10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

Koko: px
Aloita esitys sivulta:

Download "10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat"

Transkriptio

1 TAVOITTEET Esitetään vastaavalla tavalla kuin jännitystilan yhteydessä venymätilan muunnosyhtälöt Kehitetään materiaaliparametrien yhteyksiä; yleistetty Hooken laki Esitetään vaurioteoriat, joilla normaali- ja leikkausjännityksen alainen rasitustila yhdistetään vetokokeesta saatuun materiaalin lujuuteen SISÄLTÖ. Tasovenymä. Tasovenymätilan muunnosyhtälöt 3. Jännitys/muodonmuutos: yleistetty Hooken laki 4. Vaurioteoriat

2 0. TASOVENYMÄ Yleinen venymätila käsittää 3 normaalivenymä komponenttia (ε x, ε y, ε z ) ja 3 leikkausvenymä- (liukuma)komponenttia (γ xy, γ xz, γ yz ). Kokeellisesti tasovenymätilan venymät sadaan venymäliuskoilla kappaleen pinnasta. Tasovenymätilassa on kaksi normaalivenymäkomponenttia (ε x, ε y ) ja yksi leikkausvenymäkomponentti γ xy TASOVENYMÄ Kuvissa on esitetty siirtymät graafisesti. Huomaa, että normaalivenymät aiheuttavat elementin pituusmuutoksen x ja y -suuntiin ja leikkausvenymä (liukuma) aiheuttaa kahden vierekkäisen sivun suhteellisen kiertymän. Normaalivenymä ε x Normaalivenymä ε y Liukuma γ xy 4

3 0. TASOVENYMÄ Huomaa, että tasovenymätila ei välttämättä tarkoita tasojännitystilaa. Yleisessä tapauksessa, ellei υ 0, Poissonin efekti estää samanaikaisen tasojännitys- ja tasovenymätilan. Koska leikkausjännitykseen ja liukumaan ei vaikuta Poissonin vakio, ehto τ xz τ yz 0 edellyttää, että γ xz γ yz 0. Tasojännitystila ei aiheuta tasovenymätilaa x-y- tasossa, koska ε z TASOVENYMÄTILAN MUUNNOSYHTÄLÖT Merkkisääntö Normaalivenymät ε xz ja ε yz ovat positiivisia jos ne aiheuttavat venymiä x ja y akselien positiivisiin suuntiin Liukuma γ xy on positiivinen, jos kulma AOB on pienempi kuin

4 0. TASOVENYMÄTILAN MUUNNOSYHTÄLÖT Normaali- ja leikkausvenymät Vastaavalla tavalla kuin aiemmin jännitysten kanssa, voidaan johtaa muunnoskaavat venymille: ε x + ε y ε x ε y γ ε x ' + cosθ + ε y' xy sin θ ε x + ε y ε x ε y γ xy cosθ sin θ ( 0-5) ( 0-6) γ xy ' ' ε x ε y γ sin θ + xy cos θ 0-7 ( ) 7 0. TASOVENYMÄTILAN MUUNNOSYHTÄLÖT Normaali- ja leikkausvenymät Graafisesti Positiivinen normaalivenymä ε x Positiivinen leikkausvenymä γ x y 8 4

5 0. TASOVENYMÄTILAN MUUNNOSYHTÄLÖT Päävenymät Elementtiä voidaan kiertää siten, että sen muodonmuutos on ainoastaan venymiä ilman liukumia. Materiaalin pitää olla isotrooppista (joka suuntaan samanlaista) ja koordinaattiakselien tulee yhtyä pääakseleihin. Siten yhtälöistä 9-4 ja 9-5 saadaan γ xy tan θ p - ε ε x y ( 0 8) 9 0. TASOVENYMÄTILAN MUUNNOSYHTÄLÖT Päävenymät ε x + ε y ε x ε y γ xy ε, ± + Maksimi tasovenymä Soveltaen yhtälöitä 9-6, 9-7 ja 9-8 saadaan ε tan x ε y θ s - γ xy ( 0 0) ( 0-9) γ max in -plane ε x ε y γ + xy ( 0 -) 0 5

6 0. TASOVENYMÄTILAN MUUNNOSYHTÄLÖT Maksimi tasovenymä Soveltaen yhtälöitä 9-6, 9-7 ja 9-8 saadaan ε avg ε x + ε y ( 0 -) 0. TASOVENYMÄTILAN MUUNNOSYHTÄLÖT YHTEENVETOA Poissonin efektin vuoksi tasovenymätila ei ole tasojännitystila ja päinvastoin. Kappaleen piste on tasojännitystilassa, jos se sijaitsee kappaleen pinnalla, joka on jännityksetän pinnan normaalin suunnassa. Tasovenymätila voidaan analysoida esim. venymäliuskoilla mitatussa tasojännitystilassa. On kuitenkin muistettava, että tällöin esiintyy myös venymää pinnan normaalin suunnassa. Päävenymätilassa ei esiinny leikkausvenymiä (liukumia). 6

7 0. TASOVENYMÄTILAN MUUNNOSYHTÄLÖT YHTEENVETOA Pisteen venymätila voidaan esittää myös maksimi tasovenymillä. Tällöin vaikuttaa myös tasovenymä elementissä. Elementti, jossa esiintyy maksimi tasovenymä ja sitä vastaava normaalivenymä on 45 kulmassa päävenymien suhteen. 3 ESIMERKKI 0. Materiaalin differentiaalielementti on tasovenymätilassa, jossa vaikuttaa venymät ε x 350(0-6 ), ε y 00(0-6 ), γ xy 80(0-6 ), jotka aiheuttavat kuvan mukaisen muodonmuutoksen. Määritä päävenymät ja niitä vastaavat kiertymäkulmat. 4 7

8 ESIMERKKI 0. (RATKAISU) Elementin suunta Yhtälöstä 0-8 saadaan 6 γ xy 80(0 ) tan θ p 6 ε ε (0 ) x y ( ) Siten θ 8.8 ja , joten p p θ 4.4 ja 85.9 Positiivinen suunta on vastapäivään, joten elementti kiertyy kuvan mukaisesti: 5 ESIMERKKI 0. (RATKAISU) Päävenymät Yhtälöstä 0-9, ε, ε 030 ε x + ε y 6 ( )( 0 ) ± + ( 0 ) 6 6 ( ) ± 77.9( 0 ) 6 6 ( ) ε 3530 ( ) ± ε x ε y + γ xy 6 8

9 ESIMERKKI 0. (RATKAISU) Päävenymät Tarkistetaan kumpi näistä venymistä vaikuttaa x suuntaan soveltamalla yhtälöä 0-5 kun θ 4.4. Siten ε x + ε y ε x ε y γ xy ε x' + cosθ + sin θ cos 4.4 ε x' 3530 ( ) ( ) ( ) 6 ( ) sin ( 4.4 ) 6 ( ) ESIMERKKI 0. (RATKAISU) Päävenymät Siten ε x ε. Päävenymät aiheuttavat kuvan mukaisen muodonmuutoksen. 8 9

10 0.6 JÄNNITYS/MUODONMUUTOS:YLEISTETTY HOOKEN LAKI Yleistetty Hooken laki Materiaalissa oleva piste asetetaan kolmiaksiaaliseen jännitystilaan. Sovelletaan superpositioperiaatetta, Poissonin vakiota (ε lat υε long ) ja Hooken lakia (ε σ E) jolloin saadaan jännityksien ja venymien yhteys aina yhden akselin suunnassa. Asetetaan σ x vaikuttamaan, jolloin elementti venyy x suunnassa ja venymä on tähän suuntaan on σ ε ' x x E JÄNNITYS/MUODONMUUTOS:YLEISTETTY HOOKEN LAKI Yleistetty Hooken laki Asetetaan σ y, jolloin elementti kuroutuu venymällä ε x x -suuntaan, σ y ε' ' x υ E Vastaavasti jännityksellä σ z, kurouma x suuntaan on σ ε z ' ' ' x υ E 0 0

11 0.6 JÄNNITYS/MUODONMUUTOS:YLEISTETTY HOOKEN LAKI Yleistetty Hooken laki Superpositioperiaatteella soveltaen samaa kahteen muuhun suuntaan saadaan ε ε ε x y z E E E [ σ υ( σ + σ )] x [ σ υ( σ + σ )] ( 0-8) y [ σ υ( σ + σ )] z y x x z z y 0.6 JÄNNITYS/MUODONMUUTOS:YLEISTETTY HOOKEN LAKI Yleistetty Hooken laki Asetetaan leikkausjännitys τ xy elementtiin, jolloin havaitaan kokeellisesti, että muodonmuutos on ainoastaan liukuma γ xy. Asetetaan vastaavasti τ xz ja γ xy, sekä τ yz ja γ yz. Hooken laki leikkaukselle on siis γ xy τ xy γ yz τ yz γ xz τ G G G xz ( 0-9)

12 0.6 JÄNNITYS/MUODONMUUTOS:YLEISTETTY HOOKEN LAKI E, υ, ja G välinen yhteys Aiemmin todettiin: E G +υ ( ) ( 0-0) Päävenymien ja leikkausjännityksen yhteys on τ xy ε + υ 0 E ( ) ( ) max - Koska σ x σ y σ z 0, yhtälön 0-8 mukaan ε x ε y 0. Sijoitetaan 0-9, jolloin saadaan ε ε max γ xy JÄNNITYS/MUODONMUUTOS:YLEISTETTY HOOKEN LAKI E, υ, ja G välinen yhteys Hooken lain mukaan, γ xy τ xy /G. Siten ε max τ xy /G. Sijoitetaan tulos yhtälöön0- ja järjestetään uudelleen jolloin saadaan G E ( +υ) ( 0-0) 4

13 0.6 JÄNNITYS/MUODONMUUTOS:YLEISTETTY HOOKEN LAKI YHTEENVETOA Homogeenisilla ja isotrooppisilla materiaaleilla, jotka ovat kolmiaksiaalisessa jännitystilassa, venymän suuruus yhteen suuntaan on riippuvainen kaikista jännityksistä. Tämä johtuu Poissonin efektistä ja se voidaan tiivistää yleistetyksi Hooken laiksi. Homogeenisilla ja isotrooppisilla materiaaleilla leikkausjännitys aiheuttaa liukuman ainoastaan samassa tasossa. Materiaalivakiot E, G ja υ ovat matemaattisesti sidoksissa toisiinsa. 5 ESIMERKKI 0.0 Kuparitanko on kuvan jännitystilassa. Sen mitat ovat a 300 mm, b 50 mm ja t 0 mm ennen kuormituksen asettamista. Määritä uudet mitat kuorman asettamisen jälkeen. Materiaaliparametrit ovat E cu 0 GPa, υ cu

14 ESIMERKKI 0.0 (RATKAISU) Tanko on tasojännitystilassa. Kuormituksen perusteella σ x 800 MPa σ y 500 MPa τ xy 0 σ z 0 Yleistetystä Hooken laista saadaan vastaavat venymät σ x υ ε x v E E 800 MPa 0 03 ( σ + σ ) z ( ) MPa ( ) ( 500 ) MPa 7 ESIMERKKI 0.0 (RATKAISU) Yleistetystä Hooken laista saadaan vastaavat venymät σ y υ ε y ( σ x + σ z ) E E 500 MPa MPa MPa 0 03 ( ) ( ) ( ) ( σ + σ ) σ z υ ε z x E E y ( ) ( 800 MPa 500 MPa )

15 ESIMERKKI 0.0 (RATKAISU) Tangon uudet mitat ovat siis a' 300 mm b' 50 mm + t' 0 mm ( 300 mm) 30.4 mm ( )( 50 mm) mm ( )( 0 mm) 9.98 mm 9 Suunnittelussa on materiaalille asetettava jännityksen yläraja, jolla se vaurioituu (myötää/murtuu). Sitkeillä materiaaleille vaurio alkaa myötämisellä. Haurailla materiaaleilla vaurion määrittää murtuminen. Suunnittelijoilla on kuitenkin käytössään vain yksiaksiaalisen vetokokeen tulos, joka ei suoraan sovellu kaksi- tai kolmiaksiaalisen jännitystilan vauriotyyppiin. Eri materiaalityypeille on johdettu lujuushypoteeseja (oletuksia), joilla arvioidaan kriittisiä jännitystasoja. 30 5

16 A. Sitkeät materiaalit. Maksimileikkausjännityshypoteesi (MLJH) Sitkeät materiaalit myötävät tyypillisesti liukumalla. Liukupinnat muodostuvat materiaalin raerajoille. Liukupintoja kutsutaan Lüderin viivoiksi. Kuvan mukaisesti liukupinnat ovat n. 45 asteen kulmassa vetosuunnan suhteen. 3 A. Sitkeät materiaalit. Maksimileikkausjännityshypoteesi Aiemmin on johdettu tulos maksimileikkausjännitystasolle τ σ Y ( 0 6) max - Vuonna 868 Henri Tresca esitti maksimileikkausjännityshypoteesin tai ns. Trescan vaurioteorian. 3 6

17 A. Sitkeät materiaalit. Maksimileikkausjännityshypoteesi Mikäli tasojännitystilan jännitykset ovat samanmerkkiset, on vaurioraja τ σ max abs max Mikäli tasojännitystilan jännitykset ovat erimerkkiset, on vaurioraja τ abs max σ max σ min 33 A. Sitkeät materiaalit. Maksimileikkausjännityshypoteesi Siten voidaan maksimileikkausjännitys tiivistää kahden pääjännityksen perusteella muotoon: σ σ } σ, σ pääjännitykset samanmerkkiset. Y Y Y ( ) σ σ } σ, σ pääjännitykset samanmerkkiset. 0-7 σ σ σ } σ, σ pääjännitykset erimerkkiset. 34 7

18 A. Sitkeät materiaalit. Maksimileikkausjännityshypoteesi 35 A. Sitkeät materiaalit. Vakiomuodonvääristymishypoteesi (VMVH) Energiaa yksikkötilavuuselementissä kutsutaan venymäenergiatiheydeksi. Yksiaksiaalisessa ja kolmiaksiaalisessa jännitystilassa venymäenergiatiheys on u σε ( 0-8) u σ ε + σ ε + σ3ε

19 A. Sitkeät materiaalit. Vakiomuodonvääristymishypoteesi Lineaarielastisella alueella Hooken lain mukaan σ + σ + σ u 3 ( 0-9) E υ ( σσ + σσ 3 + σ3σ ) Vakiomuodonvääristymishypoteesin mukaan sitkeä aine myötää, kun vääristymisenergia tilavuusyksikköä kohti on sama tai suurempi kuin vääristymisenergia tilavuusyksikköä kohti yksiaksiaalisessa vetokokeessa. 37 A. Sitkeät materiaalit. Vakiomuodonvääristymishypoteesi Määritetään vääristymisenergia + υ u d σ σ + σ σ3 6E Tasojännitystilassa + υ u d σ 3 E [( ) ( ) + ( σ σ ) ] ( σ σ + σ ) Vetokokeessa σ σ Y, σ σ 3 0 +ν ( ud ) Y σy 3E

20 A. Sitkeät materiaalit. Vakiomuodonvääristymishypoteesi Koska hypoteesin mukaan u d (u d ) Y, saadaan tasojännitystilassa ( 0 30) σσ + σ σ Y - σ 39 A. Sitkeät materiaalit. Vakiomuodonvääristymishypoteesi Verrataan hypoteeseja graafisesti. 40 0

21 B. Hauraat materiaalit 3. Maksiminormaalijännityshypoteesi Hauraat materiaalit murtuvat kuvien mukaisesti. 4 B. Hauraat materiaalit 3. Maksiminormaalijännityshypoteesi (MNJH) Maksiminormaalijännityshypoteesin mukaan hauras materiaali murtuu kun pääjännitys σ saavuttaa yksinkertaisessa vetokokeessa saadun murtorajan. Tasojännitystilassa σ σ σ σ ult ult ( 0-3) 4

22 B. Hauraat materiaalit 3. Maksiminormaalijännityshypoteesi Kokeellisesti on havaittu hypoteesin toimivan varsin hyvin materiaaleilla, joiden vetopuristusmurtoraja on (suunnilleen) sama. 43 B. Hauraat materiaalit 4. Mohrin vauriokriteeri Mohrin vauriokriteeriä käytetään hauraille materiaaleille, joiden veto-puristusmurtorajat ovat erilaiset. Materiaalille on tehtävä kolme testiä kriteerin määrittämiseksi. 44

23 B. Hauraat materiaalit 4. Mohrin vauriokriteeri Yksiaksiaalinen vetokoe, jolla saadaan vetomurtolujuus (σ ult ) t Yksiaksiaalinen puristuskoe, jolla saadaan puristusmurtolujuus(σ ult ) c Vääntökoe, jolla saadaan leikkausmurtolujuus τ ult. Tuloksena saadaan pääjännitystasossa kuvaaja: 45 YHTEENVETOA Sitkeä materiaali vaurioituu myötämällä ja hauras materiaali murtumalla. Sitkeän materiaalin vauriossa muodostuu liukupintoja materiaalin raerajoille. Liukupinnat aiheutuvat leikkausjännityksistä, joten maksimileikkausjännityshypoteesi perustuu tähän ideaan. Normaalijännityksen alaiseen materiaaliin varastoituu venymäenergiaa. 46 3

24 YHTEENVETOA Vakiomuodonvääristymishypoteesi perustuu ideaan, jonka mukaan materiaali vääristävä energia johtaa myötämiseen. Hauraan materiaalin murtuminen aiheutuu maksimivetojännityksestä materiaalissa. Tällöin voidaan käyttää maksimijännityshypoteesia vaurion määrittämiseen, kun materiaalin veto- ja puristuslujuudet ovat suunnilleen samat. 47 YHTEENVETOA Mikäli materiaalin veto- ja puristuskäyttäytyminen eroaa merkittävästi, voidaan käyttää Mohrin vauriokriteeriä. Materiaalin virheistä johtuen hauraiden materiaalien murtuminen on vaikeaa ennakoida, joten hauraiden materiaalien vaurioteorioita on syytä soveltaa varovaisuudella. 48 4

25 ESIMERKKI 0. Teräsputken sisäsäde on 60 mm ja ulkosäde 80 mm. Kun siihen vaikuttaa kuvan kuormitus, myötääkö materiaali kun sovelletaan vakiomuodonvääristymishypoteesia (VMVH)? Myötöraja vetotestin mukaan on σ Y 50 MPa. 49 ESIMERKKI 0. (RATKAISU) Rasitus on vakio koko putken pituudella. Otetaan mielivaltainen leikkaus, jolloin saadaan kuvan jännitysjakaumat. 50 5

26 ESIMERKKI 0. (RATKAISU) Pisteet A ja B ovat saman jännitystilan alaisia. Pisteessä A Tc ( 8000 N m)( 0.04 m) τ A 6.4 MPa J 4 4 π 0.04 m 0.03 m σ A Mc I ( ) ( ) ( ) ( 3500 N m)( 0.04 m) 4 ( π 4) ( 0.04 m) ( 0.03 m) Pääjännitykset ovat [ ] 4 [ ] σ MPa σ MPa 0.9 MPa 5 ESIMERKKI 0. (RATKAISU) VMVH:n mukaan Is ( σ σσ + σ ) σy [( 76.) ( 76.)( 78.0) + ( 78.0) ] 5,00 < 6,500 OK! σ Y Koska VMVH:n mukainen vertailujännitys on pienempi kuin yksiaksiaalisen vetokokeen mukainen myötöraja, ei materiaali vaurioidu annetulla kuormituksella.? 5 6

27 ESIMERKKI 0.4 Akselin säde on 0.5 cm ja sen materiaalin (teräs) myötöraja on σ Y 360 MPa. Määritä vaurioituuko akseli a) MLJH:n b) VMVH:n mukaan. 53 ESIMERKKI 0.4 (RATKAISU) Suurin leikkausjännitys vaikuttaa ulkopinnalla, joten suurimmat normaali- ja leikkausjännityskomponentit ovat σ τ τ x xy xy P A Tc J 5 kn π 6.55 kn/cm ( 0.5 cm) cm( 0.5 cm) 4 π ( 0.5 cm) 3.5 kn 9.0 kn/cm 65.5 MPa 9 MPa 54 7

28 ESIMERKKI 0.4 (RATKAISU) Tutkitaan elementtiä pisteessä A. Pääjännitykset ovat σ σ σ, σ x + σ y ± 95.5 ± MPa ± 86.6 MPa σ x + σ y + τ + xy ( 65.5) 55 ESIMERKKI 0.4 (RATKAISU) Maksimileikkausjännityshypoteesi (MLJH) Koska pääjännitykset ovat erimerkkiset sovelletaan yhtälöä 0-7, σ σ σ Y ( ) Is ? 38. > 360 Vaurio! Materiaali siis myötää MLJH:n mukaan. 56 8

29 ESIMERKKI 0.4 (RATKAISU) Vakiomuodonvääristymishypoteesi Soveltaen yhtälöä 0-30 saadaan Is ( σ σσ + σ ) σy [( 95.6) ( 95.6)( 86.6) ( 86.6) ] ( 360) 8, ,600 OK! VMVH:n mukaan materiaali ei myödä. Miksi?? 57 YHTEENVETO Kun materiaalin elementissä vaikuttaa muodonmuutoksia yhdessä tasossa, on kysessä tasovenymätila. Mikäli venymäkomponentit ε x, ε y, ja γ xy tunnetaan, voidaan muunnosyhtälöillä laskea venymät missä muussa koordinaatistossa tahansa. Myös päävenymätasot ja suurin tasoleikkausvenymä voidaan laskea muunnosyhtälöillä. 58 9

30 YHTEENVETO Mikäli päävenymät ovat samanmerkkiset, suurin leikkausvenymä on γ max ε max /. Hooken lakia voidaan soveltaa avaruustapauksessa, jolloin saadaan yleistetty Hooken laki (0-8). Jos E ja υ tunnetaan, voidaan G laskea yhteydestä G E/[( + υ]. 59 YHTEENVETO Mikäli materiaalin pääjännitykset tunnetaan, voidaan suunnittelua varten lujuushypoteeseilla arvioida materiaalin kestävyyttä kun tunnetaan vetokokeen myötö/murtolujuus. Sitkeät materiaalit vaurioituvat leikkautumalla, jolloin voidaan soveltaa joko maksimileikkausjännitys- tai vakiomuodonvääristymishypoteesia. Molemmilla hypoteeseilla saadaan vertailujännitys, jota voidaan verrata yksiaksiaalisen vetokokeen tulokseen

31 YHTEENVETO Hauraat materiaalit vaurioituvat murtumalla kun suurin vetojännitys saavuttaa raja-arvon. Tällöin voidaan soveltaa joko maksiminormaalijännityshypoteesia tai Mohrin vauriokriteeriä. Saatua vertailujännityksen arvoa verrataan materiaalin vetokokeesta saatuun murtolujuuteen. 6 3

LUJUUSHYPOTEESIT, YLEISTÄ

LUJUUSHYPOTEESIT, YLEISTÄ LUJUUSHYPOTEESIT, YLEISTÄ Lujuushypoteesin tarkoitus: Vastataan kysymykseen kestääkö materiaali tietyn yleisen jännitystilan ( x, y, z, τxy, τxz, τyz ) vaurioitumatta. Tyypillisiä materiaalivaurioita ovat

Lisätiedot

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus TAVOITTEET Määritetään aksiaalisesti kuormitetun sauvan muodonmuutos Esitetään menetelmä, jolla ratkaistaan tukireaktiot tapauksessa, jossa statiikan tasapainoehdot eivät riitä Analysoidaan lämpöjännitysten,

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 23.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Luennon sisältö Hooken laki lineaaris-elastiselle materiaalille (Reddy, kpl 6.2.3) Lujuusoppia: sauva (Reddy,

Lisätiedot

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja TAVOITTEET Tutkitaan väännön vaikutusta suoraan sauvaan Määritetään vääntökuormitetun sauvan jännitysjakauma Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti

Lisätiedot

Materiaalien mekaniikka

Materiaalien mekaniikka Materiaalien mekaniikka 3. harjoitus jännitys ja tasapainoyhtälöt 1. Onko seuraava jännityskenttä tasapainossa kun tilavuusvoimia ei ole: σ x = σ 0 ( 3x L + 4xy 8y ), σ y = σ 0 ( x L xy + 3y ), τ xy =

Lisätiedot

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys

2 LUJUUSOPIN PERUSKÄSITTEET Suoran sauvan veto tai puristus Jännityksen ja venymän välinen yhteys SISÄLLYSLUETTELO Kirjallisuusluettelo 12 1 JOHDANTO 13 1.1 Lujuusopin sisältö ja tavoitteet 13 1.2 Lujuusopin jako 15 1.3 Mekaniikan mallin muodostaminen 16 1.4 Lujuusopillinen suunnittelu 18 1.5 Lujuusopin

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Vauriomekanismi: Väsyminen

Vauriomekanismi: Väsyminen Vauriomekanismi: Väsyminen Väsyminen Väsyminen on vaihtelevan kuormituksen aiheuttamaa vähittäistä vaurioitumista. Erään arvion mukaan 90% vaurioista on väsymisen aiheuttamaa. Väsymisikää voidaan kuvata

Lisätiedot

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä. Kotitehtävät palautetaan viimeistään keskiviikkona 2.3. ennen luentojen alkua eli klo 14:00 mennessä puiseen kyyhkyslakkaan, jonka numero on 9. Arvostellut kotitehtäväpaperit palautetaan laskutuvassa.

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 9.3.2016 Susanna Hurme Päivän aihe: Palkin leikkausvoima- ja taivutusmomenttijakaumat ja kuviot (Kirjan luvut 7.2 ja 7.3) Osaamistavoitteet: Ymmärtää, miten leikkausvoima

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ

7. Suora leikkaus TAVOITTEET 7. Suora leikkaus SISÄLTÖ TAVOITTEET Kehitetään menetelmä, jolla selvitetään homogeenisen, prismaattisen suoran sauvan leikkausjännitysjakauma kun materiaali käyttäytyy lineaarielastisesti Menetelmä rajataan määrätyn tyyppisiin

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA

Lujuusopin jatkokurssi IV.1 IV. KUORIEN KALVOTEORIAA Lujuusoin jatkokussi IV. IV. KUORIE KALVOTEORIAA Kuoien kalvoteoiaa Lujuusoin jatkokussi IV. JOHDATO Kuoiakenteen keskiinta on jo ennen muoonmuutoksia kaaeva inta. Kaaevasta muoosta seuaa että keskiinnan

Lisätiedot

Etunimi. Sukunimi. Oppimistavoite: ymmärtää, kuinka positiiviset ja negatiiviset magneettiset navat tuottavat työntö- ja vetovoimaa.

Etunimi. Sukunimi. Oppimistavoite: ymmärtää, kuinka positiiviset ja negatiiviset magneettiset navat tuottavat työntö- ja vetovoimaa. 1 Magneettiset navat Oppimistavoite: ymmärtää, kuinka positiiviset ja negatiiviset magneettiset navat tuottavat työntö- ja vetovoimaa. 1. Nimeä viisi esinettä, joihin magneetti kiinnittyy. 2. Mitä magneetin

Lisätiedot

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän

Lisätiedot

Hitsaustekniikkaa suunnittelijoille koulutuspäivä Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm

Hitsaustekniikkaa suunnittelijoille koulutuspäivä Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm Hitsaustekniikkaa suunnittelijoille koulutuspäivä 27.9.2005 Hitsattujen rakenteiden lujuustarkastelu Tatu Westerholm HITSAUKSEN KÄYTTÖALOJA Kehärakenteet: Ristikot, Säiliöt, Paineastiat, Koneenrungot,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 7 to Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen

3.1 Väliarvolause. Funktion kasvaminen ja väheneminen Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Harjoitus 10. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016 Kotitehtävät palautetaan viimeistään keskiviikkoisin ennen luentojen alkua eli klo 14:00 mennessä. Muistakaa vastaukset eri tehtäviin palautetaan eri lokeroon! Joka kierroksen arvostellut kotitehtäväpaperit

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8,

Näihin harjoitustehtäviin liittyvä teoria löytyy Adamsista: Ad6, Ad5, 4: 12.8, ; Ad3: 13.8, TKK, Matematiikan laitos Gripenberg/Harhanen Mat-1.432 Matematiikan peruskurssi K2 Harjoitus 4, (A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä ) 12 16.2.2007, viikko

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)

Lisätiedot

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto

FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva

Lisätiedot

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

&()'#*#+)##'% +'##$,),#%'

&()'#*#+)##'% +'##$,),#%' "$ %"&'$ &()'*+)'% +'$,),%' )-.*0&1.& " $$ % &$' ((" ")"$ (( "$" *(+)) &$'$ & -.010212 +""$" 3 $,$ +"4$ + +( ")"" (( ()""$05"$$"" ")"" ) 0 5$ ( ($ ")" $67($"""*67+$++67""* ") """ 0 5"$ + $* ($0 + " " +""

Lisätiedot

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5

massa vesi sokeri muu aine tuore luumu b 0,73 b 0,08 b = 0,28 a y kuivattu luumu a x 0,28 a y 0,08 = 0,28 0,08 = 3,5 A1. Tehdään taulukko luumun massoista ja pitoisuuksista ennen ja jälkeen kuivatuksen. Muistetaan, että kuivatuksessa haihtuu vain vettä. Näin ollen sokerin ja muun aineen massa on sama molemmilla riveillä.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

3. SUUNNITTELUPERUSTEET

3. SUUNNITTELUPERUSTEET 3. SUUNNITTELUPERUSTEET 3.1 MATERIAALIT Myötölujuuden ja vetomurtolujuuden arvot f R ja f R y eh u m tuotestandardista tai taulukosta 3.1 Sitkeysvaatimukset: - vetomurtolujuuden ja myötörajan f y minimiarvojen

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa.

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa. Radiaanit Kulmia mitataan matematiikassa paitsi asteissa, myös radiaaneissa. Radiaanien taustaideana on, että kun kulmaa α asetetaan yksikköympyrään, kulmien kylkien välille muodostuu ympyrän kehälle kaari

Lisätiedot

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS: 6. Käänteiskuvaukset ja implisiittifunktiot 6.1. Käänteisfunktion olemassaolo 165. Määritä jokin piste, jonka ympäristössä funktiolla f : R 2 R 2, f (x,y) = (ysinx, x + y + 1) a) on lokaali käänteisfunktio,

Lisätiedot

Kahden laboratorion mittaustulosten vertailu

Kahden laboratorion mittaustulosten vertailu TUTKIMUSSELOSTUS NRO RTE9 (8) LIITE Kahden laboratorion mittaustulosten vertailu Sisältö Sisältö... Johdanto... Tulokset.... Lämpökynttilät..... Tuote A..... Tuote B..... Päätelmiä.... Ulkotulet.... Hautalyhdyt,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011

1/6 TEKNIIKKA JA LIIKENNE FYSIIKAN LABORATORIO V1.31 9.2011 1/6 333. SÄDEOPTIIKKA JA FOTOMETRIA A. INSSIN POTTOVÄIN JA TAITTOKYVYN MÄÄRITTÄMINEN 1. Työn tavoite. Teoriaa 3. Työn suoritus Työssä perehdytään valon kulkuun väliaineissa ja niiden rajapinnoissa sädeoptiikan

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)

Lisätiedot

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut Koordinaatistot 1/6 Sisältö Koordinaatiston ja koordinaattien käsite Geometrisissa tehtävissä ja siten mös monissa kätännön ongelmissa on usein tarpeen ilmoittaa pisteiden sijainti jonkin kiinteän vertailussteemin

Lisätiedot

2.5 Liikeyhtälö F 3 F 1 F 2

2.5 Liikeyhtälö F 3 F 1 F 2 Tässä kappaleessa esittelen erilaisia tapoja, joilla voiat vaikuttavat kappaleen liikkeeseen. Varsinainen kappaleen pääteea on assan liikeyhtälön laatiinen, kun assaan vaikuttavat voiat tunnetaan. Sitä

Lisätiedot

KJR-C2004 materiaalitekniikka. Harjoituskierros 2

KJR-C2004 materiaalitekniikka. Harjoituskierros 2 KJR-C2004 materiaalitekniikka Harjoituskierros 2 Pienryhmäharjoitusten aiheet 1. Materiaaliominaisuudet ja tutkimusmenetelmät 2. Metallien deformaatio ja lujittamismekanismit 3. Faasimuutokset 4. Luonnos:

Lisätiedot

KJR-C2002 Kontinuumimekaniikan perusteet

KJR-C2002 Kontinuumimekaniikan perusteet KJR-C2002 Kontinuumimekaniikan perusteet Luento 25.11.2015 Susanna Hurme, Yliopistonlehtori, TkT Tämän päivän luento Aiemmin ollaan johdettu palkin voimatasapainoyhtälöt differentiaaligeometrisella tavalla

Lisätiedot

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v + 9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

grada dv = a n da, (3) vol(ω) ε = εdv. (4) (u n +n u)da, (5)

grada dv = a n da, (3) vol(ω) ε = εdv. (4) (u n +n u)da, (5) MEI-55 Mallintamisen perusteet Harjoitus 2 Tehtävä Dyadin a b, jossa a,b R 3 jälki on skalaari jota merkitään tr(a b) ja määritellään pistetulona tr(a b) = a b. (). Mikäli vektorit a ja b on annettu suorakulmaisessa

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

Projektityö M12. Johdanto

Projektityö M12. Johdanto Projektityö M12 Johdanto Projektityö sisältää kuutta tehtävää, kuitenkin ne kaikki koskevat saman yhtälön ratkaisua. Yhtälö on sin x 2 =e 2x (1.1) Sen ratkaisu voidaan käsitellä tutkimalla funktio y=e

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt

Yhtälöryhmät 1/6 Sisältö ESITIEDOT: yhtälöt Yhtälöryhmät 1/6 Sisältö Yhtälöryhmä Yhtälöryhmässä on useita yhtälöitä ja yleensä myös useita tuntemattomia. Tavoitteena on löytää tuntemattomille sellaiset arvot, että kaikki yhtälöt toteutuvat samanaikaisesti.

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla.

Kuten aaltoliikkeen heijastuminen, niin myös taittuminen voidaan selittää Huygensin periaatteen avulla. FYS 103 / K3 SNELLIN LAKI Työssä tutkitaan monokromaattisen valon taittumista ja todennetaan Snellin laki. Lisäksi määritetään kokonaisheijastuksen rajakulmia ja aineiden taitekertoimia. 1. Teoriaa Huygensin

Lisätiedot

JOKELA - VÄLIPOHJAN KANTAVUUDEN MÄÄRITYS RAPORTTI 1. KRS. KATON VAAKARAKENTEISTA Torikatu 26 80100 Joensuu 02.09.2011

JOKELA - VÄLIPOHJAN KANTAVUUDEN MÄÄRITYS RAPORTTI 1. KRS. KATON VAAKARAKENTEISTA Torikatu 26 80100 Joensuu 02.09.2011 JOENSUUN JUVA OY JOKELA - VÄLIPOHJAN KANTAVUUDEN MÄÄRITYS RAPORTTI 1. KRS. KATON VAAKARAKENTEISTA Torikatu 26 80100 Joensuu 02.09.2011 JOENSUUN JUVA OY Penttilänkatu 1 F 80220 Joensuu Puh. 013 137980 Fax.

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

y=-3x+2 y=2x-3 y=3x+2 x = = 6

y=-3x+2 y=2x-3 y=3x+2 x = = 6 MAA Koe, Arto Hekkanen ja Jussi Tyni 5.5.015 Loppukoe LASKE ILMAN LASKINTA. 1. Yhdistä kuvaaja ja sen yhtälö a) 3 b) 1 c) 5 d) Suoran yhtälö 1) y=3x ) 3x+y =0 3) x y 3=0 ) y= 3x 3 5) y= 3x 6) 3x y+=0 y=-3x+

Lisätiedot

Lumen teknisiä ominaisuuksia

Lumen teknisiä ominaisuuksia Lumen teknisiä ominaisuuksia Lumi syntyy ilmakehässä kun vesihöyrystä tiivistyneessä lämpötila laskee alle 0 C:n ja pilven sisällä on alijäähtynyttä vettä. Kun lämpötila on noin -5 C, vesihöyrystä, jäähiukkasista

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

Kevään 2011 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä /

Kevään 2011 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä / Kevään 0 pitkän matematiikan ylioppilastehtävien ratkaisut Mathematicalla Simo K. Kivelä / 8.7.0 a) b) c) a) Tehtävä Yhtälö ratkaistaan yleensä Solve-funktiolla: Solve x 3 x, x x 4 Joissakin tapauksissa

Lisätiedot

1. kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut

1. kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut . kotitehtäväsarja - Einsteinin summaussääntö ja jännitystila - malliratkaisut Tehtävä. Ovatko seuraavat indeksimuotoiset lausekkeet karteesisessa suorakulmaisessa koordinaatistossa oikein, perustelu?

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk.

TTY FYS-1010 Fysiikan työt I AA 1.2 Sähkömittauksia Ilari Leinonen, TuTa, 1. vsk Markus Parviainen, TuTa, 1. vsk. TTY FYS-1010 Fysiikan työt I 14.3.2016 AA 1.2 Sähkömittauksia 253342 Ilari Leinonen, TuTa, 1. vsk. 246198 Markus Parviainen, TuTa, 1. vsk. Sisältö 1 Johdanto 1 2 Työn taustalla oleva teoria 1 2.1 Oikeajännite-

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

Murtumismekanismit: Väsyminen

Murtumismekanismit: Väsyminen KJR-C2004 Materiaalitekniikka Murtumismekanismit: Väsyminen 11.2.2016 Väsyminen Väsyminen on dynaamisen eli ajan suhteen aiheuttamaa vähittäistä vaurioitumista. Väsymisvaurio ilmenee särön, joka johtaa

Lisätiedot

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vaihtosähkön teho kompleksinen teho S pätöteho P loisteho Q näennäisteho S Käydään läpi sinimuotoisiin sähkösuureisiin liittyviä tehotermejä. Määritellään kompleksinen teho, jonka

Lisätiedot

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170 VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain

Lisätiedot

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 2016 Antti Rasila

Lisätiedot

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269)

Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt. 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Koesuunnitelma KON-C3004 Kone-ja rakennustekniikan laboratoriotyöt 16.10.2015 Aleksi Purkunen (426943) Joel Salonen (427269) Sisällysluettelo 1. Johdanto... 2 2. Tutkimusmenetelmät... 2 2.1 Kokeellinen

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot