RATKAISUT: 15. Aaltojen interferenssi

Koko: px
Aloita esitys sivulta:

Download "RATKAISUT: 15. Aaltojen interferenssi"

Transkriptio

1 Physica 9. paios (6) : 5. a) Ku kaksi tai useapia aaltoja eteee saassa äliaieessa, aaltoje yhteisaikutus issä tahasa pisteessä o yksittäiste aaltoje sua. b) Ku aallot kohtaaat, haaitaa iide yhteisaikutus. Aaltoje yhteisaikutusta saotaa iterferessiksi. c) Ku aaltoritaa eteeistä häiritää esteellä, aaltoritaa uoto uuttuu. Tätä iliötä kutsutaa diffraktioksi. d) Aallot, joide aihe-ero o akio, oat keskeää koheretteja. e) Ku kahdesta ääe lähteestä lähteie ääte taajuudet oat hyi lähellä toisiaa, ääe iterferessiaalto oiistuu ja heikkeee jaksollisesti, ääi huojuu. f) Hilaakio o hila rakoje äliatka. 5.2 Kuasta ähdää, että aaltoje aihe-ero o ¼ jaksoajasta, eli 0, s. Aaltoliikkee perusyhtälö ukaa = f, jossa f =. T Näi saadaa = T = T = 0, 25 0, s = 0,0. s Aalto kaksi o edellä, koska se uutokset (esi. aksiiaro) tapahtuat ajallisesti esi. Vastaus: a) Vaihe-ero o 0, s. b) Aallopituus o 0, Seisoa aallo taajuus o f = 25 Hz ja aallo eteeisopeus jousessa = 22,6 /s. Aaltoliikkee perusyhtälö ukaa = f, josta saadaa = f. Sijoitetaa tuetut arot, jolloi saadaa 22,6 = s = 0, s Soluje älie etäisyys o puolet aallopituudesta, jote Tekijät ja WSOY Oppiateriaalit Oy, 2007

2 Physica 9. paios 2(6) 0,90 d = = =0,52 0, Vastaus: Vierekkäiste soluje älie etäisyys o 5 c. 5. Koska alo ei hajoa prisassa äreihi, kyseessä o ookroaattie alo. Koska arjostiella ei haaita iterferessikuiota, ei alo ole koherettia. Kyseessä oisi olla purkausputke alo. Kyse o a-kohda taoi ookroaattisesta alosta, utta koska arjostiella haaitaa iterferessikuio, o alo yt yös koherettia. Kyse oisi olla laseralosta. Valo ei ole ookroaattista eikä site yöskää koherettia. Kyse oisi olla esierkiksi hehkulapu alosta. 5.5 a) Putke toie pää o suljettu ja toie aoi. Putkee sytyy seisoia aaltoja, jotka sytyät ilatilassa edestakaisi eteeie pitkittäiste aaltoje iterferoidessa. Putke pituus ei uutu. Ku ila läpötila pysyy akioa, sytyy putkee seisoia aaltoja ai tietyillä taajuuksilla. Alla oleista kuista ähdää, että seisoie aaltoje aallopituudet oat = L, 2 = L, 3 = L ja astaaat aaltoliikkee taajuudet oat perusyhtälö = f ukaa f =, f2 =, f3 =,... f =, L L L L jossa =, 2, Muilla taajuuksilla tihetyiä ja haretuia ei syy. b) Tihetyie äli lyheee, koska opeus pysyy akioa ja taajuus kasaa ( = ). f Tekijät ja WSOY Oppiateriaalit Oy, 2007

3 Physica 9. paios 3(6) c) Taajuus ei uutu, ku läpötila uuttuu. Taajuus o ärähtelijä oiaisuus. Ääe opeus riippuu läpötilasta yhtälö = 20 T s ukaisesti. Koska ääe opeus K kasaa, uuttuu yös aallopituus. Tästä johtuu, että putkee ei syy seisoaa aaltoa. 5.6 Laseralo aallopituus o = 530 ja käytetyssä hilassa o 585 rakoa illietrillä. Hilaakioksi saadaa d =. 585 Vahistaa iterferessi ehto o dsiθ = k k siθ =, d sillä si 90 =. 3 d 0 k = = 3, k o kokoaisluku, jote arjostiella ähdää seitseä iiaa Vastaus: Varjostielle saadaa seitseä aloista iiaa. 5.7 Aallopituus o = 50, kertaluku o k = ja taipuiskula o θ = 2,6º. a) Ratkaistaa hilayhtälöstä hilaakio dsiθ = k k d = = = siθ si 2,6 b) k = 3, jote k siθ = = d 50 2, ,8μ ,75 0 θ = 0,8772 0,9. Vastaus: a) Hilaakio o 2,8μ. b) Taipuiskula o 0,9º. 5.8 a) Puhaltie toie pää o suljettu ja toie aoi. Puhaltiee sytyy seisoia aaltoja, jotka sytyät ilatilassa edestakaisi eteeie pitkittäiste aaltoje iterferoidessa. Seisoie aaltoje aallopituudet oat = L, 2 = L, 3 = L Tekijät ja WSOY Oppiateriaalit Oy, 2007

4 Physica 9. paios (6) ja astaaat taajuudet oat 3 5 f =, f2 =, f3 =,... L L L 2 f =, L jossa =, 2, Ääe opeus riippuu läpötilasta = 20 T s. K T Taajuus o suoraa erraollie ääe opeutee ( f = = 20 ), jote ku s K läpötila kasaa ii yös taajuus kasaa. b) Kuultaa ääe taajuus o 50 Hz. Ila läpötila o 20 C. Pulloo sytyä seisoa aaltoliikkee perusärähtelyssä aallopituus = L, jossa L o ilapatsaa korkeus. Site ilapatsaa korkeus L =. Aaltoliikkee perusyhtälöstä saadaa = f = Lf, josta L K s = = K = 0,902 9 c. f 50 s Vastaus: b) Ilapatsaa korkeus o 9 c. 5.9 a) Putke toie pää o suljettu, eli o edessä, ja toie aoi. Putkee sytyy seisoia aaltoja, jotka sytyät ilatilassa edestakaisi eteeie pitkittäiste aaltoje iterferoidessa. b) Ääe opeus ja taajuus pysyät akioia. Ku putke korkeutta uutetaa, seisoa aalto ei soi putkee, sillä aallopituus ei uutu. c) Ku läpötila kasaa, yös ääeopeus kasaa. Läpötila uutos ei aikuta taajuutee, jote aaltoliikkee perusyhtälö = ukaa yös aallopituus kasaa. f Putkee sytyy seisoia aaltoja ai tietyillä taajuuksilla. Tekijät ja WSOY Oppiateriaalit Oy, 2007

5 Physica 9. paios 5(6) Kuista ähdää, että seisoie aaltoje aallopituudet oat = L, 2 = L, 3 = L... = L Koska ehto ääe oiistuiselle toisesta päästä upiaiselle putkelle o = L, jossa =, 2,..., o putke pituus erraollie aallopituutee. Putkea 2 o site pideettää, eli ostettaa ylöspäi edestä. d) Kuiosta ähdää, että itesiteettiaksii sytyy, ku putke pituus o 26,7 c. Putkee sytyy seisoa aalto kua ukaisesti. Seisoa aallo aallopituude ja putke pituude älillä o yhteys = L, josta ratkaistaa aallopituus = L. Aaltoliikkee perusyhtälö ukaa f = =. L Sijoitetaa tuetut arot K s K f = = 320, Hz. 0,267 s Vastaus: Taajuus o 320 Hz. 5.0 Ku alo tulee ilasta o ja yös sta lasii, tapahtuu puole aallo aihesiirto, sillä lasi > > ila. Kalo ja lasi älisestä piasta heijastuut aalto kuoaa ila ja älisestä piasta heijastuee aallo, jos iide atkaero o Δ D =. 2 Koska atkaero o Δ D = 2d, o 2d = ja d = 2. Lasketaa alo aallopituus ssa. Taittuislai ukaa Tekijät ja WSOY Oppiateriaalit Oy, 2007

6 Physica 9. paios 6(6) ila = = ila ila ila =, = 06,7797,8 ja d = = 0, Vastaus: Kalo paksuus o 02. Tekijät ja WSOY Oppiateriaalit Oy, 2007

Aallot. voima F on suoraan verrannollinen venymään x. k = jousivakio Jousivakion yksikkö [k] = 1 N/m = 1 kg/s 2

Aallot. voima F on suoraan verrannollinen venymään x. k = jousivakio Jousivakion yksikkö [k] = 1 N/m = 1 kg/s 2 Aallot Harmoie voima voima F o suoraa verraollie veymää x Hooke laki F = kx k = jousivakio Jousivakio yksikkö [k] = N/m = kg/s Jouse potetiaalieergia E p = kx syyttää harmoise värähtely yhtee värähdyksee

Lisätiedot

Kertaustehtävät. 300 s 600. 1. c) Värähtelyn jaksonaika on. = = 2,0 Hz 0,50 s. Värähtelyn taajuus on. f = T

Kertaustehtävät. 300 s 600. 1. c) Värähtelyn jaksonaika on. = = 2,0 Hz 0,50 s. Värähtelyn taajuus on. f = T Kertaustehtävät. c) Värähtely jaksoaika o Värähtely taajuus o f = T 00 s T = = 0,50 s. 600 = =,0 Hz 0,50 s.. b) Harmoie voima o muotoa = kx. Sovitaa suuta alas positiiviseksi. Tasapaiotilassa o voimassa

Lisätiedot

, k = jousivakio F F. ) x x / m. kx 2, työ: W = 1

, k = jousivakio F F. ) x x / m. kx 2, työ: W = 1 3. KURSSI: Aallot (FOTONI 3: PÄÄKOHDAT) VÄRÄHTELYT: harmoie voima ja värähdysliike - harmoie voima: F = -kx, taajuus eli frekvessi: f = T O T - T = jaksoaika = yhtee värähdyksee kuluut aika (s) - f = frekvessi

Lisätiedot

15 MEKAANISET AALLOT (Mechanical Waves)

15 MEKAANISET AALLOT (Mechanical Waves) 3 15 MEKAANISET AALLOT (Mechaical Waves) Luoto o täyä aaltoja. Aaltoliikettä voi sytyä systeemeissä, jotka poikkeutettua tasapaiotilastaa pyrkivät palaamaa siihe takaisi. Aalto eteee, ku poikkeama (häiriö)

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto

DEE Sähkömagneettisten järjestelmien lämmönsiirto DEE-54 Sähköageettiste järjestelie läösiirto Lueto 7 Sähköageettiste järjestelie läösiirto Risto Mikkoe..4 Läöjohtuise leie osittaisdiffereretiaalihtälö t E g c p Sähköageettiste järjestelie läösiirto

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla: 10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

Mekaniikan jatkokurssi Fysp102

Mekaniikan jatkokurssi Fysp102 Mekaiika jatkokurssi Fysp102 Kevät 2010 Jukka Maalampi LUENTO 13 Superpositio Aalto ilmeee aiehiukkase liikkeeä tasapaioasema ympärillä. Liikkee syyä o aapurihiukkaste aiheuttama voima. Ku hiukkase kohdalle

Lisätiedot

RATKAISUT: 18. Sähkökenttä

RATKAISUT: 18. Sähkökenttä Physica 9 1. painos 1(7) : 18.1. a) Sähkökenttä on alue, jonka jokaisessa kohdassa varattuun hiukkaseen vaikuttaa sähköinen voia. b) Potentiaali on sähkökenttää kuvaava suure, joka on ääritelty niin, että

Lisätiedot

SEISOVA AALTOLIIKE 1. TEORIAA

SEISOVA AALTOLIIKE 1. TEORIAA 1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus

Lisätiedot

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ

53 ELEKTRONIN SUHTEELLISUUSTEOREETTINEN LIIKE- MÄÄRÄ 53 LKTRONIN SUHTLLISUUSTORTTINN LIIK- MÄÄRÄ 53. Lorentz-uunnos instein esitti. 95 erikoisen suhteellisuusteorian eruseriaatteen, jonka ukaan kaikkien luonnonlakien tulee olla saoja haainnoitsijoille, jotka

Lisätiedot

PERUSSARJA. nopeus (km/h) aika (s) 2,0 4,0 6,0 7,0 10,0 12,0 13,0 16,0 22,0

PERUSSARJA. nopeus (km/h) aika (s) 2,0 4,0 6,0 7,0 10,0 12,0 13,0 16,0 22,0 PERUSSARJA Vastaa huolellisesti ja siististi! Kirjoita tekstaten koepaperiin oa niesi, kotiosoitteesi, sähköpostiosoite, opettajasi nii sekä koulusi nii. Kilpailuaikaa on 100 inuuttia. Sekä tehtävä- että

Lisätiedot

Oppimistavoite tälle luennolle

Oppimistavoite tälle luennolle Oppiistavoite tälle lueolle Yksikköoperaatiot ja teolliset prosessit CHEM-A00 (5 op) Tislaus ja uutto Yärtää erotusprosessie suuittelu perusteet Tutea tislaukse ja uuto toiitaperiaatteet Tutea tpillisipiä

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhden vapausasteen vaimeneva pakkovärähtely, roottorin epätasapaino ja alustan liike

VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhden vapausasteen vaimeneva pakkovärähtely, roottorin epätasapaino ja alustan liike 15/1 VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhde vapausastee vaieeva pakkovärähtely, roottori epätasapaio ja alusta liike ROOTTORIN EPÄTASAPAINO Kute sessiossa VMS13 tuli esille, aiheuttaa pyörivie koeeosie epätasapaio

Lisätiedot

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa

Lisätiedot

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa.

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa. S-114.46 Fysiikka V (Sf) Tetti 16.5.00 välikokee alue 1. Oletetaa, että protoi ja elektroi välie vetovoia o verraollie suureesee r ( F =- kr) eikä etäisyyde eliö kääteisarvoo ( F =-k / r ). Käytä kulaliikeäärä

Lisätiedot

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p MAA9 Koe.5.0 Jussi Tyi Tee koseptii pisteytysruudukko! Muista kirjata imesi ja ryhmäsi. Valitse kuusi tehtävää!. a) Ratkaise yhtälö si x. Ilmoita vastaus radiaaeia! b) Määritä paljoko o cos. Ilmoita tarkka

Lisätiedot

N:o 294 2641. Liite 1. Staattisen magneettikentän (0 Hz) vuontiheyden suositusarvo.

N:o 294 2641. Liite 1. Staattisen magneettikentän (0 Hz) vuontiheyden suositusarvo. N:o 94 641 Liite 1. Staattise mageettiketä (0 Hz) vuotiheyde suositusarvo. Altistumie Koko keho (jatkuva) Mageettivuo tiheys 40 mt Tauluko selityksiä Suositusarvoa pieemmätki mageettivuo tiheydet saattavat

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Mite opit parhaite? Valmistaudu pitkä- tai lyhye matematiika kirjoituksii ilmaiseksi Mafyetti-ohjelmalla! Harjoittelu tehdää aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa tarvittavat

Lisätiedot

Kompleksilukujen alkeet

Kompleksilukujen alkeet Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi

Lisätiedot

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä

Physica 9 1. painos 1(8) 20. Varattu hiukkanen sähkö- ja magneettikentässä Phyica 9 aino (8) 0 Varattu hiukkann ähkö- ja agnttikntää : 0 Varattu hiukkann ähkö- ja agnttikntää 0 a) Sähköknttä aikuttaa arattuun hiukkan oialla F = QE Poitiiiti aratull hiukkall oian uunta on ähkökntän

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2010 Insinöörivalinnan fysiikan koe 2.6.2010, malliratkaisut A1 Diplomi-insinöörin ja arkkithtin yhtisalinta - dia-alinta 2010 Alla on lutltu kuusi suurtta skä annttu taulukoissa kahdksan lukuaroa ja kahdksan SI-yksikön symbolia. Yhdistä suurt oikan suuruusluokan

Lisätiedot

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x) BM20A580 Differetiaalilasketa ja sovellukset Harjoitus 3, Syksy 206. Laske seuraavat itegraalit si(4t + )dt (b) x(x 2 + 00) 000 dx (c) x exp(ix )dx 2. Mitä o y, ku (x ) 2 + y 2 = 2 2, etäpä y? Vastaukset

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 3 1 Lisää iduktiota Jatketaa iduktio tarkastelua esimerki avulla. Yritetää löytää kaava : esimmäise (positiivise) parittoma luvu summalle eli summalle 1 + 3 + 5 + 7 +...

Lisätiedot

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut

Diplomi-insino o rien ja arkkitehtien yhteisvalinta - dia-valinta 2015 Insino o rivalinnan fysiikan koe 27.5.2015, malliratkaisut Diplomi-insino o rien ja arkkitehtien yhteisalinta - dia-alinta 15 Insino o rialinnan fysiikan koe 7.5.15, malliratkaisut A1 Pallo (massa m = 1, kg, sa de r =, cm) nojaa kur an mukaisesti pystysuoraan

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi Calculus Lukio 8 MAA Differetiaali- ja itegraalilaskea jatkokurssi Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Differetiaali- ja itegraalilaskea jatkokurssi

Lisätiedot

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on

4 KORKEAMMAN KERTALUVUN LINEAARISET DIFFERENTIAALIYHTÄLÖT. Kertaluvun n lineaarinen differentiaaliyhtälö ns. standardimuodossa on 4 4 KORKEAAN KERTAUVUN INEAARISET DIFFERENTIAAIYHTÄÖT Kertalukua olevassa differetiaalihtälössä F(x,,,, () ) = 0 esiit :e kertaluvu derivaatta () = d /dx ja mahdollisesti alempia derivaattoja, :tä ja x:ää.

Lisätiedot

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1.

LHSf5-1* Osoita, että van der Waalsin kaasun tilavuuden lämpötilakerroin on 2 γ = ( ) RV V b T 2 RTV 2 a V b. m m ( ) m m. = 1. S-445 FSIIKK III (ES) Syksy 004, LH 5 Ratkaisut LHSf5-* Osoita, että van der Waalsin kaasun tilavuuden läötilakerroin on R ( b ) R a b Huoaa, että läötilakerroin on annettu oolisen tilavuuden = / ν avulla

Lisätiedot

HEIJASTUMINEN JA TAITTUMINEN

HEIJASTUMINEN JA TAITTUMINEN S-08-0 OPTIIKKA /6 HEIJASTUMINEN JA TAITTUMINEN Laboratoriotyö S-08-0 OPTIIKKA /6 Sisällysluettelo Teoria... 3 Työ suoritus... 4. Kokoaisheijastus... 4. Brewsteri kulma... 5 3 Mittauspöytäkirja... 6 S-08-0

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

δ 0 [m] pistevoimasta 1 kn aiheutuva suurin kokonaistaipuma δ 1 [m] pistevoimasta 1 kn aiheutuva suurin paikallinen taipuma ζ [-] vaimennussuhde

δ 0 [m] pistevoimasta 1 kn aiheutuva suurin kokonaistaipuma δ 1 [m] pistevoimasta 1 kn aiheutuva suurin paikallinen taipuma ζ [-] vaimennussuhde SYMBOLILUETTELO a [/s ] ihisen käveystä aiheutuva askettu kiihtyvyys x [] huoneen suurin eveys- tai pituus [] attian eveys eff [] attian värähteevän osan tehoinen eveys e=,78 [-] Neperin uku s [] attiapakkien

Lisätiedot

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä

Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...

Lisätiedot

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims 75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 4 / vko 40

Diskreetin matematiikan perusteet Laskuharjoitus 4 / vko 40 Diskreetin ateatiikan perusteet Laskuharjoitus 4 / vko 40 Tuntitehtävät 31-32 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 35-36 loppuviikon harjoituksissa. Kotitehtävät 33-34 tarkastetaan loppuviikon

Lisätiedot

Kuva 1: Etäisestä myrskystä tulee 100 metrisiä sekä 20 metrisiä aaltoja kohti rantaa.

Kuva 1: Etäisestä myrskystä tulee 100 metrisiä sekä 20 metrisiä aaltoja kohti rantaa. Kuva : Etäisestä yrskystä tulee 00 etrisiä sekä 20 etrisiä aaltoja kohti rantaa. Myrskyn etäisyys Kuvan ukaisesti yrskystä tulee ensin pitkiä sataetrisiä aaltoja, joiden nopeus on v 00. 0 tuntia yöhein

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu 83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi

Lisätiedot

Liikkeet. Haarto & Karhunen. www.turkuamk.fi

Liikkeet. Haarto & Karhunen. www.turkuamk.fi Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa

Lisätiedot

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x =

2 avulla. Derivaatta on nolla, kun. g( 3) = ( 3) 2 ( 3) 5 ( 3) + 6 ( 3) = 72 > 0. x = TAMMI PYRAMIDI NUMEERISIA JA ALGEBRALLISIA MENETELMIÄ PARITTOMAT RATKAISUT 7 Tiedosto vai hekilökohtaisee käyttöö. Kaikelaie sisällö kopioiti kielletty. a) g( ) = 5 + 6 Koska g o eljäe astee polyomi, ii

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2014 Insinöörivalinnan fysiikan koe 28.5.2014, malliratkaisut A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 014 Insinöörivalinnan fysiikan koe 8.5.014, malliratkaisut Kalle ja Anne tekivät fysikaalisia kokeita liukkaalla vaakasuoralla jäällä.

Lisätiedot

Palaset irroittaa toisistaan voidaan järjestää uudestaan siten, että ne muodostavat seuraavan laisen

Palaset irroittaa toisistaan voidaan järjestää uudestaan siten, että ne muodostavat seuraavan laisen Seeia Torstai. 8. 000 iboacci lukujoolla tarkoitetaa jooa, joka. ja. luku ovat ykkösiä, ja uut luvut saadaa laskealla kaksi edellistä lukua yhtee. Se o saaut iesä 00 luvulla eläee iboaccicsi kutsutu Leoardo

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

Tiedot kahdella suuttimella

Tiedot kahdella suuttimella Vyr-36 on kasteluun tarkoitettu uovinen sadetin. Jousi ja akseli ovat ruostuatonta terästä. Vakiona sadettiessa on suuttiet 4,4 ja 2,4. Sadetin kiinnitetään kelkkaan R ¾ ulkokierteestään. Vyr-36:ssa on

Lisätiedot

Keskijännitejohdon jännitteen alenema

Keskijännitejohdon jännitteen alenema Keskijäitejohdo jäittee aleea Kiviraa johtolähtö Ei ole ieltä laskea jäittee aleeaa pääuutajalta asti vaa lasketaa se P097: ltä. Xpoweri ukaa jäite uutaolla P097 o 0575,8V. Jäitteealeea uutao P097-P157

Lisätiedot

Luento 15: Ääniaallot, osa 2

Luento 15: Ääniaallot, osa 2 Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa

Lisätiedot

Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):

Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava): TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a

Lisätiedot

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät

FY3: Aallot. Kurssin arviointi. Ryhmätyöt ja Vertaisarviointi. Itsearviointi. Laskennalliset ja käsitteelliset tehtävät FY3: Aallot Laskennalliset ja käsitteelliset tehtävät Ryhmätyöt ja Vertaisarviointi Itsearviointi Kurssin arviointi Kurssin arviointi koostuu seuraavista asioista 1) Palautettavat tehtävät (20 %) 3) Itsearviointi

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

RATKAISUT: Kertaustehtävät

RATKAISUT: Kertaustehtävät Physia 8 painos (5) Krtausthtävät : Krtausthtävät Luku Aallonpituus alu on 5 n < 45 n Irrotustyö siuissa on,8 V Fotonin nrgiat ovat väliltä Lasktaan suurin liik-nrgia E E W kax fax in 4, 9597 V,8 V 3,597

Lisätiedot

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet. a) ristid, puolijohtid ja talli tyypillist rgiakaistaraktt. i) NRGIAKAISTAT: (lktroi sallitut rgiatilat) Kaksiatoi systi: pottiaalirgia atoi väliatka fuktioa pot rpulsiivi kopotti -lktroit hylkivät toisiaa

Lisätiedot

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.

3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta. 3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.

Lisätiedot

Kertaustehtäviä ) 2. E = on suoraan verrannollinen nopeuden toiseen potenssiin. 9,6 m/s. 1. c 2. b 3. b 4. c 5. b 6. c 7. d 8. a 9. b 10.

Kertaustehtäviä ) 2. E = on suoraan verrannollinen nopeuden toiseen potenssiin. 9,6 m/s. 1. c 2. b 3. b 4. c 5. b 6. c 7. d 8. a 9. b 10. Kertaustehtäviä. c. b 3. b 4. c 5. b 6. c 7. d 8. a 9. b. c. c) Läpötila on T = ( + 73) K = 6 K.. b) Sukellusveneen sisällä on noraali ilanpaine, joka on likiain yhtä suuri kuin ilanpaine eren pinnalla.

Lisätiedot

Liikemäärä ja törmäykset

Liikemäärä ja törmäykset Liikeäärä a töräykset Haarto & Karhunen www.turkuak.fi Suureita Kaaleen liikeäärä: Vektorisuure Voidaan ilaista koonenttiuodossa,, x x y y z z Voian antaa iulssi: I Aiheuttaa liikeäärän uutoksen Vektorisuure

Lisätiedot

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

BK80A2500 Dynamiikka II (5 ECTC), tentti (2) Professori Jussi Sopanen, Konetekniikka / LUT School of Energy Systems

BK80A2500 Dynamiikka II (5 ECTC), tentti (2) Professori Jussi Sopanen, Konetekniikka / LUT School of Energy Systems BK8A5 Dyaiikka II (5 ECC), tetti 3.11.15 1 () Pofessoi Jussi Sopae, Koetekiikka / LU School of Eegy Systes etissä ei saa olla ukaa oheisateiaalia! Laskiie käyttö sallittu (yös ohjeloitavat laskiet). 1.

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka syksy 2010

MAOL-Pisteitysohjeet Fysiikka syksy 2010 MAOL-Pisteitysohjeet Fysiikka syksy 00 Tyypillisten irheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuirhe -/3 p - laskuirhe, epäielekäs tulos, ähintään - - astauksessa yksi erkitseä

Lisätiedot

TIIVISTELMÄRAPORTTI (SUMMARY REPORT)

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) 2012/MAT814 ISSN 1797-3457 (vekkojulkaisu) ISBN (PDF) 978-951-25-2408-2 TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Vaiheistettu heijastipita valemaalia Joha Ste, Päivi Koivisto, Ato Hujae, Tommi Dufva, VTT,

Lisätiedot

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin

LUT, Sähkötekniikan osasto. 1. Ilmassa etenevällä tasoaallolla on sähkökentän voimakkuus z. d) vaihekerroin SÄHKÖMAGNETISMI LUT, Sähkötekniikan osasto LH5/216 P.I. Ketausta: 1. Ilassa etenevällä tasoaallolla on sähkökentän voiakkuus z t E cos t z Ex,. Aallon taajuus on 2 MHz. Kuvassa 1 on esitetty tasoaallon

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa

Lisätiedot

FY9 Fysiikan kokonaiskuva

FY9 Fysiikan kokonaiskuva FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin

Lisätiedot

Energia bittiä kohden

Energia bittiä kohden TLT-54/4u Energia ittiä kohden Kirjallisuudessa (ja muutenkin) on usein tapana käyttää S/ suhteen sijasta suuretta (syy seliää tarkemmin hetken päästä ) E missä - E on hyötysignaalienergia ittiä kohden

Lisätiedot

1.5 Tasaisesti kiihtyvä liike

1.5 Tasaisesti kiihtyvä liike Jos pudotat lyijykuulan aanpinnan läheisyydessä, sen vauhti kasvaa joka sekunti noin 9,8 etrillä sekunnissa kunnes törää aahan. Tai jos suoritat autolla lukkojarrutuksen kuivalla asvaltilla jostain kohtuullisesta

Lisätiedot

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1

Luku 6 Kysyntä. > 0, eli kysyntä kasvaa, niin x 1. < 0, eli kysyntä laskee, niin x 1 40 Luku 6 Kysyntä Edellisessä luvussa näie, että ratkaisealla kuluttajan valintaongelan pitäällä paraetrit (p, p, ) yleisinä, saae eksplisiittisen kysyntäfunktion kuallekin hyödykkeelle. Ilaisie kysyntäfunktiot

Lisätiedot

Uutuus! 1. VALAISINPYLVÄIDEN JALUSTAT Pylvään kiinnitys säätöpulteilla. Suojakumit sivulla 5.

Uutuus! 1. VALAISINPYLVÄIDEN JALUSTAT Pylvään kiinnitys säätöpulteilla. Suojakumit sivulla 5. Luja-PYLVÄSJALUSTAt 1. VALAISINPYLVÄIDEN JALUSTAT Pylvään kiinnitys säätöpulteilla. Suojakuit sivulla 5. 2 3 SÄÄTÖ- PULTIT M16 kpl DT 3 DL 3 PAINO RBJ - 2B 4607215 100-143 1-4 700 430 40 50 310 260 155

Lisätiedot

WTC-tornien painovoimaisen romahtamisen yksinkertaistettu luonnontieteellinen

WTC-tornien painovoimaisen romahtamisen yksinkertaistettu luonnontieteellinen TkT Heikki Kurttila 6.4.5 Päiitys 9.5.5: Vastauksia imim. Totuudelle (jutu lopussa) WTC-torie paiooimaise romatamise yksikertaistettu luootieteellie tarkastelu NISTi loppuraporttia odotellessa Tausta Ydysaltai

Lisätiedot

YLEINEN AALTOLIIKEOPPI

YLEINEN AALTOLIIKEOPPI YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen

Lisätiedot

2.1 Ääni aaltoliikkeenä

2.1 Ääni aaltoliikkeenä 2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

Trigonometriset funktiot

Trigonometriset funktiot Peruskäsitteet Y-peilaus X-peilaus Pistepeilaus Muistikulmat Muistikolmio 1 Muistikolmio 2 Jaksollisuus Esimerkki 5.A Esimerkki 5.B1 Esimerkki 5.B2 Esimerkki 5C.1 Esimerkki 5C.2 (1/2) (2/2) Muunnelmia

Lisätiedot

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b) MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon

Lisätiedot

16 Ääni ja kuuleminen

16 Ääni ja kuuleminen 16 Ääni ja kuuleminen Ääni on väliaineessa etenevää pitkittäistä aaltoliikettä. Ihmisen kuuloalue 20 Hz 20 000 Hz. (Infraääni kuuloalue ultraääni) 1 2 Ääniaallon esittämistapoja: A = poikkeama-amplitudi

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Kuuloaisti. Korva ja ääni. Melu

Kuuloaisti. Korva ja ääni. Melu Kuuloaisti Ääni aaltoliikkeenä Tasapainoaisti Korva ja ääni Äänen kulku Korvan sairaudet Melu Kuuloaisti Ääni syntyy värähtelyistä. Taajuus mitataan värähtelyt/sekunti ja ilmaistaan hertseinä (Hz) Ihmisen

Lisätiedot

Eräitä kliinisen farmakologian peruskysymyksiä

Eräitä kliinisen farmakologian peruskysymyksiä 64. Eräitä kliinisen farakologian peruskysyyksiä Eräitä kliinisen farakologian peruskysyyksiä Iän vaikutus Vastasyntyneet ja pikkulapset Vastasyntyneillä ruoansulatuskanavan rakenne ja toiinnat ovat kypsyättöiä

Lisätiedot

3. ENERGIA. E o =mv 2 = 4, J (3.1)

3. ENERGIA. E o =mv 2 = 4, J (3.1) 3. NRGIA Hiukkasfysiikan energiat ovat aivan eri asioita ja erilaisia iliöitä kuin akroskooppisen fysiikan energiat. Siten esierkiksi äänihiukkaset ja valohiukkaset saavat nopeutensa ypäröivistä kentistä

Lisätiedot

Aaltoliike ajan suhteen:

Aaltoliike ajan suhteen: Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

SIILINJÄRVEN KUNTA PYÖREÄLAHDEN ASEMAKAAVA, MELUSELVITYS

SIILINJÄRVEN KUNTA PYÖREÄLAHDEN ASEMAKAAVA, MELUSELVITYS Vastaanottaja Siilinjärven kunta Asiakirjatyyppi Meluselvitys Päivääärä 13.10.2014 SIILINJÄRV KUNTA PYÖREÄLAHD ASEMAKAAVA, RISUHARJUN ASEMAKAAVA SIILINJÄRV KUNTA Päivääärä 13.10.2014 Laatija Jari Hosiokangas

Lisätiedot

EMC Säteilevä häiriö

EMC Säteilevä häiriö EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä

Lisätiedot

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT 3.0.07 0 π TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT π = π 3π π = π 5π 6π = 3π 7π TRIGONOMETRISET FUNKTIOT, MAA7 Tarkastellaan aluksi sini-funktiota ja lasketaan sin :n arvoja, kun saa arvoja 0:sta 0π :ään

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

MAOL-Pisteitysohjeet Fysiikka kevät 2011

MAOL-Pisteitysohjeet Fysiikka kevät 2011 MAOL-Pisteitysohjeet Fysiikka kevät 0 Tyypillisten virheiden aiheuttaia pisteenetyksiä (6 pisteen skaalassa): - pieni laskuvirhe -/3 p - laskuvirhe, epäielekäs tulos, vähintään - - vastauksessa yksi erkitsevä

Lisätiedot

KOHINA KULMAMODULAATIOISSA

KOHINA KULMAMODULAATIOISSA OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä.

Lisätiedot

ENE-C3001 Energiasysteemit

ENE-C3001 Energiasysteemit ENE-C300 Energiasysteeit Mikä on energiasysteei? Kari Alanne Mikä on energiasysteei? Lähtökohtana on terodynaainen systeei eli ypäristöstä taserajalla erotettu kokonaisuus, josta tietoa kerätään ja jossa

Lisätiedot

- menetelmän pitää perustua johonkin standardissa ISO 140-5 esitetyistä menetelmistä

- menetelmän pitää perustua johonkin standardissa ISO 140-5 esitetyistä menetelmistä RAKENNUKSEN ULKOVAIPAN ÄÄNENERISTYSTÄ KOSKEVAN ASEMAKAAVAMÄÄRÄYKSEN TOTEUTUMISEN VALVONTA MITTAUKSIN Mikko Kylliäie, Valtteri Hogisto 2 Isiööritoimisto Heikki Helimäki Oy Piikatu 58 A, 3300 Tampere mikko.kylliaie@helimaki.fi

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio):

Linssin kuvausyhtälö (ns. ohuen linssin approksimaatio): Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta

Lisätiedot

Putkisillat. Tekninen katalogi SISÄLLYSLUETTELO

Putkisillat. Tekninen katalogi SISÄLLYSLUETTELO RUMCOR-putkisillat 2 SISÄLLYSLUETTELO SIVU TOIMITUSJOHTAJAN ALKUSANAT 3 RUMCOR-PUTKISILLAT 4 OIKEA SILTA OIKEAAN PAIKKAAN 5 VESISTÖSILLAN VALINTA 6 ALIKULUN VALINTA 7 LUJUUSARVOT 8 TAIVUTUSKAPASITEETTI

Lisätiedot

RATKAISUT: 7. Gravitaatiovoima ja heittoliike

RATKAISUT: 7. Gravitaatiovoima ja heittoliike Phyica 9. paino () 7. Gaitaatiooia ja heittoliike : 7. Gaitaatiooia ja heittoliike 7. a) Gaitaatiooia aikuttaa kaikkien kappaleiden älillä. Gaitaatiooian uuuu iippuu kappaleiden aoita ja niiden älietä

Lisätiedot

Melulukukäyrä NR=45 db

Melulukukäyrä NR=45 db Rakenteiden ääneneristävyys LEVYRAKENTEET 1..013 LUT CS0A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Melulukukäyrä NR=45 db Taajuus mitattu Lin. A-painotus A-taso 63 Hz 61 db 6 db= 35 db 15 Hz 50 db 16

Lisätiedot