Laskennallinen data-analyysi II

Koko: px
Aloita esitys sivulta:

Download "Laskennallinen data-analyysi II"

Transkriptio

1 Laskennallinen data-analyysi II Saara Hyvönen, Kevät 2007 Ulottuvuuksien vähentäminen, SVD, PCA Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto

2 visualisointi datan kompressio Ulottuvuuksien vähentäminen: miksi? kohinan poisto, poikkeavien arvojen etsiminen Kaksi peruslähestymistapaa: heitetään muuttujia pois, tai muodostetaan uusia muuttujia. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 1

3 Esim. käsinkirjoitetut numerot Halutaan luokitella käsinkirjoitetut numerot automaattisesti luokkiin 0-9: Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 2

4 Käsinkirjoitetut numerot jatkuu Jokainen numero on (esimerkiksi) 100x100 pikselin harmaasävykuva. Tätä voidaan ajatella pisteenä ulotteisessa avaruudessa. Kuvitellaan tilanne, jossa otetaan numero 3 ja luodaan joukko uusia kolmosia siirtämällä, kiertämällä ja skaalaamalla peruskolmonen: Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 3

5 Nyt, vaikka jokaisen pisteen dimensio on 10000, on meillä oikeasti vain neljä vapausastetta: siirto pysty- ja vaakasuunnissa, kierto sekä skaalaus. Näitä neljää vapausastetta voidaan ajatella latentteina eli piilomuuttujina. Oikeasti käsinkirjoitetut numerot eivät tietenkään muodostu näin yksinkertaisesti, vaan niissä on yksilöllisiä deformaatioita; tällaisten deformaatioiden lukumäärän voidaan kuitenkin ajatella olevan pieni verrattuna joukon dimensioon (10000). Koko käsinkirjoitettu numerojoukko voidaan siis kuvata paljon pienempidimensioisessa avaruudessa. Mutta miten? Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 4

6 (Lineaariset) piilomuuttujamallit Yksinkertaisimmillaan voidaan ajatella, että m n datamatriisi A, missä rivit ovat pisteitä ja sarakkeet ovat muuttujia, esitetään k:n piilomuuttujan avulla kahden matriisin tulona: A m n = D m k V k n, missä matriisin V rivit ovat latentit muuttujat ja matriisi D antaa datapisteet latenttien muuttujien avulla lausuttuna. Siis V:n rivit = uudet kantavektorit, ja D = pisteiden koordinaatit uudessa kannassa. Menetelmiä on paljon, ja eri menetelmät antavat eri piilomuuttujat. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 5

7 Singulaariarvohajotelma Jokainen m n matriisi A, m n, voidaan kirjoittaa muotoon ( ) Σ A = U V T, 0 missä U R m m ja V R n n ovat ortogonaaliset, ja Σ R n n on diagonaalimatriisi: Σ = diag(σ 1, σ 2,..., σ n ), σ 1 σ 2... σ n 0. (singular value decom- Tämä on matriisin A singulaariarvohajotelma position, SVD) Tämä voidaan myös kirjoittaa muotoon A = U 1 ΣV T, U 1 R m n. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 6

8 Singulaariarvot ja -vektorit Matriisin Σ diagonaalialkiot σ j ovat matriisin A singulaariarvot. Matriisien U ja V sarakkeet ovat matriisin A vasemman- ja oikeanpuoleiset singulaarivektorit. Singulaariarvohajotelma voidaan myös kirjoittaa muodossa Av j = σ j u j, A T u i = σ j v j. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 7

9 Matlab-esimerkki A= [U,S,V]=svd(A) U= S= V= Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 8

10 [U,S,V]=svd(A,0) U= S= V= Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 9

11 Matriisin approksimointi Lause. Olkoon U k = (u 1 u 2... u k ), V k = (v 1 v 2... v k ) ja Σ k = diag(σ 1, σ 2,..., σ k ), ja määritellään A k = U k Σ k V T k. Tällöin min rank(b) k A B 2 = A A k 2 = σ k+1. Eli: 2-normin (myös Frobenius-normin) mielessä paras astetta k oleva approksimaatio matriisille saadaan singulaariarvohajotelmaa käyttämällä. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 10

12 Entä sitten? Siis: 2-normin mielessä paras astetta k oleva approksimaatio matriisille saadaan singulaariarvohajotelmaa käyttämällä: Tätä voi käyttää: kohinan poistoon datan kompressioon A k = U k Σ k V T k. matriisin oikean asteen määrittämiseen Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 11

13 Esimerkki: kohinan poisto Olkoon A = A k + N, missä A k on (alhaista) astetta k oleva matriisi, ja N on pieni. Tällaisessa tapauksessa matriisin A singulaariarvoat käyttäytyvät tyypillisesti tähän tapaan: 8 singular values index Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 12

14 2 log of singular values index Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 13

15 Esimerkki: käsinkirjoitetut numerot Käytetään singulaariarvohajotelmaa käsinkirjoitettujen numeroiden kuvaamiseen. Sen sijaan, että käytetään pikseliä, käytetäänkin pientä määrää singulaarivektoreita. Otetaan siis iso kasa kolmosia, muodostetaan joka kuvasta vektori, laitetaan ne sarakkeiksi datamatriisiin, ja lasketaan singulaariarvohajotelma. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 14

16 Esimerkki: käsinkirjoitetut numerot Vasemmanpuoleiset singulaariarvot tai singulaarikuvat u j : Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 15

17 Esimerkki: käsinkirjoitetut numerot Alkuperäinen kuva sekä approksimaatio, johon on saatu käyttämällä 1,3,5,7 ja 9 singulaarivektoria, jotka on laskettu kaikista kolmosista: Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 16

18 Esimerkki: käsinkirjoitetut numerot Voidaan olettaa, että kolmoset on helpompi muodostaa käyttäen kolmosen singulaarivektoreita kuin vaikkapa viitosen singulaarivektoreita. Nyt voidaan esimerkiksi luokitella käsinkirjoitettuja numeroita katsomalla, miten hyvin ne voidaan muodostaa kussakin kannassa. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 17

19 Esimerkki: LSI Halutaan tehdä hakuja suuresta tekstidokumenttien kokoelmasta. Esitetään dokumenttikokoelma termi-dokumentti-matriisina A, jossa rivit vastaavat sanoja, ja sarakkeet dokumentteja, ja matriisin alkion a i,j arvo kertoo sanan i painon dokumentissa j. Haku on tällöin vektori q, jonka jokainen alkio vastaa niinikään sanaa. Haku voidaan tehdä vertaamalla suoraan vertaamalla hakuvektoria kuhunkin dokumenttiin: cos(θ(a j, q)) = a T j q a j 2 q 2 tol. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 18

20 Esimerkki: LSI Usein sen sijaan lasketaan ensin termi-dokumentti-matriisille singulaariarvohajotelma, approksimoidaan matriisia (ongelman alkuperäiseen kokoon verrattuna) pienehköllä määrällä singulaarivektoreita, lausutaan myös hakuvektori singulaarivektorien avulla, ja tehdään hakuvektorin ja dokumenttien vertailu tässä uudessa kannassa. Nopeampaa (datan kompressio) ja (usein) tarkempaa (kohinan poisto). Tässä kontekstissa SVD kulkee nimellä LSI (Latentti Semanttinen Indeksointi) Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 19

21 Pääkomponenttianalyysi Tavoitteena on etsiä pieni joukko (keinotekoisia) muuttujia siten, että datan varianssista säilyy mahdollisimman suuri osuus. Ensimmäinen pääkomponentti on se vektori, jolle projisoidun datan varianssi on suurin. Kun tämä on löydetty, jatketaan etsimällä tälle ortogonaalinen suunta, joka selittää mahdollisimman suuren osan vielä selittämättä jääneestä varianssista. Jokainen pääkomponentti on lineaariyhdistely alkuperäisiä muuttujia. PCA = principal component analysis Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 20

22 1st principal component x x x x x x x x x x x x 2nd principal component x x x Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 21

23 PCA Olkoon A n m-matriisi, jonka rivit ovat pisteitä ja sarakkeet muuttujia. Keskitetään A: vähennetään jokaisesta sarakkeesta sarakkeen keskiarvo, jolloin uuden datamatriisin sarakkeiden keskiarvo on nolla. Olkoon tämä keskitetty matriisi nyt A. Olkoon w R m (toistaiseksi tuntematon) vektori, jolle projisoituna datan varianssi on suurin. Vaaditaan vielä, että w T w = 1. Vektorin a projektio vektorille w on w T a = m j=1 a jw j. Koko datamatriisin projektio vektorille w on Aw. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 22

24 Koko datamatriisin projektio vektorille w on Aw. Varianssi: σw 2 = 1 n (Aw)T (Aw) = 1 n wt A T Aw = w T Cw missä C = 1 n AT A on matriisin A kovarianssimatriisi (A on keskitetty!) Tavoitteena on maksimoida varianssi ehdolla w T w = 1. Optimointiongelma: maksimoi f = w T Cw λ(w T w 1), missä λ on Lagrangen kerroin. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 23

25 Optimointiongelma: maksimoi f = w T Cw λ(w T w 1), missä λ on Lagrangen kerroin. Derivoidaan w:n suhteen ja saadaan f w = 2Cw 2λw = 0 Tämä on itse asiassa ominaisarvoyhtälö: Cw = λw, missä C = 1 n AT A. Varianssi saadaan kertomalla yhtälöä vasemmalta w:n transpoosilla. Kun vieä muistetaan, että w T w = 1 saadaan varianssiksi w T Cw = λ. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 24

26 Varianssi: w T Cw = λ. Tämä on maksimissaan, kun w on kovarianssimatriisin suurinta ominaisarvoa vastaava ominaisvektori, ja suurin ominaisarvo itse kertoo varianssin. Ensimmäinen pääkomponentti on siis kovarianssimatriisin suurinta ominaisarvoa vastaava ominaisvektori. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 25

27 Mutta jos kirjoitetaankin A = UΣV T saadaan C = A T A = VΣ T U T UΣV T, CV = VΣ T Σ. Kun tämä kirjoitetaan sarake kerrallaan, nähdään, että Cv j = σ 2 jv j, eli matriisin A kovarianssimatriisin ominaisarvot ovat singulaariarvojen neliöt, ja ominaisvektorit ovat oikeanpuoleiset singulaarivektorit! Ensimmäinen pääkomponentti on siis datamatriisin 1. oikeanpuoleinen singulaarivektori. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 26

28 Entä seuraavaksi? Jatketaan samaan tapaan: etsitä n kaikille löydetyille pääkomponenteille kohtisuorassa oleva vektori, jolle projisoituna varianssi on suurin. Pääkomponentit ovat oikeanpuoleiset singulaarivektorit, singulaariarvojen neliöt kertovat varianssin kyseisen pääkomponentin suuntaan. Eli: PCA on SVD keskitetylle datalle! Singulaariarvojen avulla voi arvioida, montako pääkomponenttia tarvitaan. Peukalosääntö: valitse komponenttien lukumäärä siten, että 85% varianssista säilyy: k j=1 σ2 j n j=1 σ2 j Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 27

29 Esimerkki: spatiaalisen datan analysointi Data: Suomen murteet, noin sanaa, 500 kuntaa. Sana-kunta-matriisi A: A(i, j) = { 1 jos sana i esiintyy kunnassa j 0 muutoin. Sovelletaan tähän pääkomponenttianalyysiä. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 28

30 Esimerkki: spatiaalisen datan analysointi Katsomalla komponentteja nähdään miten murresanasto vaihtelee Ensimmäinen pääkomponentti kertoo kerättyjen sanojen lukumäärän! Tämän jälkeen maantieteellinen rakenne alkaa näkyä. Huomaa, että menetelmä itse ei tiedä missä mikin kunta sijaitsee. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 29

31 pca 1, nocomp 6 number of words Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 30

32 pca 2, nocomp 6 pca 3, nocomp Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 31

33 Esimerkki: ilmakehädata Data: 1500 päivää, kymmeniä muuttujia (lämpötila, tuulen suunta ja nopeus, UV-säteilyn määrä, hiilidioksidikonsentraatio etc.) Visualisointi esim. 60-ulotteisessa avaruudessa on haastavaa! Sen sijaan, tee pääkomponenttianalyysi ja projisoi data kahden ensimmäisen komponentin määrittämään tasoon. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 32

34 30 Days projected in the plane defined by the 1st two principal components, colored per month nd principal component st principal component 1 Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 33

35 Miten pääkomponentteja ei lasketa: Kirjallisuudessa (mm kurssikirjassa) esitellään tavan takaa algoritmeja, joissa pääkomponentit lasketaan kovarianssimatriisin ominaisvektoreina. Laskennallisesti tämä on huono tapa! Parempi laskea singulaariarvohajotelma. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 34

36 Miten pääkomponenttit lasketaan: Matriisi A, rivit: datapisteet, sarakkeet=muuttujat. 1. Keskitä data vähentämällä jokaisesta sarakkeesta keskiarvo 2. Laske keskitetyn matriisin  singulaariarvohajotelma (tai kensimmäistä singulaariarvoa ja -vektoria):  = UΣV T. 3. Matriisin V sarakkeet ovat pääkomponentit, ja datapisteiden kooridnaatit uudessa (pääkomponenttien virittämässä) kannassa ovat UΣ. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 35

37 Matlab-koodi %Data matrix A, columns:variables, rows: data points %matlab function for computing the first k principal components of A. function [pc,score]=pca(a,k); [rows,cols]=size(a); Ameans=repmat(mean(A,1),rows,1); %matrix, rows=means of columns A=A-Ameans; %centering data [U,S,V]=svds(A,k); %k is the number of pc:s desired pc=v; score=u*s; %now A=scores*pcs +Ameans; Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 36

38 Huom. PCA löytyy myös valmiina statistics toolboxista, MUTTA... ÄLÄ KÄYTÄ SITÄ!! Miksi? Lisenssejä on liian vähän! Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 37

39 Miksi PCA? Jos PCA = SVD niin miksi siitä piti puhua? Koska SVD antaa aina origon kautta kulkevan vektorin. Datan keskittäminen pitää huolen siitä, että origo on datajoukon keskellä. Esimerkiksi harvalla datalla tämä ei ole ratkaisevaa; mutta joskus voi olla: Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 38

40 Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 39

41 Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 40

42 Yhteenveto Jokainen m n matriisi A, m n, ( voidaan ) kirjoittaa singulaariarvohajotelman avulla muotoon A = U V T, missä U R m m ja Σ 0 V R n n ovat ortogonaaliset, ja Σ R n n on diagonaalimatriisi, jonka diagonaalialkiot ovat singulaariarvot σ 1 σ 2... σ n 0. 2-normin mielessä paras astetta k oleva approksimaatio matriisille saadaan singulaariarvohajotelmaa käyttämällä: A k = U k Σ k Vk T, missä U k, V k koostuvat ksta ensimmäisestä vasemman- ja oikeanpuoleisesta singulaarivektorista ja Σ k :n diagonaalialkiot ovat k suurinta singulaariarvoa. Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 41

43 Pääkomponenttianalyysi on sukua SVD:lle: pääkomponentit ovat keskitetyn datamatriisin oikeanpuoleiset singulaarivektorit. Pääkomponentit valitaan siten, että datan varianssista selittyy suurin osa. Ensimmäinen pääkomponentti on se vektori, jolle projisoidun datan varianssi on suurin. Laskemalla datamatriisille SVD tai PCA ja approksimoimalla matriisia muutaman ensimmäisen singulaarivektorin/pääkomponentin avulla kompressoidaan dataa ja poistetaan kohinaa. Nyt voidaan klusteroida/luokitella/tms uutta dataa. Myös muita menetelmiä löytyy: MDS, ICA, NMF... Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto 42

Laskennallinen data-analyysi II

Laskennallinen data-analyysi II Laskennallinen data-analyysi II Ella Bingham, ella.bingham@cs.helsinki.fi Kevät 2008 Ulottuvuuksien vähentäminen, SVD, PCA Kalvot perustuvat Saara Hyvösen kalvoihin 2007 Laskennallinen data-analyysi II,

Lisätiedot

Laskennallinen data-analyysi II

Laskennallinen data-analyysi II Laskennallinen data-analyysi II Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Kevät 2007 Muuttujien valinta Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto Korkeiden ulottuvuuksien kirous

Lisätiedot

Laskennallinen data-analyysi II

Laskennallinen data-analyysi II Laskennallinen data-analyysi II Ella Bingham, ella.bingham@cs.helsinki.fi Kevät 2008 Muuttujien valinta Kalvot perustuvat Saara Hyvösen kalvoihin 2007 Laskennallinen data-analyysi II, kevät 2008, Helsingin

Lisätiedot

MS-A0003/A Matriisilaskenta Laskuharjoitus 6

MS-A0003/A Matriisilaskenta Laskuharjoitus 6 MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja

Lisätiedot

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi

Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.

Lisätiedot

Ratkaisuehdotukset LH 8 / vko 47

Ratkaisuehdotukset LH 8 / vko 47 Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat

Lisätiedot

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).

Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0). Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 3

Inversio-ongelmien laskennallinen peruskurssi Luento 3 Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät 2011 1 Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T,

Lisätiedot

Ratkaisuehdotukset LH 7 / vko 47

Ratkaisuehdotukset LH 7 / vko 47 MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Ratkaisuehdotukset LH 3 / alkuvko 45

Ratkaisuehdotukset LH 3 / alkuvko 45 Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A

Lisätiedot

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)

Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä) Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 4

Inversio-ongelmien laskennallinen peruskurssi Luento 4 Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Matemaattinen Analyysi / kertaus

Matemaattinen Analyysi / kertaus Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Sovellusohjelmointi Matlab-ympäristössä: Vertaisverkon koneiden klusterointi

Sovellusohjelmointi Matlab-ympäristössä: Vertaisverkon koneiden klusterointi Sovellusohjelmointi Matlab-ympäristössä: Vertaisverkon koneiden klusterointi 28.4.2013 Annemari Auvinen (annauvi@st.jyu.fi) Anu Niemi (anniemi@st.jyu.fi) 1 Sisällysluettelo 1 JOHDANTO... 2 2 KÄYTETYT MENETELMÄT...

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48

MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48 MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.

Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2.

Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä todistuksia ja lineaarikuvauksen muodostamista. Sarjaan liittyvät Stack-tehtävät: 1 ja 2. HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2016 Harjoitus 3 Ratkaisut palautettava viimeistään maanantaina 29.8.2016 klo 13.15. Tehtäväsarja I Kerrataan lineaarikuvauksiin liittyviä

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Luku 4. Vektoridatan tiivistäminen

Luku 4. Vektoridatan tiivistäminen 1 / 35 Luku 4. Vektoridatan tiivistäminen T-61.2010 Datasta tietoon, syksy 2011 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 7.11.2011 2 / 35 Tämän luennon sisältö 1 Vektoridatan

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Lineaarikuvauksen R n R m matriisi

Lineaarikuvauksen R n R m matriisi Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:

Lisätiedot

1 Singulaariarvohajoitelma

1 Singulaariarvohajoitelma 1 Singulaariarvohajoitelma Tähän mennessä on tutkittu yhtälöryhmän Ax = y ratkaisuja ja törmätty tapauksiin joissa yhtälöryhmällä on yksikäsitteinen ratkaisu ("helppo"tapaus) yhtälöryhmällä on ääretön

Lisätiedot

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3.

Ominaisarvoon 4 liittyvät ominaisvektorit ovat yhtälön Ax = 4x eli yhtälöryhmän x 1 + 2x 2 + x 3 = 4x 1 3x 2 + x 3 = 4x 2 5x 2 x 3 = 4x 3. Matematiikan ja tilastotieteen laitos Lineaarialgebra ja matriisilaskenta II Ylimääräinen harjoitus 6 Ratkaisut A:n karakteristinen funktio p A on λ p A (λ) det(a λi ) 0 λ ( λ) 0 5 λ λ 5 λ ( λ) (( λ) (

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:

Lisätiedot

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia

Lisätiedot

MS-A0004/A0006 Matriisilaskenta

MS-A0004/A0006 Matriisilaskenta 4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin

Lisätiedot

Vektoreiden virittämä aliavaruus

Vektoreiden virittämä aliavaruus Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 / MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista

Lisätiedot

Ortogonaaliset matriisit, määritelmä 1

Ortogonaaliset matriisit, määritelmä 1 , määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,

Lisätiedot

Kanta ja Kannan-vaihto

Kanta ja Kannan-vaihto ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät

Matriisi-vektori-kertolasku, lineaariset yhtälöryhmät Matematiikan peruskurssi K3/P3, syksy 25 Kenrick Bingham 825 Toisen välikokeen alueen ydinasioita Alla on lueteltu joitakin koealueen ydinkäsitteitä, joiden on hyvä olla ensiksi selvillä kokeeseen valmistauduttaessa

Lisätiedot

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu

Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita

Lisätiedot

perusjoukosta (esim. tietyn kokoisten digitaalikuvien joukko).

perusjoukosta (esim. tietyn kokoisten digitaalikuvien joukko). 4. VEKTORIDATAN TIIVISTÄMINEN JA DEKORRELOINTI Palautetaan mieleen datamatriisi X: { n vektoria }} { d vektori alkiota Usein matriisin sarakkeilla (vektoreilla x(t), t = 1,..., n) ei ole mitään määrättyä

Lisätiedot

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset 31 MS-A0004/A0006 Matriisilaskenta 3 Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2292015 Lineaariset yhtälöt ovat vektoreille luonnollisia yhtälöitä, joita

Lisätiedot

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.

ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa. BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu

Lisätiedot

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42

MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).

Lisätiedot

2. Teoriaharjoitukset

2. Teoriaharjoitukset 2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

Ominaisarvo-hajoitelma ja diagonalisointi

Ominaisarvo-hajoitelma ja diagonalisointi Ominaisarvo-hajoitelma ja a 1 Lause 1: Jos reaalisella n n matriisilla A on n eri suurta reaalista ominaisarvoa λ 1,λ 2,...,λ n, λ i λ j, kun i j, niin vastaavat ominaisvektorit x 1, x 2,..., x n muodostavat

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 2

Inversio-ongelmien laskennallinen peruskurssi Luento 2 Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä

Lisätiedot

Determinantti 1 / 30

Determinantti 1 / 30 1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot

Moniulotteisia todennäköisyysjakaumia

Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (007) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio

2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A

Lisätiedot

Tämän luennon sisältö. Luku 4. Vektoridatan tiivistäminen. Datamatriisi (2) Datamatriisi. T Datasta tietoon, syksy 2011

Tämän luennon sisältö. Luku 4. Vektoridatan tiivistäminen. Datamatriisi (2) Datamatriisi. T Datasta tietoon, syksy 2011 Tämän luennon sisältö Luku 4. Vektoridatan tiivistäminen T-61.2010 Datasta tietoon, syksy 2011 professori Erkki Oja Tietojenkäsittelytieteen laitos, Aalto-yliopisto 1 Datamatriisi Pääkomponenttianalyysi

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (006) 1 Moniulotteisia todennäköisyysjakaumia >> Multinomijakauma Kaksiulotteinen

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 13.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/12 Käytännön asioita Kesäkuun tentti: ke 19.6. klo 17-20, päärakennuksen sali 1. Anna palautetta kurssisivulle ilmestyvällä

Lisätiedot

3.2.2 Tikhonovin regularisaatio

3.2.2 Tikhonovin regularisaatio 3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut

Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Johdatus tekoälyn taustalla olevaan matematiikkaan

Johdatus tekoälyn taustalla olevaan matematiikkaan Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti

Lisätiedot

Lineaariset yhtälöryhmät ja matriisit

Lineaariset yhtälöryhmät ja matriisit Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Määritelmä Ominaisarvo ja ominaisvektori Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi

Lisätiedot

12. Hessen matriisi. Ääriarvoteoriaa

12. Hessen matriisi. Ääriarvoteoriaa 179 12. Hessen matriisi. Ääriarvoteoriaa Tarkastelemme tässä luvussa useamman muuttujan (eli vektorimuuttujan) n reaaliarvoisia unktioita : R R. Edellisessä luvussa todettiin, että riittävän säännöllisellä

Lisätiedot

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme? TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia TKK (c) Ilkka Mellin (4) Moniulotteisia todennäköisyysjakaumia: Mitä

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt. osa 2 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 1 R. Kangaslampi Matriisihajotelmista

Lisätiedot

Lineaarialgebra, kertausta aiheita

Lineaarialgebra, kertausta aiheita Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

Lineaariset mollit, kl 2017, Harjoitus 1

Lineaariset mollit, kl 2017, Harjoitus 1 Lineaariset mollit, kl 07, Harjoitus Heikki Korpela 7 huhtikuuta 07 Tehtävä Symmetristä matriisia A(n n) sanotaan positiivisesti definiitiksi (merkitään A > 0), jos x T Ax > 0 kaikilla x 0, x R n (ks monisteen

Lisätiedot

Oppimistavoitematriisi

Oppimistavoitematriisi Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Determinantti. Määritelmä

Determinantti. Määritelmä Determinantti Määritelmä Oletetaan, että A on n n-neliömatriisi. Merkitään normaaliin tapaan matriisin A alkioita lyhyesti a ij = A(i, j). (a) Jos n = 1, niin det(a) = a 11. (b) Muussa tapauksessa n det(a)

Lisätiedot

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.5 Reedin-Mullerin koodit Olkoon tässä kappaleessa F = F2 = Z2 ja n = 2 m. Määritellään avaruuteen F n kertolasku koordinaateittain:

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Latinalaiset neliöt ja taikaneliöt

Latinalaiset neliöt ja taikaneliöt Latinalaiset neliöt ja taikaneliöt LuK-tutkielma Aku-Petteri Niemi Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2018 Sisältö Johdanto 2 1 Latinalaiset neliöt 3 1.1 Latinalainen neliö.........................

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

Matematiikka B2 - TUDI

Matematiikka B2 - TUDI Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot