Laskennallinen data-analyysi II

Koko: px
Aloita esitys sivulta:

Download "Laskennallinen data-analyysi II"

Transkriptio

1 Laskennallinen data-analyysi II Ella Bingham, Kevät 2008 Ulottuvuuksien vähentäminen, SVD, PCA Kalvot perustuvat Saara Hyvösen kalvoihin 2007 Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto

2 Yleistä kurssista Kurssi on suoraan jatkoa Laskennallinen data-analyysi I:lle Sekä ohjatun että ohjaamattoman oppimisen menetelmiä Menetelmiä, jotka tulevat jatkossa vastaan muilla kursseilla ja tutkimuksessa Kolme luennoitsijaa, jokaisella 2 luentoa, väliviikoilla laskarit Ensimmäinen osuus: Ohjaamatonta oppimista Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 1

3 Toinen osuus (Jyrki Kivinen): Tukivektorikone (support vector machine, SVM) yleistää lineaarisen luokittelun (tai lineaarisen regression) ei-lineaaristen ennustajien muodostamiseen. SVM on nykyään eräs suosituimmista yleiskäyttöisistä oppimismenetelmistä. Tukivektorikoneessa lineaariseen luokittelijaan yhdistetään - ydinfunktio ja - regularisointi. Ydinfunktio on matemaattinen apukeino, jonka avulla lineaariseen oppijaan voidaan sisällyttää hyvin monipuolista piirteiden muodostamista (datan esikäsittelyä) pitäen laskenta tehokkaana. Regularisointia tarvitaan, jotta runsas uusien piirteiden salliminen ei Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 2

4 johtaisi ylisovittamiseen. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 3

5 Kolmas osuus (Patrik Hoyer): Vedetään kurssien lda-i ja lda-ii pääteemoja yhteen Probabilistinen (jopa Bayeslainen) näkökulma koneoppimiseen Epävarmuuden mallintaminen: miten menetelmistä saa sellaisia, että ne osaavat kertoa, kun eivät ole varmoja Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 4

6 Lisälukemista ensimmäisestä osuudesta: Kleinberg, Tomkins: Applications of linear algebra in information retrieval and hypertext analysis. Proc. ACM Symp. Principles of Database Systems, pp , 1999 Tutorial site by Todd Will: Wikipedia: Singular value decomposition, Principal components analysis Muuttujien valinta: elektroninen kevytversio kirjasta H. Lohninger: Teach/Me Data Analysis, Springer-Verlag, 1999 löytyy mlr183.html Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 5

7 Ulottuvuuksien vähentäminen: miksi? visualisointi ihmissilmälle datan kompressio kohinan poisto, poikkeavien arvojen etsiminen Kaksi peruslähestymistapaa: heitetään muuttujia pois, tai muodostetaan uusia muuttujia. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 6

8 Esim. käsinkirjoitetut numerot Halutaan luokitella käsinkirjoitetut numerot automaattisesti luokkiin 0-9: Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 7

9 Käsinkirjoitetut numerot jatkuu Jokainen numero on (esimerkiksi) 100x100 pikselin harmaasävykuva. Tätä voidaan ajatella pisteenä ulotteisessa avaruudessa. Kuvitellaan tilanne, jossa otetaan numero 3 ja luodaan joukko uusia kolmosia siirtämällä, kiertämällä ja skaalaamalla peruskolmonen: Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 8

10 Nyt, vaikka jokaisen pisteen dimensio on 10000, on meillä oikeasti vain neljä vapausastetta: siirto pysty- ja vaakasuunnissa, kierto sekä skaalaus. Näitä neljää vapausastetta voidaan ajatella latentteina eli piilomuuttujina. Oikeasti käsinkirjoitetut numerot eivät tietenkään muodostu näin yksinkertaisesti, vaan niissä on yksilöllisiä deformaatioita; tällaisten deformaatioiden lukumäärän voidaan kuitenkin ajatella olevan pieni verrattuna joukon dimensioon (10000). Koko käsinkirjoitettu numerojoukko voidaan siis kuvata paljon pienempidimensioisessa avaruudessa. Mutta miten? Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 9

11 (Lineaariset) piilomuuttujamallit Yksinkertaisimmillaan voidaan ajatella, että m n datamatriisi A, missä rivit ovat pisteitä ja sarakkeet ovat muuttujia, esitetään k:n piilomuuttujan avulla kahden matriisin tulona: A m n = D m k V k n, missä matriisin V rivit ovat latentit muuttujat ja matriisi D antaa datapisteet latenttien muuttujien avulla lausuttuna. Siis V:n rivit = uudet kantavektorit, ja D = pisteiden koordinaatit uudessa kannassa. Menetelmiä on paljon, ja eri menetelmät antavat eri piilomuuttujat. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 10

12 Singulaariarvohajotelma Jokainen m n matriisi A voidaan kirjoittaa muotoon A m n = U m d S d d (V n d ) T, missä d = min(m, n). Matriisien U ja V sarakkeet ovat ortonormaalit (kohtisuorassa toisiaan vastaan ja yksikköpituiset). Matriisi S on diagonaalimatriisi: S = diag(σ 1, σ 2,..., σ d ), σ 1 σ 2... σ d 0. (singular value decom- Tämä on matriisin A singulaariarvohajotelma position, SVD) Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 11

13 Singulaariarvot ja -vektorit Matriisin S diagonaalialkiot σ j ovat matriisin A singulaariarvot. Matriisien U ja V sarakkeet ovat matriisin A vasemman- ja oikeanpuoleiset singulaarivektorit. Singulaariarvohajotelma voidaan myös kirjoittaa muodossa Av j = σ j u j, A T u j = σ j v j. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 12

14 Matlab-esimerkki A= [U,S,V]=svd(A, econ ) U= S= V= Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 13

15 Matriisin approksimointi Lause. Olkoon U k = (u 1 u 2... u k ), V k = (v 1 v 2... v k ) ja S k = diag(σ 1, σ 2,..., σ k ), ja määritellään A k = U k S k V T k. Tällöin min A B 2 = A A k 2 = σ k+1. rank(b) k Eli: 2-normin (myös Frobenius-normin) mielessä paras astetta k oleva approksimaatio matriisille saadaan singulaariarvohajotelmaa käyttämällä, ottamalla k ensimmäistä singulaariarvoa ja -vektoria. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 14

16 Entä sitten? Siis: 2-normin mielessä paras astetta k oleva approksimaatio matriisille saadaan singulaariarvohajotelmaa käyttämällä: A k = U k S k V T k. (aste = rank = lineaarisesti riippumattomien sarakkeiden määrä, nollasta poikkeavien singulaariarvojen määrä.) Tätä voi käyttää: kohinan poistoon datan kompressioon matriisin oikean asteen määrittämiseen Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 15

17 Esimerkki: kohinan poisto Olkoon A = A k + N, missä A k on (alhaista) astetta k oleva matriisi, ja N on pieni. Tällaisessa tapauksessa matriisin A singulaariarvoat käyttäytyvät tyypillisesti tähän tapaan: 8 singular values index Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 16

18 2 log of singular values index Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 17

19 Esimerkki: käsinkirjoitetut numerot Käytetään singulaariarvohajotelmaa käsinkirjoitettujen numeroiden kuvaamiseen. Sen sijaan, että käytetään pikseliä, käytetäänkin pientä määrää singulaarivektoreita. Otetaan siis iso kasa kolmosia, muodostetaan joka kuvasta vektori, laitetaan ne sarakkeiksi datamatriisiin, ja lasketaan singulaariarvohajotelma. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 18

20 Esimerkki: käsinkirjoitetut numerot Vasemmanpuoleiset singulaariarvot tai singulaarikuvat u j : Ensimmäinen on tyypillisesti datan keskiarvo ja seuraavat tuovat datasta lisää piirteitä esiin Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 19

21 Esimerkki: käsinkirjoitetut numerot Voidaan olettaa, että kolmoset on helpompi muodostaa käyttäen kolmosen singulaarivektoreita kuin vaikkapa viitosen singulaarivektoreita. Nyt voidaan esimerkiksi luokitella käsinkirjoitettuja numeroita katsomalla, miten hyvin ne voidaan muodostaa kussakin kannassa. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 20

22 Esimerkki: Tekstidatan analysointi Esitetään dokumenttikokoelma termi-dokumentti-matriisina A, jossa rivit vastaavat sanoja, ja sarakkeet dokumentteja, ja matriisin alkion a i,j arvo kertoo sanan i painon dokumentissa j. Varoitus: Tekstianalyysissä on tapana laittaa matriisin rivit ja sarakkeet eri päin kuin tiedon louhinnassa yleensä! Tekstidatassa usein ongelmana synonyymit (haluaisimme, että elefantti ja norsu samaistuisivat) ja polyseemit (haluaisimme erottaa milloin kurkku tarkoittaa vihannesta ja milloin ruumiinosaa). SVD auttaa tässä: sanojen merkitykset kuvautuvat avaruuden eri ulottuvuuksiin. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 21

23 Tässä kontekstissa SVD kulkee nimellä LSI (Latentti Semanttinen Indeksointi) Esimerkki kirjasta [Manning and Schütze: Foundations of statistical natural language processing]: termi-dokumenttimatriisi A on doc1 doc2 doc3 doc4 doc5 doc6 cosmonaut astronaut moon car truck Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 22

24 Vasempien singulaarivektoreiden matriisi U on Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 cosmonaut astronaut moon car truck ja singulaariarvot sisältävä matriisi S on Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim Dim Dim Dim Dim Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 23

25 ja oikeanpuoleisten singulaarivektoreiden matriisi V T on doc1 doc2 doc3 doc4 doc5 doc6 Dim Dim Dim Dim Dim Otetaan vain 2 ensimmäistä singulaariarvoa ja -vektoria: U:ssa termit ryhmittyvät toisen singulaarivektorin mukaan (cosmonaut, astronaut, moon) ja (car, truck) V T :ssä dokumentit ryhmittyvät toisen singulaarivektorin mukaan (doc1,doc2,doc3) ja (doc4,doc5,doc6) Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 24

26 Esimerkki: Tiedonhaku tekstidokumenteissa Halutaan tehdä hakuja suuresta tekstidokumenttien kokoelmasta. Haku on tällöin vektori q, jonka jokainen alkio vastaa niinikään sanaa. Haku voidaan tehdä vertaamalla suoraan vertaamalla hakuvektoria kuhunkin dokumenttiin: cos(θ(a j, q)) = a T j q a j 2 q 2 tol. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 25

27 Usein sen sijaan lasketaan ensin termi-dokumentti-matriisille singulaariarvohajotelma, approksimoidaan matriisia (ongelman alkuperäiseen kokoon verrattuna) pienehköllä määrällä singulaarivektoreita, lausutaan myös hakuvektori singulaarivektorien avulla, ja tehdään hakuvektorin ja dokumenttien vertailu tässä uudessa kannassa. Nopeampaa (datan kompressio) ja (usein) tarkempaa (kohinan poisto). Dokumenttien esitysmuoto LSI-avaruudessa on â = U T k a jossa a on alkuperäinen dokumenttivektori ja U k on k:n ensimmäisen vasemmanpuoleisen singulaarivektorin muodostama matriisi Samoin hakuvektorin esitysmuoto on ˆq = U T k q Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 26

28 Esimerkki: Hakuvektori cosmonaut astronaut on alkuperäisessä avaruudessa q cosmonaut 1 astronaut 1 moon 0 car 0 truck 0 ja 2-ulotteisessa LSI-avaruudessa ˆq = U T 2 q = ( ) Dokumenttien â ja hakuvektorin ˆq väliset kosini-similaarisuudet ovat 0.85, 0.99, 0.97, -0.06, 0.27 ja Hakuvektori on siis lähimpänä dokumentteja 2 ja 3. Tämä näkyy myös kuvassa: Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 27

29 q Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 28

30 Myös uudet dokumentit (sarakkeet) voi esittää LSI-avaruudessa kertomalla ne U k :lla, eli ei tarvitse laskea SVD:tä uudestaan Uudet termit (rivit) voisi samoin esittää LSI-avaruudessa kertomalla V k :lla, mutta tämä on käytännössä harvinaisempaa Varoitus: Harjoitustehtävässä pyydetään esittämään uusi vektori vanhojen datavektoreiden avulla lasketussa kannassa. Nyt pitää olla tarkkana, onko uusi datavektori rivi vai sarake! Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 29

31 Laskennan vaativuudesta SVD:n vaativuus on neliöllinen d:n suhteen ja kuutiollinen k:n suhteen, jossa d = ranki = min(sarakkeiden määrä, rivien määrä) ja k = laskettavien singulaariarvojen määrä Harvalle datalle on olemassa tehokkaita implementaatioita Laskentaa voi keventää tekemällä SVD:n vain osalle havainnoista (dokumenteista) ja esittämällä uudet havainnot SVD-avaruudessa kertomalla ne U k :lla Tärkeintä on kuitenkin valita k mahdollisimman pieneksi, mutta ei liian pieneksi Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 30

32 Laskennan vaativuudesta: k:n valinta Yleensä muutama kymmenen riittää, mutta teoreettisiakin menetelmiä on: tarkastele singulaariarvojen pienenemistä, ja lopeta kun uusi arvo on selvästi pienempi kuin aiemmat. Ongelma: pitää laskea monta ylimääräistä arvoa, jotta näkee milloin joku on selvästi pienempi laske Frobenius-normi datamatriisin ja sen approksimaation erotukselle: olkoon Y = A A k, silloin F (Y) = sum(diag(y T Y)) ja vertaa tätä F (A):n arvoon; jos edellinen on pieni niin silloin A k on tarpeeksi hyvä approksimaatio Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 31

33 Laske kaikkien singulaariarvojen summa ja k:n ensimmäisen summa, ja valitse k niin että saat esim. 85 % kaikkien summasta. (Mutta tällöin pitää laskea kaikki!) Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 32

34 Pääkomponenttianalyysi Tavoitteena on etsiä pieni joukko (keinotekoisia) muuttujia siten, että datan varianssista säilyy mahdollisimman suuri osuus. Ensimmäinen pääkomponentti on se vektori, jolle projisoidun datan varianssi on suurin. Kun tämä on löydetty, jatketaan etsimällä tälle ortogonaalinen eli kohtisuora suunta, joka selittää mahdollisimman suuren osan vielä selittämättä jääneestä varianssista. Jokainen pääkomponentti on lineaariyhdistely alkuperäisiä muuttujia. PCA = principal component analysis Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 33

35 1st principal component x x x x x x x x x x x x 2nd principal component x x x Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 34

36 PCA lyhyesti Olkoon A n m-matriisi, jonka rivit ovat havaintopisteitä ja sarakkeet muuttujia. Keskitetään eli nollakeskiarvoistetaan A: vähennetään jokaisesta sarakkeesta sarakkeen keskiarvo, jolloin uuden datamatriisin sarakkeiden keskiarvo on nolla. Olkoon tämä keskitetty matriisi nyt A. Muodostetaan nollakeskiarvoistetun datan kovarianssimatriisi C = 1 n AT A. Pääkomponentit ovat kovarianssimatriisin ominaisvektorit. Ominaisarvot kertovat datan varianssin pääkomponenttien suunnassa. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 35

37 PCA pitkästi Miten löydetään ensimmäinen pääkomponentti w? Olkoon w R m (toistaiseksi tuntematon) vektori, jolle projisoituna datan varianssi on suurin. Vaaditaan vielä, että w T w = 1. Vektorin a projektio vektorille w on w T a = m j=1 a jw j. Koko datamatriisin projektio vektorille w on Aw. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 36

38 Varianssi: PCA pitkästi σw 2 = 1 n (Aw)T (Aw) = 1 n wt A T Aw = w T Cw missä C = 1 n AT A on matriisin A kovarianssimatriisi (A on keskitetty!) Tavoitteena on maksimoida varianssi ehdolla w T w = 1. Optimointiongelma: maksimoi f = w T Cw λ(w T w 1), missä λ on Lagrangen kerroin. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 37

39 PCA pitkästi Optimointiongelma: maksimoi f = w T Cw λ(w T w 1), missä λ on Lagrangen kerroin. Derivoidaan w:n suhteen ja saadaan f w = 2Cw 2λw = 0 Tämä on itse asiassa ominaisarvoyhtälö: Cw = λw, missä C = 1 n AT A. Varianssi saadaan kertomalla yhtälöä vasemmalta w:n transpoosilla. Kun vieä muistetaan, että w T w = 1 saadaan varianssiksi w T Cw = λ. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 38

40 PCA pitkästi Varianssi: w T Cw = λ. Tämä on maksimissaan, kun w on kovarianssimatriisin suurinta ominaisarvoa vastaava ominaisvektori, ja suurin ominaisarvo itse kertoo varianssin. Ensimmäinen pääkomponentti on siis kovarianssimatriisin suurinta ominaisarvoa vastaava ominaisvektori. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 39

41 PCA:n ja SVD:n yhteys Mutta jos kirjoitetaankin A = USV T saadaan C = A T A = VS T U T USV T, CV = VS T S. Kun tämä kirjoitetaan sarake kerrallaan, nähdään, että Cv j = σ 2 jv j, eli matriisin A kovarianssimatriisin ominaisarvot ovat singulaariarvojen neliöt, ja ominaisvektorit ovat oikeanpuoleiset singulaarivektorit! Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 40

42 Ensimmäinen pääkomponentti on siis datamatriisin 1. oikeanpuoleinen singulaarivektori. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 41

43 Entä seuraavaksi? Jatketaan samaan tapaan: etsitään kaikille löydetyille pääkomponenteille kohtisuorassa oleva vektori, jolle projisoituna varianssi on suurin. Pääkomponentit ovat oikeanpuoleiset singulaarivektorit, singulaariarvojen neliöt kertovat varianssin kyseisen pääkomponentin suuntaan. Eli: PCA on SVD keskitetylle datalle! Singulaariarvojen avulla voi arvioida, montako pääkomponenttia tarvitaan. Peukalosääntö: valitse komponenttien lukumäärä siten, että 85% varianssista säilyy: k j=1 σ2 j n j=1 σ2 j Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 42

44 Esimerkki: ilmakehädata Data: 1500 päivää, kymmeniä muuttujia (lämpötila, tuulen suunta ja nopeus, UV-säteilyn määrä, hiilidioksidikonsentraatio etc.) Visualisointi esim. 60-ulotteisessa avaruudessa on haastavaa! Sen sijaan, tee pääkomponenttianalyysi ja projisoi data kahden ensimmäisen komponentin määrittämään tasoon. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 43

45 Miten pääkomponentteja ei lasketa: Kirjallisuudessa esitellään tavan takaa algoritmeja, joissa pääkomponentit lasketaan kovarianssimatriisin ominaisvektoreina. Laskennallisesti tämä on huono tapa! Parempi laskea singulaariarvohajotelma. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 44

46 Miten pääkomponentit lasketaan: Matriisi A, rivit: datapisteet, sarakkeet=muuttujat. 1. Keskitä data vähentämällä jokaisesta sarakkeesta keskiarvo 2. Laske keskitetyn matriisin  singulaariarvohajotelma (tai k ensimmäistä singulaariarvoa ja -vektoria):  = USV T. 3. Matriisin V sarakkeet ovat pääkomponentit, ja datapisteiden kooridnaatit uudessa (pääkomponenttien virittämässä) kannassa ovat US. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 45

47 Matlab-koodi %Data matrix A, columns:variables, rows: data points %matlab function for computing the first k principal components of A. function [pc,score]=pca(a,k); [rows,cols]=size(a); Ameans=repmat(mean(A,1),rows,1); %matrix, rows=means of columns A=A-Ameans; %centering data [U,S,V]=svds(A,k); %k is the number of pc:s desired pc=v; score=u*s; %now A=score*pc +Ameans; Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 46

48 Huom. PCA löytyy myös valmiina statistics toolboxista, MUTTA... ÄLÄ KÄYTÄ SITÄ!! Miksi? Lisenssejä on liian vähän! Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 47

49 Miksi PCA? Jos PCA = SVD niin miksi siitä piti puhua? Koska SVD antaa aina origon kautta kulkevan vektorin. Datan keskittäminen pitää huolen siitä, että origo on datajoukon keskellä. Esimerkiksi harvalla datalla tämä ei ole ratkaisevaa; mutta joskus voi olla: Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 48

50 Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 49

51 Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 50

52 Yhteenveto Jokainen m n matriisi A, m n, voidaan kirjoittaa singulaariarvohajotelman avulla muotoon A = USV T, missä U R m d ja V R n d ovat ortogonaaliset, d = min(m, n), ja S R d d on diagonaalimatriisi, jonka diagonaalialkiot ovat singulaariarvot σ 1 σ 2... σ n 0. 2-normin mielessä paras astetta k oleva approksimaatio matriisille saadaan singulaariarvohajotelmaa käyttämällä: A k = U k S k V T k, missä U k, V k koostuvat ksta ensimmäisestä vasemman- ja oikeanpuoleisesta singulaarivektorista ja S k :n diagonaalialkiot ovat k suurinta singulaariarvoa. Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 51

53 Pääkomponenttianalyysi on sukua SVD:lle: pääkomponentit ovat keskitetyn datamatriisin oikeanpuoleiset singulaarivektorit. Pääkomponentit valitaan siten, että datan varianssista selittyy suurin osa. Ensimmäinen pääkomponentti on se vektori, jolle projisoidun datan varianssi on suurin. Laskemalla datamatriisille SVD tai PCA ja approksimoimalla matriisia muutaman ensimmäisen singulaarivektorin/pääkomponentin avulla kompressoidaan dataa ja poistetaan kohinaa. Nyt voidaan klusteroida/luokitella/tms uutta dataa. PCA toimii parhaiten silloin kun data on gaussista, tai vähintäänkin Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 52

54 jatkuva-arvoista SVD:llä on paljon muutakin käyttˆä kuin latenttimuuttujamallinnus: esimerkiksi Googlen PageRank-algoritmi tai spektraalijärjestys Myös muita latenttimuuttujamenetelmiä löytyy: ICA, NMF, probabilistiset versiot (näissä datan gaussisuus ei ole vaatimuksena) Laskennallinen data-analyysi II, kevät 2008, Helsingin yliopisto 53

Laskennallinen data-analyysi II

Laskennallinen data-analyysi II Laskennallinen data-analyysi II Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Kevät 2007 Ulottuvuuksien vähentäminen, SVD, PCA Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto visualisointi

Lisätiedot

Laskennallinen data-analyysi II

Laskennallinen data-analyysi II Laskennallinen data-analyysi II Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Kevät 2007 Muuttujien valinta Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto Korkeiden ulottuvuuksien kirous

Lisätiedot

Laskennallinen data-analyysi II

Laskennallinen data-analyysi II Laskennallinen data-analyysi II Ella Bingham, ella.bingham@cs.helsinki.fi Kevät 2008 Muuttujien valinta Kalvot perustuvat Saara Hyvösen kalvoihin 2007 Laskennallinen data-analyysi II, kevät 2008, Helsingin

Lisätiedot

MS-A0003/A Matriisilaskenta Laskuharjoitus 6

MS-A0003/A Matriisilaskenta Laskuharjoitus 6 MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja

Lisätiedot

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.

Lisätiedot

Ratkaisuehdotukset LH 8 / vko 47

Ratkaisuehdotukset LH 8 / vko 47 Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 3

Inversio-ongelmien laskennallinen peruskurssi Luento 3 Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0). Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 4

Inversio-ongelmien laskennallinen peruskurssi Luento 4 Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

1 Singulaariarvohajoitelma

1 Singulaariarvohajoitelma 1 Singulaariarvohajoitelma Tähän mennessä on tutkittu yhtälöryhmän Ax = y ratkaisuja ja törmätty tapauksiin joissa yhtälöryhmällä on yksikäsitteinen ratkaisu ("helppo"tapaus) yhtälöryhmällä on ääretön

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 / MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

Luku 4. Vektoridatan tiivistäminen

Luku 4. Vektoridatan tiivistäminen 1 / 35 Luku 4. Vektoridatan tiivistäminen T-61.2010 Datasta tietoon, syksy 2011 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 7.11.2011 2 / 35 Tämän luennon sisältö 1 Vektoridatan

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?

Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on? Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

perusjoukosta (esim. tietyn kokoisten digitaalikuvien joukko).

perusjoukosta (esim. tietyn kokoisten digitaalikuvien joukko). 4. VEKTORIDATAN TIIVISTÄMINEN JA DEKORRELOINTI Palautetaan mieleen datamatriisi X: { n vektoria }} { d vektori alkiota Usein matriisin sarakkeilla (vektoreilla x(t), t = 1,..., n) ei ole mitään määrättyä

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

2. Teoriaharjoitukset

2. Teoriaharjoitukset 2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3. Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Sovellusohjelmointi Matlab-ympäristössä: Vertaisverkon koneiden klusterointi

Sovellusohjelmointi Matlab-ympäristössä: Vertaisverkon koneiden klusterointi Sovellusohjelmointi Matlab-ympäristössä: Vertaisverkon koneiden klusterointi 28.4.2013 Annemari Auvinen (annauvi@st.jyu.fi) Anu Niemi (anniemi@st.jyu.fi) 1 Sisällysluettelo 1 JOHDANTO... 2 2 KÄYTETYT MENETELMÄT...

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Tämän luennon sisältö. Luku 4. Vektoridatan tiivistäminen. Datamatriisi (2) Datamatriisi. T Datasta tietoon, syksy 2011

Tämän luennon sisältö. Luku 4. Vektoridatan tiivistäminen. Datamatriisi (2) Datamatriisi. T Datasta tietoon, syksy 2011 Tämän luennon sisältö Luku 4. Vektoridatan tiivistäminen T-61.2010 Datasta tietoon, syksy 2011 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 1 Datamatriisi Pääkomponenttianalyysi

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

3.2.2 Tikhonovin regularisaatio

3.2.2 Tikhonovin regularisaatio 3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Käänteismatriisin ominaisuuksia

Käänteismatriisin ominaisuuksia Käänteismatriisin ominaisuuksia Lause 1.4. Jos A ja B ovat säännöllisiä ja luku λ 0, niin 1) (A 1 ) 1 = A 2) (λa) 1 = 1 λ A 1 3) (AB) 1 = B 1 A 1 4) (A T ) 1 = (A 1 ) T. Tod.... Ortogonaaliset matriisit

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

Lineaarialgebra, kertausta aiheita

Lineaarialgebra, kertausta aiheita Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit

Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33

Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33 Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Avaruuden R n aliavaruus

Avaruuden R n aliavaruus Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla

Lisätiedot

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4

s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4 BM0A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 05. (a) i. Jotta vektori c sijaitsisi a:n ja b:n virittämällä tasolla, c on voitava esittää a:n ja b:n lineaarikombinaationa. c ta + sb

Lisätiedot

Lineaariset mollit, kl 2017, Harjoitus 1

Lineaariset mollit, kl 2017, Harjoitus 1 Lineaariset mollit, kl 07, Harjoitus Heikki Korpela 7 huhtikuuta 07 Tehtävä Symmetristä matriisia A(n n) sanotaan positiivisesti definiitiksi (merkitään A > 0), jos x T Ax > 0 kaikilla x 0, x R n (ks monisteen

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 ); LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Idea Lineaarisen systeemin ratkaiseminen Olkoon

Lisätiedot

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi Lineaarikuvaukset aiheita ten ten 1 Matematiikassa sana lineaarinen liitetään kahden lineaariavaruuden väliseen kuvaukseen. ten Määritelmä Olkoon (L, +, ) ja (M, ˆ+, ˆ ) reaalisia lineaariavaruuksia, ja

Lisätiedot