Teddy 2. välikoe kevät 2008

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Teddy 2. välikoe kevät 2008"

Transkriptio

1 Teddy 2. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin? Perustele. a) Nollannen kertaluvun reaktiossa puoliintumisaika ei riipu lähtöaineen määrästä. b) Reaktion nopeutta ei voida selvittää tuntematta reaktiomekanismia. c) Kun lämpötilaa kasvatetaan, reaktiot tavallisesti nopeutuvat ja siten tuotteiden lopullinen saanto suurenee. d) Jos puhtaan aineen A höyrynpaine on pienempi kuin puhtaan aineen B höyrynpaine, näiden ideaalisessa seoksessa paineen kasvattaminen vakiolämpötilassa aiheuttaa sen, että A:n mooliosuus nesteessä pienenee. e) Maxwellin nopeusjakauman avulla voidaan selvittää suurin nopeus, jolla jonkin kaasun molekyylit voivat liikkua tietyssä lämpötilassa. f) Kun 0,1 moolia natriumkloridia liuotetaan 500 millilitraan vettä (K f = 1,86 K kg mol 1 ), veden jäätymispiste alenee noin 0,4 astetta. g) Liuoksessa diffuusion rajoittama reaktio on nopeampi kuin aktivoitumisen rajoittama reaktio. h) Michaelisin ja Mentenin mekanismissa tuotteiden muodostumisnopeus on suoraan verrannollinen substraatin alkupitoisuuteen, kun tämä pitoisuus on suuri. (8 1 2 p. = 4 p.) 2. Kaasufaasireaktiota 2 A + B 3 C + 2 D tutkittaessa havaittiin, että kun 1,00 moolia A:ta, 2,00 moolia B:tä ja 1,00 moolia D:tä sekoitettiin ja annettiin syntyä tasapaino 25 C:ssa, muodostuneessa seoksessa oli 0,90 moolia C:tä kokonaispaineen ollessa 1,00 baaria. Laske a) jokaisen aineen mooliosuus tasapainossa, b) K x, c) K ja d) r G. (4 p.) 3. a) Mikä on Henryn laki ja milloin se pätee? b) Selitä Henryn lain avulla, miksi Ollin kolajuoma väljähtyy avatussa pullossa. c) Mitä on osmoosi? Miten sen avulla voidaan määrittää yhdisteen moolimassa? (5 p.) 4. a) Mitä vakiotilaolettamuksessa oletetaan? b) Bromin ja metaanin välistä reaktiota kuvaa reaktioyhtälö Br 2 + CH 4 CH 3 Br + HBr. Reaktiolle on esitetty seuraava mekanismi (M on jokin reaktioseoksen molekyyli): Br 2 + M 2 Br + M (1) CH 4 + Br HBr + CH 3 (2) Br 2 + CH 3 CH 3 Br + Br (3) HBr + CH 3 CH 4 + Br (4) 2 Br + M Br 2 + M (5) Käytä vakiotilaolettamusta ja johda mekanismin pohjalta reaktion nopeuslaiksi v = k1/2 1 k 2 [Br 2 ] 1/2 [CH 4 ] k 4 [HBr] 5 k 3 [Br 2 ] + 1 c) Mikä on nopeuslain mukaan reaktion kokonaiskertaluku? Mikä kokonaiskertaluvun voidaan nopeuslain perusteella arvioida olevan, kun reaktio on lähellä loppuaan? Oletetaan, että k 3 k 4. (5 p.)

2 Teddy 2. välikokeen malliratkaisu kevät a) Väärin. Nollannen kertaluvun reaktion nopeuslaki on v = k. Integroimalla nähdään, että puoliintumisaika riippuu lähtöaineen konsentraatiosta: d[a] [A]0 /2 t1/2 = k d[a] = k 1 [A] [A] 0 = kt 1/2 t 1/2 = [A] 0 2k. b) Väärin. Reaktion nopeutta voidaan mitata esimerkiksi havainnoimalla tuotteen muodostumista, eikä siihen tarvita tietoa reaktiomekanismista eli siitä, minkä alkeisreaktioiden kautta reaktio tapahtuu. Sen sijaan reaktiomekanismien selvittämiseen tarvitaan tietoa reaktionopeuksista. c) Väärin. Saanto on tuotteen määrän suhde siihen määrään, jota tuotetta voisi reaktioyhtälön mukaan enintään syntyä. Jos reaktio on eksoterminen, lämpötilan kasvattaminen siirtää reaktioseoksen tasapainoa lähtöaineiden suuntaan, eli tällöin saanto pienenee. d) Oikein. Koska B:n höyrynpaine on A:n höyrynpainetta suurempi, höyryssä on enemmän B:tä. Kun painetta kasvatetaan, höyryä tiivistyy nesteeseen, ja tästä tiivistyvästä seoksesta on siis suurempi osa B:tä. Siten A:n mooliosuus liuoksessa pienenee, vaikka A:n määrä liuoksessa kasvaakin. (Sama matemaattisesti: Ideaalisessa liuoksessa pätee p A = p A x A ja p B = p B x B. Siten p = p A + p B = p A x A + p B x B = p A x A + p B (1 x A) = p B (p B p A )x A. Kun siis kokonaispainetta p kasvatetaan, on x A :n pienennyttävä (sillä p B p A > 0). e) Väärin. Maxwellin nopeusjakauman avulla voidaan selvittää niiden molekyylien osuus, joiden nopeus on tietyllä välillä. Molekyylien nopeuksilla ei ole jakaumassa mitään ylärajaa, mutta hyvin suurilla nopeuksilla liikkuvien molekyylien osuus on äärimmäisen pieni. f) Väärin. Liuos on laimea, joten jäätymispisteen alenema voidaan laskea kaavalla T = K f b. Liuotessaan yksi mooli natriumkloridia hajoaa kahdeksi mooliksi ioneja. Vettä on 500 millilitraa eli noin 0,5 kilogrammaa. Jäätymispisteen alenemaksi saadaan 2 0,1 mol T = 1,86 K kg mol 1 0,7 K. 0,5 kg g) Väärin. Jos reagoivia aineita on liuoksessa vähän, reaktion pullonkaulana on diffuusio, vaikka reaktiolla olisi jonkinlainen aktivoitumisenergia. Jos taas reagoivia aineita on paljon jos esimerkiksi liuotin osallistuu reaktioon aktivoituminen määrää reaktion nopeuden. Aktivoitumiseen ja diffuusioon taas vaikuttavat lämpötila ja aineet. (Myönnettäköön, että väitteeseen pääsi liian monta vapausastetta.) h) Väärin. Kun substraattia on paljon, reaktionopeutta rajoittaa vain entsyymin määrä. (Tällöin Michaelisin ja Mentenin yhtälö v = k b [E] K m /[S] 0 sievenee muotoon v = k b [E] 0.) 2. Katso kahdeksannen laskuharjoituksen malliratkaisu. 3. a) Henryn lain mukaan liuenneen aineen höyrynpaine on suoraan verrannollinen aineen mooliosuuteen liuoksessa: p B = K B x B. Se pätee, kun liuenneen aineen pitoisuus on pieni.

3 b) Henryn lain mukaan kaasu liukenee nesteeseen sitä paremmin, mitä suurempi sen osapaine on. Kolajuomaa pullotettaessa hiilidioksidin osapaine on paljon suurempi kuin ilmassa, jotta juomasta saadaan hapokasta (liuennut hiilidioksidi muodostaa kemiallisen tasapainon hiilihapon kanssa). Kun pullo avataan, hiilidioksidia vapautuu huoneilmaan, kunnes sen mooliosuus vastaa Ollin vaatimuksia tai liuennut hiilidioksidi on Henryn lain mukaisessa tasapainossa ilman hiilidioksidin kanssa. c) Osmoosi on liuottimen spontaania siirtymistä väkevämmän liuoksen suuntaan puoliläpäisevän kalvon läpi. Kalvo läpäisee liuotinmolekyylit mutta ei liunneita aineita. Yhdisteen moolimassa voidaan selvittää liuottamalla yhdistettä nesteeseen ja mittaamalla osmoottinen paine (esimerkiksi hydrostaattisen paineen avulla). Osmoottisen paineen yhteyden konsentraatioon antaa van t Hoffin yhtälö Π = [B]RT (tai sen kehitelmä). Konsentraatio on ainemäärä jaettuna tilavuudella ja ainemäärä on massa jaettuna moolimassalla. Tekemällä mittauksia eri määrillä yhdistettä, voidaan sovittaa suora, jonka avulla saadaan selville moolimassa. 4. a) Vakiotilaolettamuksen mukaan välituotteiden pitoisuudet muuttuvat reaktiossa merkityksettömän vähän, lukuun ottamatta aivan alkua, jolloin välituotteita vasta alkaa muodostua. b) Reaktionopeus on CH 3 Br:n suhteen (sama lopputulos saadaan, vaikka laskettaisiin Br 2 :n, CH 4 :n tai HBr:n suhteen) v = d[ch 3Br] = k 3 [Br 2 ][CH 3 ]. Vakiotilaolettamuksen perusteella: d[br ] = 2k 1 [Br 2 ][M] k 2 [CH 4 ][Br ]+k 3 [Br 2 ][CH 3 ]+k 4 [HBr][CH 3 ] 2k 5 [Br ] 2 [M] = 0, d[ch 3 ] = k 2 [CH 4 ][Br ] k 3 [Br 2 ][CH 3 ] k 4 [HBr][CH 3 ] = 0. Lasketaan yhtälöt puolittain yhteen ja ratkaistaan [Br ]: 2k 1 [Br 2 ][M] 2k 5 [Br ] 2 [M] = 0 [Br ] = k1/2 1 Sijoittamalla tämä CH 3 :n vakiotilayhtälöön saadaan: Nopeuslaiksi tulee: 5 [CH 3 ] = k1/2 1 k 2 [Br 2 ] 1/2 [CH 4 ] 5 (k 3 [Br 2 ] + k 4 [HBr]). v = k 3 [Br 2 ][CH 3 ] = k1/2 1 k 2 k 3 [Br 2 ] 3/2 [CH 4 ] 5 (k 3 [Br 2 ] + k 4 [HBr]) = k 1/2 1 k 2 5 [Br 2 ] 1/2. [Br 2 ] 1/2 [CH 4 ] k 4 [HBr] k 3 [Br 2 ] + 1. c) Jos nopeuslaki on muotoa v = k[a] a [B] b, reaktion kokonaiskertaluku on a + b +. Tehtävän nopeuslaki ei ole tätä muotoa, joten sille ei voi laskea kokonaiskertalukua. Kun reaktio etenee loppua kohti HBr:n pitoisuus kasvaa selvästi suuremmaksi kuin Br 2 :n pitoisuus. Koska lisäksi k 3 k 4, niin k 4 [HBr] k 3 [Br 2 ] 1 ja nopeuslaista tulee v = k1/2 1 k 2 k 3 [Br 2 ] 3/2 [CH 4 ] k 4. [HBr] 5 Tämän nopeuslain mukainen kokonaiskertaluku on = 3 2.

4 Teddy 2. välikokeen uusinta kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin? Perustele. a) Vakiotilaolettamuksessa välituotteiden määrä arvioidaan nollaksi. b) Osmoottinen paine riippuu suuresti liuenneen aineen ominaisuuksista. c) Vipusäännön avulla voidaan arvioida kahden aineen seoksessa olevien faasien suhteellista osuutta. d) Yhtälö µ A = µ A + RT ln x A pätee kaikille liuoksille. e) Maxwellin nopeusjakauman f(v) = 4π ( M 2πRT ) 3/2 v 2 e Mv2 /2RT mukaan erittäin pienillä nopeuksilla liikkuvien molekyylien osuus on hyvin pieni. f) Kun 0,1 moolia natriumkloridia liuotetaan 500 millilitraan vettä (K b = 0,51 K kg mol 1 ), veden kiehumispiste alenee noin 0,1 astetta. g) Törmäysteoriassa kahden molekyylin välisen alkeisreaktion nopeusvakio pystytään selvittämään, kun tiedetään kaksi asiaa: törmäystaajuus ja molekyylien keskinäinen suuntautuminen. h) Langmuirin isotermi kuvaa siirtymätilaa vakiolämpötilassa. (8 1 2 p. = 4 p.) 2. A:n ja B:n muodostaman liuoksen kiehumispiste on 88 C, kun x A = 0,6589. Tässä lämpötilassa puhtaan A:n ja B:n höyrynpaineet ovat 127,6 kpa ja 50,60 kpa. a) Onko liuos ideaalinen? b) Mikä on liuoksen yläpuolella olevan höyryn koostumus kiehumisen alkaessa? (4 p.) 3. a) Miten reaktion Gibbsin energiasta nähdään, että reaktio on tasapainossa? b) Miten paine vaikuttaa tasapainovakioon ja reaktioseoksen tasapainokoostumukseen? c) Mikä on Le Chatelier n periaate? Anna kaksi esimerkkiä. (5 p.) 4. a) Mitä tarkoittaa ensimmäisen kertaluvun reaktio? b) Seuraavassa taulukossa on bromin puoliintumisaikoja bromin ja asetonin välisessä reaktiossa, jossa käytetään happokatalyyttia. Määritä reaktion nopeuslaki (kertaluvut kunkin aineen suhteen ovat kokonaislukuja). [Br 2 ] 0 /(µmol dm 3 ) [C 3 H 6 O] 0 /(mmol dm 3 ) [H + ] 0 /(mol dm 3 ) t 1/2 /s 1,20 3,0 0, ,50 3,0 0, ,50 1,0 0, ,50 0,4 0, ,50 3,0 0, ,50 3,0 0, c) Laske mittaustuloksista nopeuslain mukaisen nopeusvakion keskiarvo. (5 p.)

5 Teddy 2. välikokeen uusinnan malliratkaisu 1. a) Väärin. Vakiotilaolettamuksessa välituotteiden määrä arvioidaan vakioksi ja siten välituotteiden määrän muutosnopeus on nolla. b) Väärin. Osmoottinen paine luetaan kolligatiivisiin ominaisuuksiin, eli se riippuu lähinnä liuenneen aineen määrästä. c) Oikein. Vipusäännön (n α l α = n β l β ) mukaan kahden faasin alueessa faasien suhteellinen osuus (n α /n β ) riippuu siitä, kuinka lähellä ollaan yhden faasin rajoja (l α ja l β ). d) Väärin. Yhtälö pätee ideaalisille liuoksille. e) Oikein. Kun v 0, niin f(v) 0, sillä polynomi v 2 lähestyy nollaa ja eksponenttifunktio lähestyy ykköstä. Koska nopeusjakauma lähestyy nollaa, erittäin pienillä nopeuksilla liikkuvia molekyylejä on hyvin vähän. f) Väärin. Liuennut aine nostaa kiehumispistettä. g) Väärin. Lisäksi täytyy tietää reaktioon tarvittava aktivoitumisenergia. h) Väärin. Langmuirin isotermi kertoo, miten pinnan peittoaste riippuu adsorboituvan kaasun paineesta. 2. Katso seitsemännen laskuharjoituksen malliratkaisu. 3. a) Tasapainossa reaktion Gibbsin energia on nolla ( r G = 0). b) Tasapainovakio K ei riipu paineesta, koska r G = RT ln K ja r G on määritelty standardipaineessa. Jos painetta kasvatetaan lisäämällä reaktioseokseen inerttiä kaasua, seoksen tasapainokoostumus ei muutu, sillä kaasujen osapaineet pysyvät samoina (kun kaasut oletetaan ideaalisiksi). Jos painetta muutetaan seoksen tilavuutta säätämällä, osapaineet muuttuvat. Tasapainovakio pysyy samana, joten kaasujen määrä muuttuu tai on muuttumatta tasapainovakion mukaisesti. Jos painetta esimerkiksi kasvatetaan, tasapaino siirtyy siihen suuntaan, jossa kaasumaisia aineita on vähemmän. c) Le Chatelier n periaate: kun tasapainossa olevaa systeemiä häiritään, systeemi siirtyy sellaiseen suuntaan, joka minimoi häiriön vaikutuksen. Kun esimerkiksi reaktioastian tilavuutta pienennetään, systeemi siirtyy kaasumaisten aineiden määrää vähentävään ja siten paineen kasvua pienentävään suuntaan. Lämpötilan kasvattaminen taas siirtää tasapainoa lämpöä sitovaan eli endotermiseen suuntaan. 4. a) Ensimmäisen kertaluvun reaktiossa reaktionopeus on suoraan verrannollinen konsentraation ensimmäiseen potenssiin: d[a] = k[a]. b) Bromia on selvästi vähemmän kuin asetonia ja happoa, joten näiden pitoisuuksien voidaan ajatella pysyvän suunnilleen vakioina. Nopeuslaki on siis näennäisesti muotoa v = k 0 [Br 2 ] m. Ensimmäisen ja toisen rivin tulosten perusteella 25 prosentin lisäys bromin määrässä aiheuttaa 4 prosentin muutoksen puoliintumisaikaan. Puoliintumisaika on siis mittaustarkkuuden rajoissa vakio ja reaktio on ensimmäistä kertalukua bromin suhteen.

6 Toista ja kolmatta riviä vertaamalla nähdään, että kun asetonin määrä kolminkertaistetaan ja muut alkupitoisuudet pidetään vakioina, bromin puoliintumisaika putoaa suunnilleen kolmannekseen. Reaktionopeus siis kolminkertaistuu, eli reaktionopeus on suoraan verrannollinen asetonin konsentraatioon. Sama asia nähdään kolmannelta ja neljänneltä riviltä (tällöin muutos on 2,5-kertainen). Kahden viimeisen rivin perusteella hapon määrä ei vaikuta reaktionopeuteen. (Syynä ei ole se, että happo toimii katalyyttinä. Jos bromia olisi paljon, reaktiota rajoittaisi asetonin protolysoituminen ja nopeuslaki olisi hapon suhteen ensimmäistä kertalukua.) Reaktion nopeuslaki on siis v = k[br 2 ][C 3 H 6 O]. c) Verrattaessa nopeuslakia näennäiseen nopeuslakiin v = k 0 [Br 2 ] nähdään, että k = k 0 [C 3 H 6 O]. Asetonin konsentraatio pysyy suunnilleen samana ja ensimmäisen kertaluvun reaktiossa k 0 = ln 2/t 1/2, joten ensimmäiseltä riviltä saadaan: k = ln 2 t 1/2 [C 3 H 6 O] 0 = ln 2 24 s 3, mol dm 3 9,627 dm3 mol 1 s 1. Lasketaan nopeusvakiot viideltä muulta riviltä ja otetaan keskiarvo: 2 9, , , ,790 6 dm 3 mol 1 s 1 9,82 dm 3 mol 1 s 1.

Luento 9 Kemiallinen tasapaino CHEM-A1250

Luento 9 Kemiallinen tasapaino CHEM-A1250 Luento 9 Kemiallinen tasapaino CHEM-A1250 Kemiallinen tasapaino Kaksisuuntainen reaktio Eteenpäin menevän reaktion reaktionopeus = käänteisen reaktion reaktionopeus Näennäisesti muuttumaton lopputilanne=>

Lisätiedot

Tasapainotilaan vaikuttavia tekijöitä

Tasapainotilaan vaikuttavia tekijöitä REAKTIOT JA TASAPAINO, KE5 Tasapainotilaan vaikuttavia tekijöitä Fritz Haber huomasi ammoniakkisynteesiä kehitellessään, että olosuhteet vaikuttavat ammoniakin määrään tasapainoseoksessa. Hän huomasi,

Lisätiedot

Luku 8. Reaktiokinetiikka

Luku 8. Reaktiokinetiikka Luku 8 Reaktiokinetiikka 234 8.1 Reaktion nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista

Lisätiedot

Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen

Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen KEMA221 2009 YKSINKERTAISET SEOKSET ATKINS LUKU 5 1 YKSINKERTAISET SEOKSET Gibbsin energia ja kemiallinen potentiaali määräävät seosten käyttäytymisen Seoksia voidaan tarkastella osittaisten moolisuureitten

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä):

Tehtävä 1. Tasapainokonversion laskenta Χ r G-arvojen avulla Alkyloitaessa bentseeniä propeenilla syntyy kumeenia (isopropyylibentseeniä): CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 10/017 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa E409 Kemiallinen tasapaino Tehtävä 1. Tasapainokonversion

Lisätiedot

Luku 21. Kemiallisten reaktioiden nopeus

Luku 21. Kemiallisten reaktioiden nopeus Luku 21. Kemiallisten reaktioiden nopeus Reaktiokinetiikka tarkastelee reaktioiden nopeuksia (vrt. termodynamiikka) reaktionopeus = konsentraation muutos aikayksikössä Tarkastellaan yksinkertaista tasapainoreaktiota:

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT

Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta Insinöörivalinnan kemian koe MALLIRATKAISUT Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT 1 a) Vaihtoehto B on oikein. Elektronit sijoittuvat atomiorbitaaleille kasvavan

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT JA PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei

Lisätiedot

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe

Kemian koe kurssi KE5 Reaktiot ja tasapaino koe Kemian koe kurssi KE5 Reaktiot ja tasapaino koe 1.4.017 Tee kuusi tehtävää. 1. Tämä tehtävä koostuu kuudesta monivalintaosiosta, joista jokaiseen on yksi oikea vastausvaihtoehto. Kirjaa vastaukseksi numero-kirjainyhdistelmä

Lisätiedot

Teddy 7. harjoituksen malliratkaisu syksy 2011

Teddy 7. harjoituksen malliratkaisu syksy 2011 Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin

Lisätiedot

Luku 2. Kemiallisen reaktion tasapaino

Luku 2. Kemiallisen reaktion tasapaino Luku 2 Kemiallisen reaktion tasapaino 1 2 Keskeisiä käsitteitä 3 Tasapainotilan syntyminen, etenevä reaktio 4 Tasapainotilan syntyminen 5 Tasapainotilan syntyminen, palautuva reaktio 6 Kemiallisen tasapainotilan

Lisätiedot

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio.

Esimerkiksi ammoniakin valmistus typestä ja vedystä on tyypillinen teollinen tasapainoreaktio. REAKTIOT JA TASAPAINO, KE5 REAKTIOTASAPAINO Johdantoa: Usein kemialliset reaktiot tapahtuvat vain yhteen suuntaan eli lähtöaineet reagoivat keskenään täydellisesti reaktiotuotteiksi, esimerkiksi palaminen

Lisätiedot

Teddy 10. harjoituksen malliratkaisu syksy 2011

Teddy 10. harjoituksen malliratkaisu syksy 2011 Teddy. harjoituksen malliratkaisu syksy 2. Tarkastellaan reaktioketjua k O 3 O2 +O () O 2 +O k O 3 (2) O 3 +O k 2 O 2 +O 2 (3) Vakiotilaolettamuksen mukaan välituotteen konsentraatio pysyy vakiona lyhyen

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin?

kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin? Esimerkki: Mihin suuntaan etenee reaktio CO (g) + H 2 O (g) CO 2 (g) + H 2 (g), K = 0,64, kun hiilimonoksidia ja vettä oli 0,0200 M kumpaakin ja hiilidioksidia ja vetyä 0,0040 M kumpaakin? 1 Le Châtelier'n

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio

luku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

CHEM-A1250 Luento

CHEM-A1250 Luento CHEM-A1250 Luento 5 Tasapainot 1: Olomuodot ja seokset Johdanto Kemialliseen tasapainoon Olomuodon määräytyminen Kuinka voimakkaat vuorovaikutukset ilmenevät Vetovoimat lähentävät, lämpöliike liikuttaa

Lisätiedot

JÄÄTYMISPISTEEN ALENEMA Johdanto. 2 Termodynaaminen tausta

JÄÄTYMISPISTEEN ALENEMA Johdanto. 2 Termodynaaminen tausta JÄÄTYMISPISTEEN ALENEMA 2-2010 1 Johdanto Kolligatiiviset ominaisuudet ovat liuosten ominaisuuksia, jotka riippuvat ainoastaan liuotetun aineen määrästä (konsentraatiosta) ei sen laadusta. Kolligatiivisia

Lisätiedot

Seoksen pitoisuuslaskuja

Seoksen pitoisuuslaskuja Seoksen pitoisuuslaskuja KEMIAA KAIKKIALLA, KE1 Analyyttinen kemia tutkii aineiden määriä ja pitoisuuksia näytteissä. Pitoisuudet voidaan ilmoittaa: - massa- tai tilavuusprosentteina - promilleina tai

Lisätiedot

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli

Lisätiedot

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006

TKK, TTY, LTY, OY, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 31.5.2006 TKK, TTY, LTY, Y, TY, VY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 1.5.006 1. Uraanimetallin valmistus puhdistetusta uraanidioksidimalmista koostuu seuraavista reaktiovaiheista: (1) U (s)

Lisätiedot

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa

= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa 766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa

Lisätiedot

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I

Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Kemialliset reaktiot ja reaktorit Prosessi- ja ympäristötekniikan perusta I Juha Ahola juha.ahola@oulu.fi Kemiallinen prosessitekniikka Sellaisten kokonaisprosessien suunnittelu, joissa kemiallinen reaktio

Lisätiedot

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.

Lisätiedot

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä.

b) Laske prosentteina, paljonko sydämen keskimääräinen teho muuttuu suhteessa tilanteeseen ennen saunomista. Käytä laskussa SI-yksiköitä. Lääketieteellisten alojen valintakokeen 009 esimerkkitehtäviä Tehtävä 4 8 pistettä Aineistossa mainitussa tutkimuksessa mukana olleilla suomalaisilla aikuisilla sydämen keskimääräinen minuuttitilavuus

Lisätiedot

SISÄLLYSLUETTELO SYMBOLILUETTELO 4

SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 SISÄLLYSLUETTELO SYMBOLILUETTELO 4 1 KEMIALLISESTI REAGOIVA TERMODYNAAMINEN SYSTEEMI 6 11 Yleistä 6 12 Standarditila ja referenssitila 7 13 Entalpia- ja entropia-asteikko 11 2 ENTALPIA JA OMINAISLÄMPÖ

Lisätiedot

Reaktiosarjat

Reaktiosarjat Reaktiosarjat Usein haluttua tuotetta ei saada syntymään yhden kemiallisen reaktion lopputuotteena, vaan monen peräkkäisten reaktioiden kautta Tällöin edellisen reaktion lopputuote on seuraavan lähtöaine

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Bensiiniä voidaan pitää hiilivetynä C8H18, jonka tiheys (NTP) on 0,703 g/ml ja palamislämpö H = kj/mol

Bensiiniä voidaan pitää hiilivetynä C8H18, jonka tiheys (NTP) on 0,703 g/ml ja palamislämpö H = kj/mol Kertaustehtäviä KE3-kurssista Tehtävä 1 Maakaasu on melkein puhdasta metaania. Kuinka suuri tilavuus metaania paloi, kun täydelliseen palamiseen kuluu 3 m 3 ilmaa, jonka lämpötila on 50 C ja paine on 11kPa?

Lisätiedot

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen

Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.

Lämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi. Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole

Lisätiedot

L7 Kaasun adsorptio kiinteän aineen pinnalle

L7 Kaasun adsorptio kiinteän aineen pinnalle CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle Oppimistavoitteet

Lisätiedot

L7 Kaasun adsorptio kiinteän aineen pinnalle

L7 Kaasun adsorptio kiinteän aineen pinnalle CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle 1

Lisätiedot

Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä.

Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. FAASIDIAGRAMMIT Määritelmiä Faasi: Aineen tila, jonka kemiallinen koostumus ja fysikaalinen ominaisuudet ovat homogeeniset koko näytteessä. P = näytteen faasien lukumäärä. Esimerkkejä: (a) suolaliuos (P=1),

Lisätiedot

Törmäysteoria. Törmäysteorian mukaan kemiallinen reaktio tapahtuu, jos reagoivat hiukkaset törmäävät toisiinsa

Törmäysteoria. Törmäysteorian mukaan kemiallinen reaktio tapahtuu, jos reagoivat hiukkaset törmäävät toisiinsa Törmäysteoria Törmäysteorian mukaan kemiallinen reaktio tapahtuu, jos reagoivat hiukkaset törmäävät toisiinsa tarpeeksi suurella voimalla ja oikeasta suunnasta. 1 Eksotermisen reaktion energiakaavio E

Lisätiedot

LUKU 16 KEMIALLINEN JA FAASITASAPAINO

LUKU 16 KEMIALLINEN JA FAASITASAPAINO Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 LUKU 16 KEMIALLINEN JA FAASITASAPAINO Copyright The McGraw-Hill Companies, Inc. Permission required

Lisätiedot

Lämpö- eli termokemiaa

Lämpö- eli termokemiaa Lämpö- eli termokemiaa Endoterminen reaktio sitoo ympäristöstä lämpöenergiaa. Eksoterminen reaktio vapauttaa lämpöenergiaa ympäristöön. Entalpia H kuvaa systeemin sisäenergiaa vakiopaineessa. Entalpiamuutos

Lisätiedot

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]

KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja

Lisätiedot

Ainemäärien suhteista laskujen kautta aineiden määriin

Ainemäärien suhteista laskujen kautta aineiden määriin REAKTIOT JA ENERGIA, KE3 Ainemäärien suhteista laskujen kautta aineiden määriin Mitä on kemia? Kemia on reaktioyhtälöitä, ja niiden tulkitsemista. Ollaan havaittu, että reaktioyhtälöt kertovat kemiallisen

Lisätiedot

KEMIA HYVÄN VASTAUKSEN PIIRTEET

KEMIA HYVÄN VASTAUKSEN PIIRTEET BILÄÄKETIETEEN enkilötunnus: - KULUTUSJELMA Sukunimi: 20.5.2015 Etunimet: Nimikirjoitus: KEMIA Kuulustelu klo 9.00-13.00 YVÄN VASTAUKSEN PIIRTEET Tehtävämonisteen tehtäviin vastataan erilliselle vastausmonisteelle.

Lisätiedot

5 LIUOKSEN PITOISUUS Lisätehtävät

5 LIUOKSEN PITOISUUS Lisätehtävät LIUOKSEN PITOISUUS Lisätehtävät Esimerkki 1. a) 100 ml:ssa suolaista merivettä on keskimäärin 2,7 g NaCl:a. Mikä on meriveden NaCl-pitoisuus ilmoitettuna molaarisuutena? b) Suolaisen meriveden MgCl 2 -pitoisuus

Lisätiedot

(l) B. A(l) + B(l) (s) B. B(s)

(l) B. A(l) + B(l) (s) B. B(s) FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 LIUKOISUUDEN IIPPUVUUS LÄMPÖTILASTA 6. 11. 1998 (HJ) A(l) + B(l) µ (l) B == B(s) µ (s) B FYSIKAALISEN KEMIAN LAUDATUTYÖ N:o 3 1. TEOIAA Kyllästetty liuos LIUKOISUUDEN

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015

Lukion kemia 3, Reaktiot ja energia. Leena Piiroinen Luento 2 2015 Lukion kemia 3, Reaktiot ja energia Leena Piiroinen Luento 2 2015 Reaktioyhtälöön liittyviä laskuja 1. Reaktioyhtälön kertoimet ja tuotteiden määrä 2. Lähtöaineiden riittävyys 3. Reaktiosarjat 4. Seoslaskut

Lisätiedot

Kemian koe, Ke3 Reaktiot ja energia RATKAISUT Perjantai VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

Kemian koe, Ke3 Reaktiot ja energia RATKAISUT Perjantai VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN Kemian koe, Ke3 Reaktiot ja energia RATKAISUT Kannaksen lukio Perjantai 26.9.2014 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN 1. A. Selitä käsitteet ja määritelmät (lyhyesti), lisää tarvittaessa kemiallinen merkintätapa:

Lisätiedot

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen

KE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu

Lisätiedot

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa:

Termodynaamisten tasapainotarkastelujen tulokset esitetään usein kuvaajina, joissa: Lämpötila (Celsius) Luento 9: Termodynaamisten tasapainojen graafinen esittäminen, osa 1 Tiistai 17.10. klo 8-10 Termodynaamiset tasapainopiirrokset Termodynaamisten tasapainotarkastelujen tulokset esitetään

Lisätiedot

1 Eksergia ja termodynaamiset potentiaalit

1 Eksergia ja termodynaamiset potentiaalit 1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian

Lisätiedot

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.

ln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella. S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.

Lisätiedot

1.1 Homogeeninen kemiallinen tasapaino

1.1 Homogeeninen kemiallinen tasapaino 1.1 Homogeeninen kemiallinen tasapaino 1. a) Mitä tarkoittaa käsite kemiallinen tasapaino? b) Miten kemiallinen tasapaino ilmaistaan reaktioyhtälössä? c) Mistä tekijöistä tasapainossa olevan reaktioseoksen

Lisätiedot

KOTITEKOINEN PALOSAMMUTIN (OSA II)

KOTITEKOINEN PALOSAMMUTIN (OSA II) Johdanto KOTITEKOINEN PALOSAMMUTIN (OSA II) Monet palosammuttimet, kuten kuvassa esitetty käsisammutin, käyttävät hiilidioksidia. Jotta hiilidioksidisammutin olisi tehokas, sen täytyy vapauttaa hiilidioksidia

Lisätiedot

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.

Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja

Lisätiedot

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE OHJEITA Valintakokeessa on kaksi osaa: TEHTÄVÄOSA: Ongelmanratkaisu VASTAUSOSA: Ongelmanratkaisu ja Tekstikoe HUOMIOI SEURAAVAA: 1. TEHTÄVÄOSAN tehtävään 7 ja

Lisätiedot

S , Fysiikka III (S) I välikoe Malliratkaisut

S , Fysiikka III (S) I välikoe Malliratkaisut S-4.35, Fysiikka III (S) I välikoe 9.0.000 Malliratkaisut Tehtävä Kuution uotoisessa säiliössä, jonka särän pituus on 0,0, on 3,0 0 olekyyliä happea (O) 300 K läpötilassa. a) Kuinka onta kertaa kukin olekyyli

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. a) Seoksen komponentit voidaan erotella toisistaan kromatografisilla menetelmillä. Mihin kromatografiset menetelmät perustuvat? (2p) Menetelmät perustuvat seoksen osasten erilaiseen sitoutumiseen paikallaan

Lisätiedot

= 84. Todennäköisin partitio on partitio k = 6,

= 84. Todennäköisin partitio on partitio k = 6, S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat

Lisätiedot

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10

Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko klo 8-10 Kertausluennot: Mahdollisuus pisteiden korotukseen ja rästisuorituksiin Keskiviikko 25.10 klo 8-10 Jokaisesta oikein ratkaistusta tehtävästä voi saada yhden lisäpisteen. Tehtävä, joilla voi korottaa kotitehtävän

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen

Lisätiedot

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,

m h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0, 76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti

Lisätiedot

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet

CHEM-A1110 Virtaukset ja reaktorit. Laskuharjoitus 9/2016. Energiataseet CHEM-A1110 Virtaukset ja reaktorit Laskuharjoitus 9/2016 Lisätietoja s-postilla reetta.karinen@aalto.fi tai tiia.viinikainen@aalto.fi vastaanotto huoneessa D406 Energiataseet Tehtävä 1. Adiabaattisen virtausreaktorin

Lisätiedot

Sähkökemian perusteita, osa 1

Sähkökemian perusteita, osa 1 Sähkökemian perusteita, osa 1 Ilmiömallinnus prosessimetallurgiassa Syksy 2015 Teema 4 - Luento 1 Teema 4: Suoritustapana oppimispäiväkirja Tehdään yksin tai pareittain Tehtävät/ohjeet löytyvät kurssin

Lisätiedot

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan 1. Valitse listasta kunkin yhdisteen yleiskielessä käytettävä ei-systemaattinen nimi. (pisteet yht. 5p) a) C-vitamiini b) glukoosi c) etikkahappo d) salisyylihappo e) beta-karoteeni a. b. c. d. e. ksylitoli

Lisätiedot

Luku 5. Yksinkertaiset seokset

Luku 5. Yksinkertaiset seokset Luku 5. Yksinkertaiset seokset Seosten termodynamiikkaan lii5yy joukko par8aalisia moolisuureita Par8aalinen mooli8lavuus kuvaa 8lavuuden muutosta kun mooli aine5a (J) lisätään seokseen " V J = V % $ '

Lisätiedot

KEMIAN MIKROMAAILMA, KE2 VESI

KEMIAN MIKROMAAILMA, KE2 VESI VESI KEMIAN MIKROMAAILMA, KE2 Johdantoa: Vesi on elämälle välttämätöntä. Se on hyvä liuotin, energian ja aineiden siirtäjä, lämmönsäätelijä ja se muodostaa vetysidoksia, jotka tekevät siitä poikkeuksellisen

Lisätiedot

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta

1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta 766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio

Lisätiedot

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ 1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

KOTITEKOINEN PALOSAMMUTIN (OSA 1)

KOTITEKOINEN PALOSAMMUTIN (OSA 1) KOTITEKOINEN PALOSAMMUTIN (OSA 1) Johdanto Monet palosammuttimet, kuten kuvassa esitetty käsisammutin, käyttävät hiilidioksidia. Jotta hiilidioksidisammutin olisi tehokas, sen täytyy vapauttaa hiilidioksidia

Lisätiedot

Väittämä Oikein Väärin. 1 Pelkistin ottaa vastaan elektroneja. x. 2 Tyydyttynyt yhdiste sisältää kaksoissidoksen. x

Väittämä Oikein Väärin. 1 Pelkistin ottaa vastaan elektroneja. x. 2 Tyydyttynyt yhdiste sisältää kaksoissidoksen. x KUPI YLIPIST FARMASEUTTISE TIEDEKUA KEMIA VALITAKE 27.05.2008 Tehtävä 1: Tehtävässä on esitetty 20 väittämää. Vastaa väittämiin merkitsemällä sarakkeisiin rasti sen mukaan, onko väittämä mielestäsi oikein

Lisätiedot

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä

. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

KE5 Kurssikoe Kastellin lukio 2012 Valitse kuusi (6) tehtävää. Piirrä pisteytystaulukko.

KE5 Kurssikoe Kastellin lukio 2012 Valitse kuusi (6) tehtävää. Piirrä pisteytystaulukko. KE5 Kurssikoe Kastellin lukio 01 Valitse kuusi (6) tehtävää. Piirrä pisteytystaulukko. 1. a) Selvitä, mitä tarkoitetaan seuraavilla käsitteillä lyhyesti sanallisesti ja esimerkein: 1) heikko happo polyproottinen

Lisätiedot

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)

- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike) KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:

Lisätiedot

8. Chemical Forces and self-assembly

8. Chemical Forces and self-assembly Luento 10 24.3.2017 1 Kemiallinen potentiaali Sähkökemiallinen potentiaali Kemiallisen reaktion suunta Reaktiokoordinaatti Entsymaattisten reaktioiden kinetiikka Elektro-osmoottiset ilmiöt solukalvolla

Lisätiedot

KEMS448 Fysikaalisen kemian syventävät harjoitustyöt

KEMS448 Fysikaalisen kemian syventävät harjoitustyöt KEMS448 Fysikaalisen kemian syventävät harjoitustyöt Jakaantumislaki 1 Teoriaa 1.1 Jakaantumiskerroin ja assosioituminen Kaksi toisiinsa sekoittumatonta nestettä ovat rajapintansa välityksellä kosketuksissa

Lisätiedot

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä

kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä Matematiikkaa kemisteille, kevät 2013 Ylimääräisiä laskuharjoituksia Tällä laskuharjoituksella voi korottaa laskuharjoituspisteitään, mikäli niitä ei ole riittävästi kurssin läpäisemiseen, tai vaihtoehtoisesti

Lisätiedot

vi) Oheinen käyrä kuvaa reaktiosysteemin energian muutosta reaktion (1) etenemisen funktiona.

vi) Oheinen käyrä kuvaa reaktiosysteemin energian muutosta reaktion (1) etenemisen funktiona. 3 Tehtävä 1. (8 p) Seuraavissa valintatehtävissä on esitetty väittämiä, jotka ovat joko oikein tai väärin. Merkitse paikkansapitävät väittämät rastilla ruutuun. Kukin kohta voi sisältää yhden tai useamman

Lisätiedot

c) Tasapainota seuraava happamassa liuoksessa tapahtuva hapetus-pelkistysreaktio:

c) Tasapainota seuraava happamassa liuoksessa tapahtuva hapetus-pelkistysreaktio: HTKK, TTY, LTY, OY, ÅA / Insinööriosastot Valintakuulustelujen kemian koe 26.05.2004 1. a) Kun natriumfosfaatin (Na 3 PO 4 ) ja kalsiumkloridin (CaCl 2 ) vesiliuokset sekoitetaan keske- nään, muodostuu

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Funktiot ja yhtälöt Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Funktiot ja yhtälöt (MAA) Pikatesti ja kertauskokeet Pikatesti

Lisätiedot

Oppikirjan tehtävien ratkaisut

Oppikirjan tehtävien ratkaisut Oppikirjan tehtävien ratkaisut Liukoisuustulon käyttö 10. a) Selitä, mitä eroa on käsitteillä liukoisuus ja liukoisuustulo. b) Lyijy(II)bromidin PbBr liukoisuus on 1,0 10 mol/dm. Laske lyijy(ii)bromidin

Lisätiedot

SUMUINEN AAMU METALLINKIERRÄTYSLAITOKSELLA

SUMUINEN AAMU METALLINKIERRÄTYSLAITOKSELLA sivu 1/6 KOHDERYHMÄ: Työ on suunniteltu lukion kurssille KE4, jolla käsitellään teollisuuden tärkeitä raaka-aineita sekä hapetus-pelkitysreaktioita. Työtä voidaan käyttää myös yläkoululaisille, kunhan

Lisätiedot

c) Nimeä kaksi alkuainetta, jotka kuuluvat jaksollisessa järjestelmässä samaan ryhmään kalsiumin kanssa.

c) Nimeä kaksi alkuainetta, jotka kuuluvat jaksollisessa järjestelmässä samaan ryhmään kalsiumin kanssa. Kurssikoe KE1.2, Ihmisen ja elinympäristön kemia, ke 6.4. 2016 Vastaa vain kuuteen tehtävään. Jokaisessa tehtävässä maksimi pistemäärä on kuusi pistettä (paitsi tehtävässä 7 seitsemän pistettä). Voit vapaasti

Lisätiedot

Valitse seuraavista joko tehtävä 1 tai 2

Valitse seuraavista joko tehtävä 1 tai 2 PHYS-A0120 Termodynamiikka, syksy 2016 Kotitentti Vastaa tehtäviin 1/2, 3, 4/5, 6/7, 8 ja 9 (yhteensä kuusi vastausta). Tehtävissä 1 ja 2 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla

Lisätiedot

Erilaisia entalpian muutoksia

Erilaisia entalpian muutoksia Erilaisia entalpian muutoksia REAKTIOT JA ENERGIA, KE3 Erilaisille kemiallisten reaktioiden entalpiamuutoksille on omat terminsä. Monesti entalpia-sanalle käytetään synonyymiä lämpö. Reaktiolämmöllä eli

Lisätiedot

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje CHEM-C2230 Pintakemia Tö 2: Etikkahapon orptio aktiivihiileen Töohje 1 Johdanto Kaasun ja kiinteän aineen rajapinnalla tapahtuu leensä kaasun orptiota. Mös liuoksissa tapahtuu usein liuenneen aineen orptiota

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

Seokset ja liuokset. 1. Seostyypit 2. Aineen liukoisuus 3. Pitoisuuden yksiköt ja mittaaminen

Seokset ja liuokset. 1. Seostyypit 2. Aineen liukoisuus 3. Pitoisuuden yksiköt ja mittaaminen Seokset ja liuokset 1. Seostyypit 2. Aineen liukoisuus 3. Pitoisuuden yksiköt ja mittaaminen Hapot, emäkset ja ph 1. Hapot, emäkset ja ph-asteikko 2. ph -laskut 3. Neutralointi 4. Puskuriliuokset Seostyypit

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet

Lisätiedot

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen

Lisätiedot