN KLEEN TSOKINEMTIIKK 5.1 Yleisä Jäykkä kpple o määrielmä muk prikkelisyseemi, joss prikkelei älise keskiäise eäisyyde pysyä muuumomi. Jäykä kpplee mlli o ieeki likimääräie, sillä kikki

Lisätiedot

M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n

M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n ÄÙ Ù ½ ËØ Ð Ù Ú Ó Ó ÐÑ ½º½ ÈÙÖ Ø ØØÙ Ø ÚÙØ ØØÙ ÙÚ Ì Ô ÒÓ ÓØ Q v + q =, M = Q, ½º½µ ÑÑÓ ÐÐ ÙÚ ÐÐ M v + q =, M = EIκ = EIv, (EIv ) + v = q. ½º¾µ ½º µ ½º µ EI = Ú Ó ÆÙÖ Ù ÚÓ Ñ v (4) + k v = q EI, k = EI,

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 4.5.2009: tehtävät,,4,6,9. välikoe: tehtävät,2,,4,5 2. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe. Sallitut: Kako, (gr.) laskin, (MAO)..

Lisätiedot

KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA

KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA KJUI BIÄÄRI SIIROJÄRJSLMÄ WG-KVSS Kaajaajui siiro iformaaio siiro johdossa sllaisaa ilma kaoaalo- ai pulssimodulaaioa 536 ioliikkiikka II Osa 3 Kari Kärkkäi Syksy 5 JÄRJSLMÄMLLI Bii kso. Symboli {} ja

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko

TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko 1 TASAPAINOJAKAUMAT KVANTTIMEKAANISISSA SYSTEEMEISSÄ (AH 5.4, 6.1, 6.4, 6.5) Mikrokanoninen joukko Aivan kuten klassisessa tapauksessa, myös kvanttimekaanisille monihiukkassysteemeille voidaan määritellä

Lisätiedot

= ωε ε ε o =8,853 pf/m

= ωε ε ε o =8,853 pf/m KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Epälineaaristen yhtälöiden ratkaisumenetelmät

Epälineaaristen yhtälöiden ratkaisumenetelmät Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin

Lisätiedot

KOHINA KULMAMODULAATIOISSA

KOHINA KULMAMODULAATIOISSA OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä.

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Signaalit aika- ja taajuustasossa

Signaalit aika- ja taajuustasossa Sili lomuoo Sili ik- uussoss Alomuoo kuv sili käyäyymisä fukio li iksoss. Ylsä lomuoo rksll simrkiksi oskilloskoopi äyöllä. Siimuooi sili Asiφ Asiπf φ i Acosφ Acosπf φ muodos prus kikki sili uussisällö

Lisätiedot

Kunnanhallitus 56 30.03.2015 Kunnanhallitus 143 07.09.2015. Valtuustoaloite, ilmainen matkustuskortti koululaisille 1029/01.

Kunnanhallitus 56 30.03.2015 Kunnanhallitus 143 07.09.2015. Valtuustoaloite, ilmainen matkustuskortti koululaisille 1029/01. Kunnanhallitus 56 30.03.2015 Kunnanhallitus 143 07.09.2015 Valtuustoaloite, ilmainen matkustuskortti koululaisille 1029/01.016/2015 Kunnanhallitus 30.03.2015 56 Valtuuston kokouksessa 9.2.2015 jätettiin

Lisätiedot

Älä tee mitään merkintöjä kaavakokoelmaan!

Älä tee mitään merkintöjä kaavakokoelmaan! AS-74. Alogie ääö vkokoelm v. Plu ei jälkee! Trk kokoelm ivumäärä! Älä ee miää merkiöjä kvkokoelm! Dymie mllie perukompoei. Sähköie kompoei Vu (reii) u() Ri() el (iduki) u() L di() d odeori i() C du()

Lisätiedot

Luento 6 Luotettavuus ja vikaantumisprosessit

Luento 6 Luotettavuus ja vikaantumisprosessit Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,

Lisätiedot

Ilmastointi PUSSISUODATIN ALTECH CL-36-3-M5 LASIKUITU L500 PUSSISUODATIN ALTECH CL-63-6-M5 LASIKUITU L360

Ilmastointi PUSSISUODATIN ALTECH CL-36-3-M5 LASIKUITU L500 PUSSISUODATIN ALTECH CL-63-6-M5 LASIKUITU L360 Ilmastointi Tuote LVI-numero Pikakoodi 7754400 OK08 CL-36-3-M5 LASIKUITU L360 CL-36-3-M5 LASIKUITU L500 CL-63-6-M5 LASIKUITU L360 CL-63-6-M5 LASIKUITU L500 CL-66-6-M5 LASIKUITU L360 CL-66-6-M5 LASIKUITU

Lisätiedot

DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta: jäykkä kappale, kulma-asema, Eulerin kulmat, kulmanopeus. Suhteellinen liike: Vektorin muutosnopeudet eri koordinaatistoissa.

Lisätiedot

A 1 Yli esteiden Nimi

A 1 Yli esteiden Nimi A Yli esteiden Nimi Ym-py-röi oi-ke-a lu-ku. Käy-tä ku-vi-a las-ke-mi-sen tu-ke-na. Lu-vun ja lu-ku-mää-rän yh-te-ys Lu-vun ja lu-ku-mää-rän yh-te-ys Lu-vun ja lu-ku-mää-rän yh-te-ys Vä-ri-tä oi-ke-a mää-rä.

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A

K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 16: Yhden vapausasteen vaimeneva pakkovärähtely, yleinen jaksollinen kuormitus

VÄRÄHTELYMEKANIIKKA SESSIO 16: Yhden vapausasteen vaimeneva pakkovärähtely, yleinen jaksollinen kuormitus 6/ VÄRÄHTELYMEKANIIKKA SESSIO 6: Yhde vpussee vimeev poväähely, yleie jsollie uomius YLEINEN JAKSOLLINEN KUORMITUS Hmois heäeä vsv pysyvä poväähely lusee löyyy helposi oeilemll. Hmoise heäee eoi void hyödyää

Lisätiedot

Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen

Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen Kaupunginhallitus 139 31.03.2014 Kaupunginhallitus 271 16.06.2014 Kaupunginhallitus 511 15.12.2014 Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen 877/10.03.02/2013

Lisätiedot

OPTIMAALINEN INVESTOINTIPÄÄTÖS

OPTIMAALINEN INVESTOINTIPÄÄTÖS OPTIMAALINEN INESTOINTIPÄÄTÖS Keskiarvoon palautuvalle prosessille ja Poissonin hyppyprosessille Optimointiopin seminaari - Syksy 000 / 1 I. KESKIAROON PALAUTUA PROSESSI Investoinnin kohde-etuuden arvo

Lisätiedot

- Betoni ja teräs eivät myötää => jännityksen ja muodonmuutoksen välinen yhteys noudattaa Hooken lakia

- Betoni ja teräs eivät myötää => jännityksen ja muodonmuutoksen välinen yhteys noudattaa Hooken lakia itoitu käyttöjtil Jännitykt käyttötil Oltukt: - Tot pyyvät toin (Bnoullin otkum) > lininn muoonmuutojkutum > tonin j täkn välillä i ol liukum (yhtnopivuuhto) + - Btoni j tä ivät myötää > jännitykn j muoonmuutokn

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Mari Herranen. Ultratulo

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Mari Herranen. Ultratulo TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mari Herranen Ultratulo Informaatiotieteiden yksikkö Matematiikka Marraskuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö HERRANEN, MARI: Ultratulo Pro

Lisätiedot

Rekursioyhtälön ratkaisu ja anisogamia

Rekursioyhtälön ratkaisu ja anisogamia Rekursioyhtälö ratkaisu ja aisogamia Eeva Vilkkumaa.0.2008 Rekursioyhtälö ratkaisu (Liite I) Edellie esitelmä: +/m -koiraide (p) ja -aaraide (P) osuus populaatiossa kehittyy rekursiivisesti: p P + + a

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNKKA JA LKTONKKA Aalto-yliopisto, sähkötekniikan korkeakoulu Kimmo Silvonen Tentti 4.5.0: tehtävät,3,4,6,8.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain neljään

Lisätiedot

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA Aalto-yliopisto, sähkötekniikan korkeakoulu S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Aalto-yliopisto, sähkötekniikan korkeakol Kimmo Silvonen Tentti 30.5.03: tehtävät,3,4,6,0.. välikoe: tehtävät,,3,4,5.. välikoe: tehtävät 6,7,8,9,0. Saat vastata vain

Lisätiedot

Valon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014

Valon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014 Valon sironta - ilmiöt ja mallinnus Jouni Mäkitalo Fysiikan seminaari 2014 Sisältö Johdanto Sironnan sähkömagneettinen mallinnus Analyyttinen sirontateoria Sironta ei-pallomaisista hiukkasista Johdanto

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 1 / versio 8. syyskuuta 2015 Johdanto (ti) Merkinnät ja yksiköt Kenttä- ja lähdesuureet Maxwellin yhtälöt ja väliaineyhtälöt Aallot ja osoittimet

Lisätiedot

1. kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut

1. kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut . kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut Tehtävä. Ovatko seuraavat indeksimuotoiset lausekkeet karteesisessa suorakulmaisessa koordinaatistossa oikein, perustelu?

Lisätiedot

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon

Lisätiedot

Perusturvalautakunta 60 11.06.2013 Kaupunginhallitus 280 17.06.2013 Tarkastuslautakunta 2013-2016 40 28.08.2013

Perusturvalautakunta 60 11.06.2013 Kaupunginhallitus 280 17.06.2013 Tarkastuslautakunta 2013-2016 40 28.08.2013 Perusturvalautakunta 60 11.06.2013 Kaupunginhallitus 280 17.06.2013 Tarkastuslautakunta 2013-2016 40 28.08.2013 Sosiaaliasiamiehen selvitys vuodelta 2012 PERLTK 60 Sosiaalityön johtaja Marketta Tiihala

Lisätiedot

2 Keminmaa 3 4 5 6. Haaparanta TORNIO. > 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db. Vt 4 Kemi

2 Keminmaa 3 4 5 6. Haaparanta TORNIO. > 40 db > 45 db > 50 db > 55 db > 60 db > 65 db > 70 db > 75 db. Vt 4 Kemi LIITE.. Pek ka ti injun Heik rä npe ä nper kkaa u u L joki Kylä L LIITE.. i aar Na u ska ang as ik ju Koi vuh ar Ru u tti Mä nt Väi nöl ä y lä Ma rtta Vai n io n ine Tor v o Paa tti Las si ik ko Kem inm

Lisätiedot

Kolmion kulmien summa. Maria Sukura

Kolmion kulmien summa. Maria Sukura Kolmion kulmien summa Maria Sukura Oppituntien johdanto Oppilaat kuulevat triangelin äänen. He voivat katsoa sitä ja yrittää nimetä tämän soittimen. Tutkimme, miksi triangelia kutsutaan tällä nimellä,

Lisätiedot

1 Pöytäkirja Avaa haku

1 Pöytäkirja Avaa haku D yn as t y t i et o pa l ve l u Sivu 1 / 9 Poistuminen ( Toimielimet 1 Jätelautakunta 1 Pöytäkirja 17.12.2013 Avaa haku 1 Jätelautakunta Pöytäkirja 17.12.2013 Pykälä 15 Edellinen asia 1Seuraava asia M

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

c SKAPAT JULKINEN HANKINTA Sivu 1/3

c SKAPAT JULKINEN HANKINTA Sivu 1/3 c SKAPAT JULKINEN HANKINTA Sivu 1/3 e n o n c, i n 28.10.2014 S Ä H K Ö N H A N K IN T A L O U N A IS -S U O M E N K O U L U T U S K U N T A Y H T Y M Ä Mukana ovat Lounais -Suomen Koulutuskuntayhtymän

Lisätiedot

Forssan kaupunki Osavuosikatsaus YHDYSKUNTAPALVELUT. Arviointik r iteeri tr mittarit ja tavoitetaso ja t a v o i t e t a s o

Forssan kaupunki Osavuosikatsaus YHDYSKUNTAPALVELUT. Arviointik r iteeri tr mittarit ja tavoitetaso ja t a v o i t e t a s o Forssan kaupunki Osavuosikatsaus 2017-08 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S E U T U P A L V E L U T T I L I

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

Keskeisliikkeen liikeyhtälö

Keskeisliikkeen liikeyhtälö Keskeisliikkeen liikeyhtälö L vakio keskeisliikkeessä liike tasossa L Val. L e z liike xy-tasossa naakoodinaatit, joille d dt e d = ϕe ϕ ; dt e ϕ = ϕe = e LY: m = f()e ṙ = ṙe + ϕe ϕ ; = ( ϕ 2 )e +(2ṙ ϕ+

Lisätiedot

Moderni reaalianalyysi

Moderni reaalianalyysi JUHA KINNUNEN Moderni reaalianalyysi F ( ) := f (ξ)e i ξ dξ 2π Juha Kinnusen laatiman luentomateriaalin pohjalta toimittaneet Mikael Lindström, Olli Hyvärinen ja Tuomas Pöyhtäri Sisältö LEBESGUEN ULKOMITTA

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

Algebra I, harjoitus 8,

Algebra I, harjoitus 8, Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen

Lisätiedot

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen ---------------------------------------- TEHTÄVÄKORI Monisteita matikkaan Riikka Mononen ---------------------------------------- Tehtäväkori 2016 TEHTÄVÄKORI Monisteita matikkaan -materiaali on kokoelma

Lisätiedot

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo

Lineaariset Lien ryhmät / Ratkaisut 6 D 381 klo JYVÄSKYLÄN YLIOPISO MAEMAIIKAN JA ILASOIEEEN LAIOS Lineaariset Lien ryhmät 27.2.2012 / t 6 D 381 klo. 16-18. 1. Matriisiryhmällä U(n) on epätriviaali normaali aliryhmä SU(n), joka on homomorfismin det

Lisätiedot

6.1 Autokovarianssifunktion karakterisaatio aikatasossa

6.1 Autokovarianssifunktion karakterisaatio aikatasossa 6. Spektraalianalyysi Tällä kurssilla on käyty läpi eräitä stationääristen aikasarjojen ominaispiirteitä, kuten aikasarjaa mallintavan stokastisen prosessin X t odotusarvo E[X t ] ja autokovarianssifunktio

Lisätiedot

Luento 4: kertaus edelliseltä luennolta

Luento 4: kertaus edelliseltä luennolta Luento 4: kertaus edelliseltä luennolta Liikeyhtälön ratkaisu: kartioleikkaus (Kepler I r = k2 /µ + e cosf = a ǫ2 +ǫ cos f k = k ǫ < ellipsi, negativinen energia a = µ 2h ǫ = parabeli, nolla energia ǫ

Lisätiedot

Äärettömät raja-arvot

Äärettömät raja-arvot Äärettömät raja-arvot Määritelmä Funktion f oikeanpuoleinen raja-arvo pisteessä x 0 on + mikäli kaikilla R > 0 löytyy sellainen δ > 0 että f (x) > R aina kun x 0 < x < x 0 + δ. Funktion f oikeanpuoleinen

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

Elektrodynamiikka, kevät 2002

Elektrodynamiikka, kevät 2002 Elektrodynamiikka, kevät 2002 Painovirheiden ja epätäsmällisyyksien korjauksia sekä muita pieniä lisäyksiä luentomonisteeseen Tähän on korjattu sellaiset painovirheet ja epämääräisyydet, joista voi olla

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 2

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 2 5384A RADIOTKNIIKAN PRUSTT Hajots. Radoaallon tnketssyvyys attn MHz:n taajdella on,6. Laske: a) atn johtavs b) atka, jonka akana taajdella GHz atssa etenevän aallon teho on vaentnt 3 db. Gatn vo olettaa

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 8 / versio 3. marraskuuta 2015 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu

Lisätiedot

Aineaaltodynamiikka. Aikariippuva Schrödingerin yhtälö. Stationääriset tilat. Ei-stationääriset tilat

Aineaaltodynamiikka. Aikariippuva Schrödingerin yhtälö. Stationääriset tilat. Ei-stationääriset tilat Aieaaltodyamiikka Aikariiuva Scrödigeri ytälö Aieaaltoketä aikariiuvuude määrää ytälö Aieaaltokettie riiuvuus ajasta aikariiuva Scrödigeri ytälö Statioääriset ja ei-statioääriset tilat Aaltoaketit Kvattimekaiika

Lisätiedot

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi

VÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi 6/ VÄRÄHTEYMEKANKKA SESS 6: Evvle sysee JHDANT Use äyä pplee uodos sysee vod orv yhde vpussee evvlell llll os se pplede se/ul-se vod lusu s oord vull. Tällö sysee geoers vod uodos yheyde se e pplede leloe

Lisätiedot

Differentiaaliyhtälöiden numeerinen ratkaiseminen

Differentiaaliyhtälöiden numeerinen ratkaiseminen Differentiaaliyhtälöiden numeerinen ratkaiseminen Keijo Ruotsalainen Division of Mathematics Alkuarvotehtävä Tavallisen differentiaaliyhtälön alkuarvotehtävä: Määrää reaaliarvoinen funktio y C 1 (I) siten,

Lisätiedot

LUKU 10. Yhdensuuntaissiirto

LUKU 10. Yhdensuuntaissiirto LUKU hdensuuntaissiirto Olkoot (M, N) suunnistettu pinta, p M ja v p R 3 p annettu vektori pisteessä p (vektorin v p ei tarvitse olla pinnan M tangenttivektori). Tällöin vektori (v p N(p)) N(p) on vektorin

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42

Numeeriset menetelmät TIEA381. Luento 13. Kirsi Valjus. Jyväskylän yliopisto. Luento 13 () Numeeriset menetelmät / 42 Numeeriset menetelmät TIEA381 Luento 13 Kirsi Valjus Jyväskylän yliopisto Luento 13 () Numeeriset menetelmät 8.5.2013 1 / 42 Luennon 13 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Moniaskelmenetelmien

Lisätiedot

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005

Demo 7 ( ) Antti-Juhani Kaijanaho. 9. joulukuuta 2005 Demo 7 (14.12.2005) Antti-Juhani Kaijanaho 9. joulukuuta 2005 Liitteenä muutama esimerkki Ydin-Haskell-laskuista. Seuraavassa on enemmän kuin 12 nimellistä tehtävää; ylimääräiset ovat bonustehtäviä, joilla

Lisätiedot

RATKAISUT: 6. Pyörimisliike ja ympyräliike

RATKAISUT: 6. Pyörimisliike ja ympyräliike Phyic 9 pio () 6 Pyöiiliike j ypyäliike : 6 Pyöiiliike j ypyäliike 6 ) Pyöiiliikkeeä kpple pyöii joki keli ypäi Kpplee eto uuttuu b) Ypyäliikkeeä kpple liikkuu pitki ypyät dϕ c) Hetkellie kulopeu ω o kietokul

Lisätiedot

1 Kompleksitason geometriaa ja topologiaa

1 Kompleksitason geometriaa ja topologiaa 1 Kompleksitason geometriaa ja topologiaa Tavallisessa analyyttisessä geometriassa käyrien yhtälöt esitetään x-koordinaattien ja y-koordinaattien avulla, esimerkiksi y = 1 x esittää tasasivuista hyperbeliä,

Lisätiedot

M A A N V U O K R A S O P I M U S YRI"Il 'ti IYII MI Vl)1

M A A N V U O K R A S O P I M U S YRIIl 'ti IYII MI Vl)1 M A A N V U O K R A S O P I M U S YRI"Il 'ti IYII MI Vl)1 ] JORD A;ATO Vuokramuut0a; Y-tunnus: 01 Kakkiløn kunta Vuokralainen : Jari-Malli Lanksila Anolamic. 310 1.2 Vrarkrn-alxe 199iiriala on c.cilctlv

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

ν = S Fysiikka III (ES) Tentti Ratkaisut

ν = S Fysiikka III (ES) Tentti Ratkaisut S-45 Fysiikka III (ES) etti 8500 Ratkaisut Ideaalikaasu suorittaa oheise kua esittämä kiertoprosessi abca Pisteessä a lämpötila o 0 K a) Kuika mota moolia kaasua o? b) Määritä kaasu lämpötila pisteissä

Lisätiedot

Kunnanhallitus 143 20.05.2013 Kunnanhallitus 182 05.08.2013 OULUN AMMATTIKORKEAKOULUN OMISTUS 613/053/2013

Kunnanhallitus 143 20.05.2013 Kunnanhallitus 182 05.08.2013 OULUN AMMATTIKORKEAKOULUN OMISTUS 613/053/2013 Kunnanhallitus 143 20.05.2013 Kunnanhallitus 182 05.08.2013 OULUN AMMATTIKORKEAKOULUN OMISTUS 613/053/2013 KHALL 143 Valmistelu: hallintojohtaja Eeva Vanhanen, p. 050 356 6427 Oulun kaupunki, Oulun seudun

Lisätiedot

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause

F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause 91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan

Lisätiedot

Kopiointiehdot. KUVITUS Annika Mannström Tom Svens (3D-kuvat) TIEDUSTELUT Edukustannus Oy

Kopiointiehdot. KUVITUS Annika Mannström Tom Svens (3D-kuvat) TIEDUSTELUT Edukustannus Oy 1 Kokeet Kopiointiehdot Tämän verkkoaineiston muokkaaminen on sallittua. Aineiston tulostaminen, kopiointi, välittäminen tai muu jatkokäyttö sellaisenaan tai muokattuna edellyttää kuitenkin oikeudenomistajan

Lisätiedot

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,

Lisätiedot

Rajoittamattomat kieliopit

Rajoittamattomat kieliopit Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 8. marraskuuta 2016 Tasoaallot, osa 1 (Ulaby 7.1, 7.2, 7.4) Kenttäosoittimet Aikaharmoniset Maxwellin yhtälöt Tasoaaltoratkaisu Tasoaaltoyhtälöt

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

S Piirianalyysi 2 2. välikoe

S Piirianalyysi 2 2. välikoe S-55.22 Piirianalyyi 2 2. välikoe 6.5.23 Lake tehtävät 2 eri paperille kuin tehtävät 3 5. Muita kirjoittaa jokaieen paperiin elväti nimi, opikelijanumero, kurin nimi ja koodi. Epäelvät vataupaperit voidaan

Lisätiedot

Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ...

Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta. VASTAUS: ... 4 Alkeisfunktiot 41 Potenssifunktio 42 Polynomit ja rationaalifunktiot 102 Todista, että jokaisella parittoman asteen reaalikertoimisella polynomilla on ainakin yksi reaalinen nollakohta 103 Olkoon p()

Lisätiedot